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1. Incentives from practice

Consider a fund, a bank, an insurance company or an investor (in general a financial unit)
whose profit-loss account is consisted by total profit P and total loss L. Then the deficit
that this unit has to anticipate is equal to

X = P− L.

The set of monetary flows that can anticipate this deficit, is the following:

{m ∈ R|m + X ∈ R+}.
The minimum monetary flow that can anticipate this deficit is equal to

inf{m ∈ R|m + X ∈ R+} = −X.

If there is a finite set of states of the world Ω = {1, 2, ..., S}, for any state s ∈ Ω there
is a deficit Xs. The minimum monetary flow that can anticipate all the possible deficits
Xs, s = 1, 2, ..., S is equal to

inf{m ∈ R|m1 + X ∈ RS
+} = − inf{Xs|s = 1, 2, ..., S}.

The function ρ : RS → R with ρ(X) = − inf{Xs|s = 1, 2, ..., S} is a first example of a
coherent risk measure and (RS

+,1) is a first example of an insurance frame, where RS
+

is an acceptance set and 1 is a numeraire, or else a insurance instrument. Note that
ρ(X) = sup{−Xs|s = 1, 2, ..., S} = sup{es · (−X)|s = 1, 2, ..., S}, where es, s = 1, 2, ..., S
are the vectors of the usual algebraic basis of RS. But these vectors are also the extreme
points of the simplex ∆S−1, which is the set of all the probability vectors over Ω. Hence, the
expression

ρ(X) = sup{es · (−X)|s = 1, 2, ..., S},
is a first formulation of the famous so-called duality representation theorem.

Proposition 1.1. ρ(X) = sup{es · (−X)|s = 1, 2, ..., S} = sup{π · (−X)|π ∈ ∆S−1}.

Proof ∆S−1 = co{e1, e2, ..., eS}. Hence ρ(X) ≤ sup{π · (−X)|π ∈ ∆S−1} by well-known
properties of suprema. Conversely, for any X ∈ RS and any π ∈ ∆S−1, π · (−X) ≤∑S

s=1 πs sup{es · (−X)|s = 1, 2, ..., S} = ρ(X). By taking supremum over π we get that
sup{π(−X)|π ∈ ∆S−1} ≤ ρ(X) and finally ρ(X) = sup{π(−X)|π ∈ ∆S−1}. �

The capital ρ(X) is also called solvency capital, because it comes from the simple
solvency notion that we indicated above. Moreover, coherent risk measures and the Principle
of the Minimum Capital is not irrelevant to Solvency II which is the continuation of Basel
II in the actuarial frame.

Note: Great part of the following Sections relies on [14]
1
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2. Financial positions, acceptance sets and coherent risk measures

Suppose that we live in an economic environment where there is a finite number of states
Ω = {1, 2, . . . , S} which may occur tomorrow (or after a certain period of time T ). A
financial position X is a random variable X : Ω → R which denotes either the terminal
value of a portfolio or an investment at time-period T (if we put today to be the time-period
0) or the claim due to the occurence of one of the states in Ω. An acceptance set A is a
set of financial positions, claimed by the regulator as the ’safe’ ones. However, financial risk
according to the frame posed in [5] is the variability of the terminal value of some portfolio
due to the presence of uncertainty. The essential properties that an acceptance set must
satisfy, posed as axioms in [5] are the following:

(i) A+A ⊆ A
(ii) λA ⊆ A for any λ ∈ R+

(iii) RS
+ ⊆ A

Note that by (i), (ii)A is a wedge. IfA is a cone, another property which concludes coherence
of A is

A ∩ (−RS
+) = {0}.

The three properties mentioned are directly related to the properties of Sub-additivity, Pos-
itive Homogeneity and Monotonicity of a coherent risk measure, as it is clear from the next
definition of it. Also, a numeraire asset e ∈ RS

+ is used for insuring the financial positions
with respect to some acceptance set A. Insuring the financial position x ∈ RS with respect
to the pair (A, e) is the determination of λ ∈ R shares of e such that

x + λe ∈ A.

Here we suppose that the numeraire asset is the riskless investment 1 = (1, 1, ..., 1) ∈ RS.
A monetary (A, e)-risk measure is a function ρ : RS → R which indicates the minimum
amount of shares ρ(X) of e needed so that X ∈ RS to become acceptable (insurable). The
acceptance set of ρ is the set of positions

Aρ = {X ∈ RS|ρ(X) ≤ 0},

being actually a coherent acceptance set, or else an acceptance set which satisfies the proper-
ties (i)− (iii) of the primary axioms in [5] whenever ρ is a coherent risk measure, according
to the definition mentioned below. The risk measure measure associated with the pair (A, e)
is defined as follows:

ρA,e(x) = inf{m ∈ R|x + m · e ∈ A},
for any x ∈ RS. As it is well known (see [5]), a risk measure ρ : RS → R which satisfies the
properties (X, Y ∈ RS)

(i) ρ(X + a1) = ρ(X)− a (Translation Invariance)
(ii) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (Sub-additivity)

(iii) ρ(λX) = λρ(X), λ ∈ R+ (Positive Homogeneity) and
(iv) X ≤ Y in terms of the usual partial ordering of RS, implies ρ(Y ) ≤ ρ(X) (Monotonic-

ity)

is called coherent.
In order to conclude on the relation between acceptance sets and risk measures we may

prove a first proposition
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Proposition 2.1. If A is a closed cone of RS containing RS
+, then the risk measure ρA,1 is

a coherent risk measure which doesn’t take infinite values.

Proof We have to verify that the properties of a coherent risk measure hold for ρA,1. Note
that according to the [11, Pr. 3.1.3], 1 is an order-unit of RS. Also, for any X ∈ RS there
is some m ∈ R such that X + m1 ∈ A. That is because

RS = ∪∞n=1[−n1 , n1]A ,

where [ . , . ]A denotes the corresponding order-interval with respect to the partial ordering
induced on RS by A. Hence for some n(X) ∈ N,

X ∈ [−n(X)1 , n(X)1]A ,

which implies X + n(X)1 ∈ A and the set {m ∈ R |X + m1 ∈ A} is non-empty for any
X ∈ RS. This also indicates that ρA,1(X) 6= ∞ for any X ∈ RS.

In order to show that ρA,1(X) 6= −∞ for every X ∈ RS, we have to show that for any
X ∈ RS, the set of real numbers {m ∈ R |m1+ X ∈ A} is lower bounded. Since 1 ∈ intRS

+,
1 ∈ intA, which implies that 1 is an order-unit of RS being partially ordered by the wedge
A. As we mentioned before, this implies that for any X ∈ RS there is some n(X) ∈ N such
that

X ∈ [−n(X)1 , n(X)1] ,

where [ . , . ] denotes an order-interval with respect to the partial ordering induced by A on
RS. But on the other hand for any X ∈ RS there is some nonzero m0(X) ∈ R+ such that

X −m0(X)1 /∈ A .

If X = 0 this m0 is any ε > 0. If X 6= 0 we suppose that such a positive real number does
not exist, so we would have for any λ > 0, that

X − λ1 ∈ A .

Since 1 ∈ intA we get the equality RS = ∪∞n=1[−n1 , n1]A. Suppose that n(X) ∈ N is some
natural number such that

X ∈ [−n(X)1 , n(X)1] .

Since X ≥ n(X)e by assumption, we get that n(X)1 ≤ X ≤ n(X)1 in terms of the partial
ordering induced by A on RS and because A is a cone, it implies

X = n(X)1 .

But X ∈ [−(n(X)+1)1 , (n(X)+1)1] and by the same assumption X ≥ (n(X)+1)1 which
implies by the same way that

X = (n(X) + 1)1 ,

which is a contradiction because if this is the case, we find X = 0. Hence, for any X 6= 0
there exists some nonzero m0(X) ∈ R+ such that

X −m0(X)1 /∈ A .

After all, we remark that −m0(X) is a lower bound for the set {m ∈ R |m1 + X ∈ A}. If
we suppose that there is some k < −m0(X) such that

k1 + X ∈ A ,
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then we come to a contradiction since then we would have

X −m0(X)1 = X + k1 + (−m0(X)− k)1 ∈ A

from the well-known properties of a wedge, since X +k1 ∈ A by assumption and (−m0(X)−
k)1 ∈ A since 1 ∈ A and (−m0(X) − k) > 0. Finally, we found that ρA,1 cannot take the
value −∞ if A is a cone.

About the properties of a coherent risk measure, we have the following:

(i) (Translation Invariance):

ρA,1(X + ae) = inf{m ∈ R | (X + a1) + m1 ∈ A}

= inf{(m + a)− a |X + (m + a)1 ∈ A}

= inf{k ∈ R |X + k1 ∈ A} − a = ρA,1(X)− a ,

for any X ∈ RS and any a ∈ R.
(ii) (Sub-additivity):

If m1 ∈ {m ∈ R |X + m1 ∈ A} and m2 ∈ {m ∈ R |Y + m1 ∈ A} then

m1 + m2 ∈ {k ∈ R | (X + Y ) + k1 ∈ A} .

It means

ρA,1(X + Y ) ≤ m1 + m2 .

Hence ρA,1(X + Y )−m1 ≤ m2 which implies

ρA,1(X + Y )−m1 ≤ ρA,1(Y )

for any such m1. In the same way, by ρA,1(X + Y )− ρA,1(Y ) ≤ m1 we obtain

ρA,1(X + Y )− ρA,1(Y ) ≤ ρA,1(X)

and the required property holds for any X, Y ∈ RS.
The above proof of sub-additivity holds in case where X, Y ∈ RS are such that

ρA,1(X + Y ), ρA,1(X), ρA,1(Y ) ∈ R. If ρA,1(X + Y ) = −∞ and at least one of
ρA,1(X), ρA,1(Y ) is equal to −∞ the sub-additivity holds. Note that if ρA,1(X+Y ) =
−∞ and ρA,1(X), ρA,1(Y ) ∈ R the sub-additivity property is also true. Finally we
note that if for example ρA,1(X) = −∞ and ρA,1(Y ) ∈ R, then ρA,1(X + Y ) = −∞.
This is true because since ρA,1(X) = −∞ there is a sequence (an)n∈N of real numbers,
such that an → −∞ and X + an1 ∈ A. Also, since ρA,1(Y ) ∈ R consider some a ∈ R
with Y +a1 ∈ A. Then since for the sequence (dn)n∈N with dn = an +a for any n ∈ N
(X+Y )+(an+a)1 ∈ A from the property A+A ⊆ A of A, while limn(an+a) = −∞,
we get ρA,1(X + Y ) = −∞. In case where A is a cone, this point may be omitted
since ρA,1 takes only finite values.

(iii) (Positive Homogeneity):
For λ = 0 we have that ρA,1(0) ≤ 0, since 0 ∈ {m ∈ R | 0 + m1 ∈ A}. If we

suppose that ρA,1(0) < 0, then for δ = −ρA,1(0) and by the definition of ρA,1(0) as
the infimum of a subset of the real numbers, there is some mδ ∈ {m ∈ R | 0+m1 ∈ A}
such that

mδ < ρA,1(0) + δ = 0 .
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Hence mδ1 ∈ A with mδ < 0. But from the properties of a wedge, we also have that
mδ1 ∈ −A. Then,

1 ∈ A ∩ (−A)

because A is a wedge, a contradiction since 1 is an interior point of A. The contra-
diction is implied by the assumption that ρA,1(0) < 0. This implies

ρA,1(0) = 0 ,

and the positive homogeneity if λ = 0 holds.
If λ > 0 we remark that

{λm ∈ R |m ∈ R is such that X + m1 ∈ A} ⊆ {k ∈ R |λX + k1 ∈ A} ,

which implies the inequality

ρA,1(λX) ≤ λρA,1(X) .(2.1)

We can also see that{
k

λ
∈ R | k ∈ R is such that λX + k1 ∈ A

}
⊆ {m ∈ R |X + m1 ∈ A} .

This last remark implies

ρA,1(X) ≤ ρA,1(λX)

λ
,

and from the above inequality, together with the relation (2.1), the required property
is established for any X ∈ RS and any λ ∈ R+.

(iv) (Monotonicity):
If Y ≥ X with respect to the partial ordering induced on RS by A we notice that

{m ∈ R |X + m1 ∈ A} ⊆ {m ∈ R |Y + m1 ∈ A} .(2.2)

Indeed, if m1 ∈ {m ∈ R |X + m1 ∈ A}, then

X + m11 ∈ A ,(2.3)

and since Y ≥ X,

Y −X ∈ A .(2.4)

By the relations (2.3) and (2.4) we find that

Y + m11 = (Y −X) + (X + m11) ∈ A

taking in account the properties of a cone. Hence m1 ∈ {m ∈ R |Y + m1 ∈ A} and
the (2.2) is true. Therefore

ρA,1(Y ) ≤ ρA,1(X) ,

and the required property holds for any X, Y ∈ RS.
�

For the completeness of the above proof, the following lemma is needed

Lemma 2.2. If A is a wedge of the normed linear space L which is not a subspace of it,
then if X ∈ intA (where intA denotes the norm-interior of A), then X /∈ A ∩ (−A).
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Proof of Lemma 2.2 Let us suppose that there is a X ∈ intA with X ∈ A ∩ (−A).
Then there exists some δ > 0 such that X + B(0, δ) ⊆ A, where B(0, δ) denotes the open
ball centered at 0 with radius equal to δ. Since A is not a subspace, then there exists
some X0 ∈ (−A) \ A = (−A) ∩ Ac where Ac is the set-theoretic complement of A. (If
(−A) ∩ Ac = � then A = (−A) which means that A is a subspace of L, a contradiction).
Since B(0, δ) is an absorbing set, there is some λδ > 0 such that λδX0 ∈ B(0, δ). Then
X + λδX0 ∈ (−A) \A. This is true, because (−A) is a wedge of L and since X0 ∈ −A then
λδX0 ∈ −A, while X ∈ −A, too. This implies X +λδX0 ∈ −A. On the other hand, since we
supposed that X ∈ A∩ (−A), we have that −X ∈ A. If X + λδX0 ∈ A, then we would have
that λδX0 ∈ A + (−X) ⊆ A + A ⊆ A. By the properties of a wedge we would also have that
X0 = 1

λδ
λδX0 ∈ 1

λδ
A ⊆ A. But X + λδX0 ∈ X + B(0, δ) ⊆ A from the fact that X ∈ intA,

which implies a contradiction. The contradiction came as a consequence of the assumption
that such a point X exists. �

Hence ρA,1(X) for any X ∈ RS is actually the minimum amount of money which makes
X acceptable.

The second important proposition is the following.

Proposition 2.3. If ρ is coherent, then ρ = ρAρ.

Proof. For any X ∈ RS,

ρAρ(X) = inf{α ∈ R|X + α1 ∈ Aρ}
= inf{α ∈ R|ρ(X + α1) ≤ 0} =

= inf{α ∈ R|ρ(X)− α ≤ 0} = ρ(X).

�

Hence the interpretation of ρ(X) as the minimum amount of money needed so that X is
acceptable, holds for every coherent risk measure and for its own acceptance set Aρ. Namely,
the meaning of the properties of a coherent risk measure from the aspect of insurance is the
following:

(i) Translation Invariance: If we incorporate an amount of money α in a financial posi-
tion X, then the reduction to the amount of money needed so that the investment
consisted by the position X and the amount α to be acceptable with respect to ρ is
equal to α.

(ii) Sub-additivity: Diversification of the investments reduces the risk (the total pre-
mium).

(iii) Positive Homogeneity : The risk premium with respect to ρ for a position consisted
by a long position on some shares λ ≥ 0 on this position X is the premium of X with
respect to ρ multiplied by λ.

(iv) Monotonicity: Greater payoff means less need for insurance premium.

Proposition 2.4. If A is a closed wedge of RS, then Aρ(A,1)
= A.

Proof. Obviously A ⊆ Aρ(A,1)
because 0 ∈ {m ∈ R|m1 + U ∈ A} if U ∈ A, hence

ρ(A,E)(U) ≤ 0 ,

and U ∈ Aρ(A,1)
. Suppose there is some Z0 ∈ Aρ(A,1)

\A. Then ρ(A,1)(Z0) ≤ 0. If ρ(A,1)(Z0) =
0, then for any ε > 0, there is some mε > 0 with mε < 0 + ε = ε such that mε1 + Z0 ∈ A.
If we put εn = 1/n for any n ∈ N we take a sequence (mn)n∈N of real numbers, such that
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mnE +Z0 ∈ A and 0 < mn < 1/n. The limit of the last sequence of elements of A is Z0 and
since A is closed, Z0 ∈ A. But this is a contradiction, since we supposed that Z0 is not an
element of A. Then we conclude that such a Z0 does not exist in case where ρ(A,1)(Z0) = 0.
If ρ(A,1)(Z0) < 0, then for ε0 = −ρ(A,1)(Z0) we have that there is some

mε0 < ρ(A,1)(Z0) + ε0 = 0 ,

such that mε01 + Z0 ∈ A. Hence Z0 ∈ A−mε01 ⊆ A+A ⊆ A. But this is a contradiction,
since we supposed that Z0 is not an element of A. Then we conclude that such a Z0 also
does not exist in case where ρ(A,1)(Z0) < 0. Hence Aρ(A,1)

= A is true. �

3. Properties of the coherent risk measures

For a coherent risk measure ρ, we name E∗
ρ the functional defined on RS such that

E∗
ρ(X) = ρ(−X)(3.1)

for every X ∈ RS (we use the notation met in the proof of [5, Th. 4.1]). This functional
enjoys the following properties (X, Y ∈ RS)

(i) E∗
ρ(aX + b1) = aE∗

ρ(X) + b, a ∈ R+, b ∈ R (Positive Affine Homogeneity)
(ii) E∗

ρ(X + Y ) ≤ E∗
ρ(X) + E∗

ρ(Y ) (Sub-additivity)

(iii) X ≤ Y in terms of the usual partial ordering of RS implies E∗
ρ(X) ≤ E∗

ρ(Y )
(Monotonicity)

The list of these properties may be found in [9], where such functionals are characterized as
upper expectations (see [9, Pr. 2.1]), which are also used in the proof of [5, Pr. 4.1] for the
characterization of a coherent risk measure as the ’worst expectation’ on some non-empty
set of probability vectors on the state space {1, 2, . . . , S}. In [5, Pr. 2.2] is indicated that
every coherent risk measure ρ is a continuous function, hence the acceptance set

Aρ = {X ∈ RS | ρ(X) ≤ 0} ,(3.2)

associated with the risk measure ρ, is closed. In [5, Pr. 2.2] there is an assertion that this is
a consequence of the convexity of ρ.

3.1. The continuity of coherent risk measures in Euclidean spaces. In the following
Proposition we present a proof for the continuity of ρ deduced from its properties as coherent
measure. For this purpose we are going to use the properties of the associated functional
E∗

ρ .

Proposition 3.1. If ρ is a coherent risk measure, then the function ρ : RS → R is Lipschitz.

Proof. We are going to prove that E∗
ρ , defined by (3.1), is a Lipschitz function. First, note

that

E∗
ρ(X) ≤ E∗

ρ(Y ) + E∗
ρ(X − Y )

for any X, Y ∈ RS, from the sub-additivity of E∗
ρ . We can write

E∗
ρ(Y ) ≤ E∗

ρ(X) + E∗
ρ(Y −X)

for the same reason. We are going to show that

E∗
ρ(X − Y ) ≤ A‖X − Y ‖1
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and

E∗
ρ(Y −X) ≤ A‖Y −X‖1

for some real number A > 0, where ‖.‖1 denotes the usual `1 norm for the vectors of RS. It
suffices to show that for any X ∈ RS,

E∗
ρ(X) ≤ A‖X‖1

holds for some A > 0. Consider the usual basis {e1, e2, . . . , eS} of RS which corresponds
to the so-called set of Arrow securities.

Let us suppose that E∗
ρ(es) = 0 for any state s ∈ {1, 2, . . . , S}, then

E∗
ρ(1) = E∗

ρ(
S∑

s=1

es) ≤
S∑

s=1

E∗
ρ(es) = 0(3.3)

by sub-additivity of E∗
ρ . But 1 ≥ 0 and from the monotonicity of E∗

ρ we get

E∗
ρ(1) ≥ 0 .(3.4)

Hence by (3.3) and (3.4) we obtain E∗
ρ(1) = 0. But from positive affine homogeneity of E∗

ρ

we get

E∗
ρ(1) = E∗

ρ(0 + 1 · 1) = 0E∗
ρ(0) + 1 = 1

thus we arrive at a contradiction. Therefore, a state s0 such that E∗
ρ(es0) > 0 exists. Note

that from monotonicity we get E∗
ρ(es) ≥ 0 for every state s = 1, 2, . . . , S. We put

A := max{E∗
ρ(es) | s = 1, 2, . . . , S} > 0 .(3.5)

Then

E∗
ρ(X) = E∗

ρ

(
S∑

s=1

Xses

)
≤ E∗

ρ(|X|) = E∗
ρ

(
S∑

s=1

|Xs|es

)
from monotonicity and

E∗
ρ(

S∑
s=1

|Xs|es) ≤
S∑

s=1

|Xs|E∗
ρ(es)

from the sub-additivity of E∗
ρ . But then we get

E∗
ρ(X) ≤ A‖X‖1

with A is the constant defined in (3.5), hence

E∗
ρ(X) ≤ E∗

ρ(Y ) + A‖X − Y ‖1

E∗
ρ(Y ) ≤ E∗

ρ(X) + A‖X − Y ‖1

so

|E∗
ρ(X)− E∗

ρ(Y )| ≤ A‖X − Y ‖1(3.6)

for any X, Y ∈ RS therefore E∗
ρ is Lipschitz. Now put −X instead of X and −Y instead of

Y in the relation (3.6) and by (3.1) the conclusion holds. �

As a consequence we get the following corollary.

Corollary 3.2. The acceptance set of any coherent risk measure ρ : RS → R is closed.
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Proof. From (3.6) we see that the acceptance set is closed as the inverse map of a closed set
of the real numbers through the continuous function ρ.

�

The closedness of the acceptance set of any coherent risk measure in a Euclidean space of
risks is directly related to the fact that the space is finite-dimensional, as it is indicated in
the proof of Proposition 3.1.

3.2. The representability of coherent risk measures in Euclidean spaces. The re-
sults of Proposition 3.1 and Corollary 3.2 are mentioned in [7, p. 5, (6)] as essential properties
of a coherent risk measure when L = L∞.

We are going to give a complete proof of the [5, Th. 4.1] on the characterization of
a coherent risk measure through a set of probability measures on the (finite) state space.
Actually, we shall follow the lines of the relevant proof about L∞-spaces in [7, Th. 2.3]. This
Theorem, which is shown for sub(super)modular functions defined on L∞, enlights several
things about the set of probability vectors Pρ, which represents every ρ in the way that [5,
Th. 4.1] indicates. For this reason we suggest its proof in a detailed form.

As RS
+ ⊆ Aρ, the acceptance set of a coherent risk measure is a generating wedge since

RS = RS
+ − RS

+ ⊆ Aρ −Aρ ⊆ RS .

Hence A0
ρ is a cone. We also remark that if K is a wedge of RS, then K0 is a closed wedge.

From what we have mentioned above,

A0
ρ ⊆ RS

+ = (RS
+)0 .(3.7)

Hence the set

B = {y ∈ A0
ρ |

S∑
s=1

ys = 1} = ∆S−1 ∩ A0
ρ(3.8)

where

∆S−1 = {y ∈ RS
+ |

S∑
s=1

ys = 1} .

Hence B is a bounded, closed and convex set, since the simplex ∆S−1 is bounded, closed and
convex and A0

ρ is a closed and convex subset of RS.

Proposition 3.3. If ρ : RS → R is a coherent risk measure, then it is representable as
follows

ρ(X) = sup{π(−X) |π ∈ B} ,(3.9)

for any X ∈ RS, where B is given by (3.8).

Proof. We remark that ρ[X + ρ(X)1] = 0 for any X ∈ RS. Hence follows

X + ρ(X)1 ∈ Aρ .

Therefore by (3.7) and (3.8) we see that π (X + ρ(X)1) ≥ 0 for any π ∈ B. Hence for any
X ∈ RS,

π(X) + ρ(X) ≥ 0
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for any π ∈ B. It follows ρ(X) ≥ π(−X) for any π ∈ B which implies

ρ(X) ≥ sup{π(−X) |π ∈ B} .(3.10)

We have to show that the inverse inequality is also true. Let us consider some ε > 0.
Then we obtain

ρ[X + (ρ(X)− ε)1] = ε > 0

by the translation invariance property of the coherent risk measures. Hence X +(ρ(X)−ε)1
does not belong to the acceptance set Aρ for any X. Now we apply the Finite Dimensional
Separation Theorem on the disjoint convex sets {X + (ρ(X) − ε)1} and Aρ. So from the
fact that 0 ∈ Aρ, for any X there exists some π0 ∈ B (which depends on X and ε > 0) such
that

π0 (X + (ρ(X)− ε)1) = π0(X) + ρ(X)− ε < 0 .

The sets separated are the following: the first one is the singleton {X +(ρ(X)−ε)1} being a
compact set and the second one is acceptance setAρ which is closed in RS from the continuity
of ρ (Corollary 3.2). Hence, there is some δ > 0 and some α ∈ R such that for this π0 6= 0
we obtain

π0(X + (ρ(X)− ε)1) ≤ α < α + δ ≤ π0(Y ),

for any Y ∈ Aρ. Then π0 takes positive values on Aρ. This holds because if we suppose that
there is some Y ∈ Aρ such that π0(Y ) < 0 then we come to a contradiction. Indeed, since
λY ∈ Aρ, then for λ → +∞,

π0(λY ) → −∞

which contradicts the above separation. Since π0 ∈ A0
ρ ⊆ RS

+ and π0 6= 0,

1∑S
s=1 π0(s)

π0 ∈ B ,

and we denote the last vector also by π0. We remark that the supremum in (3.10) is finite
for any X since B is a compact set and −X may be viewed as a continuous linear functional
of RS which actually takes a maximum value on the compact set B.

Hence for this X and this ε > 0, we obtain

(3.11) ρ(X)− ε < π0(−X) ≤ sup{π(−X) |π ∈ B} .

From the inequality (3.11) and for this X if we put εn = 1/n for any n ∈ N, we get

ρ(X)− 1

n
≤ sup{π(−X) |π ∈ B}

and by taking the limit of the sequence ρ(X)− 1/n , n ∈ N we get

ρ(X) ≤ sup{π(−X) |π ∈ B}

as desired.
�

The set B is actually the desired set of probabilities indicated in [5, Th. 4.1]. The repre-
sentability of a coherent risk measure ρ when the set of states is the finite set {1, 2, . . . , S},
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indicates that a risk measure is coherent if and only if there is a set of probability vectors P
for the set of states {1, 2, . . . , S} such that

ρ(X) = sup
P∈P

EP (−X) ,

where EP (−X) denotes the expectation of −X under the probability vector P . The one
direction of representability which is not so obvious is indicated by the Proposition 3.3. The
other, much easier, is presented for completeness in the following.

Proposition 3.4. The function ρP : RS → R, where

ρP(X) = sup
P∈P

EP (−X)(3.12)

and P is a set of probability vectors for the set of states, is a coherent risk measure.

Proof. Let us check the four properties of the coherent measures.

(i) (Translation Invariance):

ρP(X + a1) = sup{EP (−X − a1) |P ∈ P} = sup{EP (−X)− aEP (1) |P ∈ P}

= sup{EP (−X)− a |P ∈ P} = sup{EP (−X) |P ∈ P} − a = ρP(X)− a ,

for any X ∈ RS and any a ∈ R.
(ii) (Sub-additivity):

ρP(X + Y ) = sup{EP (−X − Y ) |P ∈ P} = sup{EP (−X) + EP (−Y ) |P ∈ P}

≤ sup{EP (−X) |P ∈ P}+ sup{EP (−Y ) |P ∈ P} = ρP(X) + ρP(Y ) ,

for any X, Y ∈ RS.
(iii) (Positive Homogeneity):

ρP(λX) = sup{EP (−λX) |P ∈ P} = sup{λEP (−X) |P ∈ P}

= λ sup{EP (−X) |P ∈ P} = λρP(X)

for any X ∈ RS and any λ ∈ R+.
(iv) (Monotonicity): If Y ≥ X in the usual partial ordering of RS, then −X ≥ −Y , hence

EP (−X) ≥ EP (−Y )

for any P ∈ P . Taking suprema over P we get that

ρP(X) = sup
P∈P

EP (−X) ≥ sup
P∈P

EP (−Y ) = ρP(Y ) .

�

3.3. The Relevance property. Finally, another question about coherent risk measures
when the set of states of the world is finite is the so-called Relevance property, mentioned
in [5], p. 210. The Relevance property for a risk measure ρ : RS → R says that if X ∈ −RS

+

and X 6= 0, then ρ(X) > 0. If the risk measure is coherent, then a weaker property can be
proved due to the properties of it. The fact that the set of states of the world is finite plays
an important role in the deduction of this property. The property and its proof are given in
the following proposition

Proposition 3.5. If ρ : RS → R is a coherent risk measure, then for any X ∈ −RS
++,

ρ(X) > 0 holds.
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Proof. By subadditivity of ρ we take ρ(0) = 0 ≤ ρ(X) + ρ(−X). This implies −ρ(−X) ≤
ρ(X) and since −X ∈ RS

++ ⊆ Aρ, we take ρ(−X) ≤ 0. Hence ρ(X) ≥ 0. But since
X ∈ −RS

++, we pose 2k = max{Xs|s = 1, 2, ..., S} < 0 and then ρ(X − k1) = ρ(X) + k
by the Translation Invariance property. But we notice that X + k1 ∈ −RS

++ since for any
state s we have 2Xs < Xs ≤ max{Xs|s = 1, 2, ..., S}. By the first remark we made, we take
ρ(X − k1) = ρ(X) + k ≥ 0. Hence ρ(X) ≥ −k > 0 and the conclusion is ready.

�

Of course, the above version of the Relevance property can be deduced by the repre-
sentation of a coherent risk measure. If X ∈ −RS

++, then −X ∈ RS
++ which means that

there is some δ > 0 such that Xs ≥ δ > 0 for any s = 1, 2, ..., S. From the representation
theorem 3.3, we get that for any π ∈ A0

ρ ∩ ∆S−1 π(−X) = π · (−X) ≥ δ > 0. Hence

ρ(X) = sup{π(−X)|π ∈ A0
ρ ∩∆S−1} ≥ δ > 0.

4. Convex risk measures and their dual representation

The following proofs rely on the equivalent ones of [8], [14]. We remind that by ∆S−1 we
denote the simplex of the positive cone of RS.

Definition 4.1. A risk measure ρ : RS → R satisfies the Convexity property if it is a convex
function

ρ(λU1 + (1− λ)U2) ≤ λρ(U1) + (1− λ)ρ(U2),

for any λ ∈ [0, 1] and U1, U2 ∈ RS.

Definition 4.2. If ρ : RS → R satisfies the properties of Translation Invariance, Convexity
and Monotonicity, then it is called convex risk measure.

Theorem 4.3. If ρ : RS → R is a convex risk measure, then

(4.13) ρ(U) = sup{π(−U)− a(π) |π ∈ ∆S−1} ,

for any U ∈ RS and a : ∆S−1 → R is a ’penalty function’ associated with ρ, with a(π) ∈
(−∞,∞] for any π ∈ ∆S−1. On the other hand, every ρ defined through (4.13), is a convex
risk measure.

Proof. If we consider a convex risk measure ρ, there exists a penalty function a such that
ρ has a representation like the one indicated in (4.13). To see this, we remark that for any
π ∈ B we define

a(π) = sup{π(−X)− ρ(X) |X ∈ RS} .(4.14)

Then as in the proof of [8, Th. 5], we denote

â(π) = sup{π(−X) |X ∈ Aρ} .(4.15)

We will prove that a(π) = â(π) for any π ∈ ∆S−1. We remark that a(π) ≥ â(π). This holds
because for any X ∈ Aρ, π(−X)− ρ(X) ≥ π(−X). Hence

sup{π(−X)− ρ(X)|X ∈ RS} ≥ sup{π(−X)− ρ(X)|X ∈ Aρ} ≥ sup{π(−X)|X ∈ Aρ}.
To prove the inverse, we take X ∈ RS and we consider X ′ = X + ρ(X)1 ∈ Aρ. Hence

â(π) ≥ π(−X ′) = π(−X)− ρ(X) ,
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so a(π) = â(π) by taking suprema over all X ∈ RS. We remark that a(π) ∈ (−∞ , +∞] for
any π ∈ ∆S−1. Next, we remark that for any Y ∈ RS and by the expression (4.14) of a, we
have

ρ(Y ) ≥ sup{π(−Y )− a(π) |π ∈ ∆S−1}
for any Y ∈ RS. In order to prove the desired equality, we have the following: Suppose that
there is some Y0 ∈ RS, such that

ρ(Y0) > sup{π(−Y0)− a(π) |π ∈ ∆S−1} .

Hence there exists some m ∈ R such that

ρ(Y0) > m > sup
π∈B

{π(−Y0)− a(π)} .

From the last remark we take that

ρ(Y0 + m1) = ρ(Y0)−m > 0

and that Y0 + m1 /∈ Aρ. The singleton {Y0 + m1} is a convex, compact set and Aρ is by
assumption a closed set of RS which is also convex, since ρ is a convex risk measure. Since
these two sets are disjoint, from the Strong Separation Theorem for convex sets in locally
convex spaces, there is some ` ∈ RS, ` 6= 0, an α ∈ R and a δ > 0 such that

`(Y0 + m1) ≥ α + δ > α ≥ `(X)

for any X ∈ Aρ. Hence we take that

`(Y0 + m1) > sup{`(X) |X ∈ Aρ} .

The functional ` takes negative values on RS
+ since if there is some X0 ∈ RS

+ such that
`(X0) > 0, then for any λ ∈ R+ we take λX0 ∈ RS

+ ⊆ Aρ. Then if λ → +∞ then

`(λX0) > `(Y0 + me)

for λ big enough, being a contradiction according to the previous separation argument. Then
since we have that −` ∈ RS

+ , ` 6= 0, we may suppose that

−`(1) = 1

holds, or else −` ∈ ∆S−1. Hence the separation of the sets {Y0 + m1} and Aρ implies that

(−`)(−Y0)−m > sup
X∈Aρ

(−`)(−X) = a(−`) .

Denote −` by π0 and we get

π0(−Y0)− a(π0) > m ,

which is a contradiction, since in this case

m > sup{π(−Y0)− a(π) |π ∈ ∆S−1} ≥ π0(−Y0)− a(π0) > m .

The contradiction was due to the assumption that some Y0 ∈ RS exists, such that

ρ(Y0) > sup{π(−Y0)− a(π) |π ∈ ∆S−1} .

Hence for any Y ∈ RS we get (4.13).
For the opposite direction, it suffices to show that any ρ : RS → R, defined through (4.13),

is a convex risk measure. For this, we have to verify that ρ satisfies the properties of a convex
risk measure:
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(i) (Translation Invariance):

ρ(X + k1) = sup{π(−X − k1)− a(π) |π ∈ ∆S−1}

= sup{π(−X)− a(π)− kπ(1) |π ∈ ∆S−1}

= sup{π(−X)− a(π)− k |π ∈ ∆S−1}

= sup{π(−X)− a(π) |π ∈ ∆S−1} − k = ρ(X)− k

for any X ∈ RS and any k ∈ R.
(ii) (Convexity): The function which maps every X to π(−X)− a(π) for some π ∈ ∆S−1

is a convex real-valued function on RS, hence ρ is a convex function on RS as the
supremum of convex functions defined on RS.

(iii) (Monotonicity): If Y ≥ X in terms of the partial ordering of RS, then −X ≥ −Y ,
hence

π(−X) ≥ π(−Y )

for any π ∈ ∆S−1 since ∆S−1 ⊆ RS
+. Hence

π(−X)− a(π) ≥ π(−Y )− a(π)

for any π ∈ ∆S−1 and by taking suprema over the elements of ∆S−1 we get that

ρ(X) = sup
π∈∆S−1

{π(−X)− a(π)} ≥ ρ(Y ) = sup
π∈∆S−1

{π(−Y )− a(π)} .

�

Proposition 4.4. Every (A,1) -convex risk measure ρ : RS → R is Lipschitz-continuous.

If {fi : RS → R , i ∈ I} is a family of real-valued functions defined on RS, then we observe
that

sup
i∈I

fi(X)− sup
i∈I

fi(Y ) ≤ sup
i∈I

{fi(X)− fi(Y )} ,

where X, Y ∈ RS (for better interpretation, we may suppose that the family of functions
{fi : RS → R , i ∈ I} is such that supi∈I fi(X) 6= ∞ for any X). Indeed, this holds because
if we denote by A the set {fi(X)− fi(Y ) | i ∈ I} and by D the set {fi(Y ) | i ∈ I}, then

{fi(X) | i ∈ I} ⊆ A + D .

Hence

sup
i∈I

fi(X) ≤ sup
i∈I
{fi(X)− fi(Y )}+ sup

i∈I
fi(Y ) .

We have seen that ρ has the representation (4.13). Then

ρ(X)− ρ(Y ) = sup{π(−X)− a(π) |π ∈ ∆S−1} − sup{π(−Y )− a(π) |π ∈ ∆S−1} .

By the above remark we take that

ρ(X)− ρ(Y ) ≤ sup{π(−X)− π(−Y ) |π ∈ ∆S−1} = sup{π(Y −X) |π ∈ ∆S−1} .

We actually have that I = ∆S−1 and fi = fπ for any π ∈ ∆S−1 where fπ : RS → R is
such that fπ(X) = π(−X)− a(π) for any X ∈ RS. Also, we suppose that π(−X)− a(π)−
(π(−Y ) − a(π)) = π(−X) − π(−Y ) for any X, Y ∈ L and any π ∈ ∆S−1, namely that
a(π) − a(π) = 0. This is a simple subtraction in the case where a(π) ∈ R, but in the case
where a(π) = ∞ we have the subtraction of two infinity values. But we may suppose that



RISK MEASURES IN FINITE STATE SPACES 15

their difference is equal to zero, since we subtract infinities ’of the same form’. On the other
hand we may say that if a(π) = ∞ then −a(π) = −∞, hence π(−X) − a(π) = π(−X)
because if we add a real number to −∞ we take the real number itself.

In order to complete the proof, we note that

π(Y −X) ≤ |π(Y −X)| ≤ ‖π‖ · ‖X − Y ‖ ≤ 1

b
‖X − Y ‖

for any π ∈ B, from the definition of B and the fact that 1 is a uniformly monotonic linear
functional of (RS

+)0 = RS
+ and π(1) ≥ b‖π‖. Hence

ρ(X)− ρ(Y ) ≤ 1

b
‖X − Y ‖

and in the same way we may show

ρ(Y )− ρ(X) ≤ 1

b
‖X − Y ‖ .

The last two inequalities imply that

|ρ(X)− ρ(Y )| ≤ 1

b
‖X − Y ‖

and the conclusion is ready. �

4.1. Conjugate convex functions and convex risk measures. The penalty function
a : ∆S−1 → (−∞,∞] associated with a risk measure ρ by the dual representation

ρ(X) = sup{π(−X)− a(π)|π ∈ ∆S−1}.
Since

a(π) = sup{π(−X)− ρ(X) |X ∈ RS},
then a(π) = ρ∗(−π), where ρ∗ is the convex conjugate of ρ, defined as follows:

ρ∗(f) = sup{f(x)− ρ(x)|x ∈ RS},
for any f ∈ RS.

Note: The next two Sections are formulated by [22]

5. Portfolio theory and convex risk measures-Markowitz type problems

We name ’Markowitz type problems’ those portfolio selection problems in which the convex
risk measures play a role equivalent to the one of variance in Markowitz model. Under the
Markowitz framework, the portfolio selection is generally determined by the optimization
principle ’maximize the expected payoff (return), while you should minimize the risk’. If
the measurement of risk is determined by some convex risk measure ρ, then the ’expected
return, risk pair’ for any financial position X ∈ RS is the pair

(E(X), ρ(X))

of real numbers, where E(X) denotes the mean value of X under the statistical measure
of the market µ and ρ(X) is the risk of X with respect to ρ, or else the amount of money
needed so that X is acceptable under ρ. If we consider a set of positions X among which
an investor chooses her portfolio, then the primarily admissible set of positions with
respect to ρ is

K1(X ) = {X ∈ X |E(X) ≥ 0, ρ(X) ≤ 0}(5.16)
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and the admissible set of positions at the risk level c with respect to ρ is

K2(X ) = {X ∈ X |E(X) ≥ 0, ρ(X) ≤ c}.(5.17)

The expected payoff-risk pairs of Ki(X ), i = 1, 2 with respect to ρ or the mean-risk
efficiency set of X at the risk level c with respect to ρ, is the following set of R2:

K(E,ρ),i(X ) = {(E(X), ρ(X))|X ∈ Ki(X )}, i = 1, 2(5.18)

The efficiency frontier of Ki(X ), i = 1, 2 is the set of Pareto efficient points E(K(E,ρ),i(X ), D)
of K(E,ρ),i(X ) with respect to the cone D = {x = (x1, x2) ∈ R2|x1 ≥ 0, x2 ≤ 0} of R2. We
have to mention that a desired level of mean payoff E(X) can be also considered in both
of the cases i = 1, 2. This set is consisted by the pairs (E(X), ρ(X)), X ∈ Ki(X ), i = 1, 2,
such that there is not any position X0 in Ki(X ) such that either E(X0) > E(X), while
ρ(X0) ≤ ρ(X), or E(X0) ≥ E(X), while ρ(X0) < ρ(X), for any X ∈ Ki(X ). The solutions
to the maximization problem

Maximize E(X)− kρ(X) subject to X ∈ Ki(X ), i = 1, 2,(5.19)

are also elements of the efficiency frontier if k ∈ R+, k 6= 0, because the functional (1,−k) is a
strictly positive functional of D and the set of positive proper efficient points is a subset of the
set of Pareto efficient points. The determination of the efficiency frontier E(K(E,ρ),i(X ), D),
i = 1, 2, gives rise to the solution of the scalar optimization problem 5.19. For the solution
set Sk(K(E,ρ),i(X )) of 5.19, we have that

Sk(K(E,ρ),i(X )) ⊆ PosE(K(E,ρ),i(X ), D) ⊆ E(K(E,ρ),i(X ), D)), k > 0, i = 1, 2,

where PosE(K(E,ρ),i(X ), D) denotes the set of positive proper efficient points of K(E,ρ),i(X )
with respect to the cone D. For the definition of this notion, see in the Appendix. The
existence of Pareto efficient points is assured mainly by the theorem of J. Borwein, proved
in [6] and is also stated in the book [10]. We may remark that due to the continuity of the
maps E(.), ρ(.) defined on E, the properties of the boundedness and the closedness of X are
transferred into the set K(E,ρ),i(X ) which is examined for the existence of Pareto efficient
points or positive proper efficient points. We may see that the following proposition holds.

The most essential assumption so that the efficiency frontier is well -defined is that the
set of the admissible positions must be non-empty. A simple condition which implies the
non-emptiness of this set is the assumption of the following proposition.

Proposition 5.1. If X ∩ RS
+ 6= ∅, then Ki(X ) is non-empty for i = 1, 2.

Proposition 5.2. The set K(E,ρ),i(X ) = {(E(X), ρ(X))|X ∈ Ki(X )} is a convex subset of
R2 if X is a convex set of R2 for both the cases i = 1, 2.

Proposition 5.3. The vector functional T = (E(.), ρ(.)) : RS → R2 is continuous. Hence if
X is closed in RS and ρ(0) = 0, then T (X ) is closed in R2 and if X is bounded in RS, then
T (X ) is bounded in R2.

The set T −1(E(K(E,ρ),i(X ), D)), i = 1, 2 is the set of efficient portfolios of X under
the expected payoff-risk conditions i = 1, 2 with respect to ρ.

If we would like to answer the question about when the efficiency frontier of Ki(X ), i = 1, 2
is well -defined, then we have to determine cases where E(K(E,ρ),i(X ), D) 6= ∅ as we mentioned
before. The properties of T (X ) are important for this purpose.

Let us see some propositions indicating when the efficiency frontier is non-empty.
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Proposition 5.4. If ρ(0) = 0, while X is closed and a D -upper bounded section of
K(E,ρ),i(X ) exists, then the efficiency frontier E(K(E,ρ),i(X ), D) is non-empty for both the
cases i = 1, 2.

Proposition 5.5. If ρ(0) = 0, while X is closed and bounded, then the efficiency frontier
E(K(E,ρ),i(X ), D) is non-empty for both the cases i = 1, 2.

Theorem 5.6. If ρ(0) = 0, while X is closed and a D -upper bounded section of K(E,ρ),i(X )
exists, then efficient positions exist in X with respect to ρ in both of the cases i = 1, 2.

Theorem 5.7. If ρ(0) = 0, while X is closed and bounded, then efficient positions exist in
X with respect to ρ in both of the cases i = 1, 2.

Proposition 5.8. If ρ : RS → R is a coherent risk measure and X ∩ RS
+ 6= ∅, while X

is RS
+-upper bounded by a positive multiple of an element in X ∩ RS

+, then K(E,ρ),i(X ) is a
D-upper bounded set.

Proposition 5.9. Suppose that ρ : RS → R is convex with ρ(0) = 0. If the efficiency
frontier E(K(E,ρ),i(X ), D), i = 1, 2 is non -empty for a convex and closed financial position
choice set X , then for any norm-convergent sequence Xn → X0 in Ki(X ), i = 1, 2, where
(E(Xn), ρ(Xn)), n ∈ N are points of E(K(E,ρ),i(X ), D), i = 1, 2, the point (E(X0), ρ(X0)) also
belongs to it.

6. Portfolio theory and coherent risk measures-Utility type problems

We name ’utility type problems’ those portfolio selection problems in which the coherent
risk measures play a role equivalent to the one of a utility function in classical microeco-
nomic theory. Hence a common class of portfolio selection problems is the risk minimization
problems. The general form of these problems is the following:

Minimize ρ(X) subject to X ∈ X ,(6.20)

where ρ is a coherent risk measure and X ⊆ RS is a non-empty set of financial positions.
The problem 6.20 corresponds to the determination of the set of financial positions which
minimize the risk with respect to ρ among the positions in X . Among the conditions of
normality for the constrained optimization problem 6.20, the more important are convexity,
closedness and boundedness of X . Various combinations of these properties are related to
the existence and the uniqueness of solution to 6.20, combinations which are related to the
form of the set X of constraints. For the determination of the solution to these problems
standard optimization techniques are used, like the Kuhn-Tucker one. For the utility based
problems of portfolio selection, see [23].

Let us remind some essential propositions on existence and uniqueness.

Proposition 6.1. 6.20 has a solution if X is closed and bounded.

Proof. ρ as a coherent risk measure is continuous on RS. X is compact, hence by the
Weierstrass theorem the conclusion is ready. �

Proposition 6.2. If 6.20 has a solution and X is convex, then the solution set is an extreme
set of it.

Proof. The solution set is the following: M = {X ∈ C|ρ(X) = sup{ρ(Y )|Y ∈ C}. Suppose
that M is not an extreme set. Then, there are some y0, z0 ∈ M and some a0 ∈ (0, 1) such that
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a0y0 +(1− a0)z0 ∈ M , while y0, z0 /∈ M . Since ρ is a convex function, ρ(a0y0 +(1− a0)z0) ≤
a0)ρ(y0) + (1− a0)ρ(z0). But since z0, y0 /∈ M , ρ(a0y0 + (1− a0)z0) > ρ(z0) > (1− a0)ρ(z0),
ρ(a0y0 + (1− a0)ρ(z0) > ρ(y0) > a0ρ(y0) which implies ρ(a0y0 + (1− a0)z0) > a0ρ(y0) + (1−
a0)ρ(z0), a contradiction.

�

Proposition 6.3. If X is convex, closed and bounded, then 6.20 has a solution which is an
extreme point of X .

Proof. ρ as a coherent risk measure is continuous on RS. X is compact and oonvex. The
set M = {X ∈ C|ρ(X) = sup{ρ(Y )|Y ∈ C} is an extreme subset of C and by previous
proposition is non-empty. By Zorn’s Lemma, there is an extreme point of C in M (see also
Lemma 5.114 in [2]) �

7. Expected Shortfall

As an alternative against VaR, Expected Shortfall is a coherent risk measure ([1]) which
becomes more common in financial practice. Here, we suppose that Ω is any set, not neces-
sarily finite in order to introduce a certain example of coherent risk measure.

Definition 7.1. The a-quantile of a F-measurable random variable X : Ω → R is defined
as follows:

qa(X) = inf{x ∈ R|P (X ≤ x) ≥ a}.
We remind that V aRa(X) = qa(−X). The relation between VaR and solvency capital is

that V aR is the minimum m such that P (X + m ≥ 0) ≥ a. The coherent risk measures
are independent from the relation between solvency capital and both singificance level a and
’objective’ probability measure P . The definition of Expected Shortfall is the following:

Definition 7.2. If we consider a significance level a ∈ (0, 1) and a F-measurable random
variable X : Ω → R. Suppose that E(X−) < ∞. Then,

ESa(X) = − 1

1− a
(E(X1{−X≥qa(−X)}) + qa(−X)(a− P (−X < qa(−X))).

For these definitions, see ([24]) A famous expression of the ESa is the following: ESa(X) =
1

1−a

∫ 1

a
V aRu(X)du, see [1, Pr.3.2].

As it is also indicated by [24, Ex.2.4], VaR is not a coherent risk measure, because it
does not satisfies the axiom of subadditivity. Another point of critiscism against VaR was
that light and heavy tail distribution variables may have the same VaR, or else that VaR
is law invariant : the distributions of X,Y need not be identical in order to be V aRa(X) =
V aRa(Y ).

The previous Example considers two Pareto distributed, independent r.v. X, Y in (−∞, 1)
while the joint distribution of (X,Y ) is

P (X ≤ x1, Y ≤ x2) = (2− x1)
−1(2− x2)

−1, x1, x2 < 1.

This implies that

V aRa(Xi) =
1

1− a
− 2, i = 1, 2,

where X1 = X, X2 = Y and

P (X + Y ≤ x) =
2

4− x
+

2log(3− x)

(4− x)2
, x < 2.
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For a = 0.99 we get V aRa(X) = V aRa(Y ) = 98 and V aRa(X + Y ) ∼= 203.2.
For the coherence of ESa, see [1, Pr.3.1]. Also, note that for continuous random variables,

ESa(X) = E(−X| −X ≤ V aRa(X)).

8. Appendix: notions from the theory of partially ordered linear spaces

In this paragraph, we give some essential notions and results from the theory of partially
ordered linear spaces which are used in this paper. Let L be a (normed) linear space. A set
C ⊆ L satisfying C + C ⊆ C and λC ⊆ C for any λ ∈ R+ is called wedge. A wedge for
which C ∩ (−C) = {0} is called cone. A pair (E,≥) where E is a linear space and ≥ is a
binary relation on E satisfying the following properties:

(i) x ≥ x for any x ∈ L (reflexive)
(ii) If x ≥ y and y ≥ z then x ≥ z, where x, y, z ∈ E (transitive)

(iii) If x ≥ y then λx ≥ λy for any λ ∈ R+ and x + z ≥ y + z for any z ∈ L, where
x, y ∈ L (compatible with the linear structure of L),

is called partially ordered linear space. The binary relation ≥ in this case is a partial ordering
on E. The set P = {x ∈ E|x ≥ 0} is called (positive) wedge of the partial ordering ≥ of E.
Given a wedge C in E, the binary relation ≥C defined as follows:

x ≥C y ⇐⇒ x− y ∈ C,

is a partial ordering on L, called partial ordering induced by C on L. If the partial ordering
≥ of the space E is antisymmetric, namely if x ≥ y and y ≥ x implies x = y, where x, y ∈ E,
then C is a cone.

Then (L,≥) is called a partially ordered linear space.
A non-empty subset K of a vector space L is called wedge if it satisfies

(1) K + K ⊆ K
(2) λK ⊆ K for any real number λ ≥ 0 .

A non-empty subset C of X is called cone if it is a wedge which satisfies

C ∩ (−C) = {0} .(8.1)

Any cone C in a vector space L implies a partial ordering relation ≥C on it defined as follows:

x ≥C y ⇔ x− y ∈ C .(8.2)

When x ≥C y and x − y 6= 0 then we write x > y. When we write y ≤ x with respect to
the same partial ordering relation implied by C on L, we mean that x ≥ y. In this case
the partially ordered linear space (L,≥C) may be denoted by (L, C). On the other hand, if
(L,≥) is a partially ordered linear space, then the set

P = {x ∈ L |x ≥ 0}
is a cone and ≥, ≥P coincide.

A linear functional f of a vector space L is called positive functional of the partially
ordered linear space (L, K) (or a positive functional of K) if

f(x) ≥ 0 , ∀x ∈ K ,

and strictly positive functional of the ordered linear space (L, K) (or a strictly positive func-
tional of K) if it is positive and

f(x) > 0 , ∀x ∈ K \ (K ∩ (−K))
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if K is a wedge, while

f(x) > 0 , ∀x ∈ K \ {0}
if K is a cone. If L is a normed linear space and C is a cone, a linear functional of L is
uniformly monotonic if f(x) ≥ a‖x‖ for any x ∈ C \ {0} for some a ∈ R+ \ {0}.

In this article, since the spaces we use are also normed linear spaces, when we refer to
positive or strictly positive functionals we mean continuous linear functionals (elements of
the norm dual space L∗).

If K is a wedge of the normed linear space L, the dual wedge of K, denoted by K0,
represents the following subset of L∗:

K0 = {f ∈ L∗ | f(x) ≥ 0 , ∀x ∈ K} .

If K is a wedge with K ⊆ C then C0 ⊆ K0. In the rest of this article we will denote by L0
+

the dual wedge of L+.
If (L, C) is a partially ordered linear space and C is a cone, then a base of C is any convex

subset B of C such that for any x ∈ C \ {0} there exists a unique λx ∈ R+ \ {0} such that
λxx ∈ B. If f is a strictly positive functional of L+, the set

Bf = {x ∈ C | f(x) = 1} ,(8.3)

is the base of C defined by f . The base Bf is bounded if and only if f is uniformly monotonic.
If B is a bounded base of C such that 0 /∈ B then C is called well-based. If C is well-based,
then a bounded base of C defined by a g ∈ L∗ exists.

Let us denote by [x, y] the order interval of L defined by x , y, i.e.

[x, y] = (x + K) ∩ (y −K) .

An element e ∈ L is called order-unit of (L, K) if

L = ∪∞n=1[−ne, ne] .

If L is also a normed linear space, then according to [11, Pr. 3.1.3], e is an interior point of
K in terms of the norm topology if and only if [−e, e] is a neighborhood of zero. Hence an
interior point of K is an order-unit of (L, K).

(L, K) is a vector lattice if for any x, y ∈ L, the supremum and the infimum of {x, y} with
respect to the partial ordering defined by K exist in L. In this case sup{x, y} and inf{x, y}
are denoted by x ∨ y, x ∧ y respectively. If so,

|x| = sup{x,−x}
is the absolute value of x and if L is also a normed space such that

‖ |x| ‖ = ‖x‖
for any x ∈ L, then (L, K) is called normed lattice.

A wedge K of L is called generating if the subspace K −K it generates in L is equal to
L itself. If K is a generating wedge in L, then K0 is a cone of L∗.

Let us note that the usual partial ordering relation on RS is defined as follows: x ≥ y if
and only if xs ≥ ys for any s = 1, 2, . . . , S, where x, y ∈ RS. The positive cone of this
ordering is denoted by RS

+. Also, the usual partial ordering of an Lp(Ω,F , µ) space, where
(Ω,F , µ) is a probability space is the following: X ≥ Y if and only if the set

{ω ∈ Ω : X(ω) ≥ Y (ω)}
is a set of probability 1.
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We remind the following essential result about wedges in Euclidean spaces: Consider some
wedge K of the space RS. Then K00 = (K0)0 = K. Throughout the article we suppose that
the cone L+ of L is σ(L, L∗)-closed and we need the following result.

Proposition 8.1. L0
+ is a σ(L∗, L)- closed subset of L∗.

Proof. Consider a net (pλ)λ∈Λ ⊆ L0
+ such that

pλ
σ(L∗,L)→ p ,

. Then pλ(X) ≥ 0 for any X ∈ L+. From the weak-star convergence of (pλ)λ∈Λ we get
pλ(Y ) → p(Y ) for any Y ∈ L, hence the same holds for any Y ∈ L+. Hence for any Y ∈ L+,
p(Y ) is the limit of a convergent net consisted by positive real numbers. Finally, we get that
p(Y ) ≥ 0 for any Y ∈ L+ which implies p ∈ L0

+. �

Proposition 8.2. If the cone L+ of L is σ(L, L∗)-closed and L is reflexive, then

(L0
+)0 := L00

+ = L+ .(8.4)

Proof. It suffices to show that L+ ⊆ L00
+ and L00

+ ⊆ L+.
Let X ∈ L+. Then X ∈ L00

+ since L00
+ = {Y ∈ L∗∗ |Y (π) ≥ 0, for any π ∈ L0

+}. Since

L is reflexive, L00
+ = {Y ∈ L | Ŷ (π) ≥ 0, for any π ∈ L0

+}. As far as X ∈ L+, then

X̂(π) = π(X) ≥ 0 for any π ∈ L0
+, and the inclusion L+ ⊆ L00

+ is deduced.
For the converse inclusion let us suppose that there were some Y0 ∈ L00

+ for which Y0 /∈ L+.
Since L+ is a weakly closed and convex set, while the singleton {Y0} is a weakly compact set,
which is also convex. Then, from the Separation Theorem for disjoint convex sets in locally
convex spaces (see for example [3, Th. 5.58]), there is some π0 ∈ L∗, π 6= 0 which strongly
separates them. In other words, there is some α ∈ R and some δ > 0 such that

π0(Y0) ≤ α < α + δ ≤ π0(Y )(8.5)

for any Y ∈ L+. Since L+ is a wedge, π0 takes positive values on the elements of it, since
if we suppose that there is some Y1 ∈ L+ such that π0(Y1) < 0, then if λ → +∞, λY1 ∈ L+

and

π0(λY1) = λπ0(Y1) → −∞ ,

a contradiction from the separation argument. Hence, π0 takes positive values on L+, thus
π0 ∈ L0

+. For Y = 0 we obtain from (8.5), π0(Y0) < 0, while we supposed that Y0 ∈ L00
+ ,

which implies Ŷ0(π0) = π0(Y0) ≥ 0. This is a contradiction deduced from the assumption
that such a Y0 exists. Namely, the inverse inclusion L00

+ ⊆ L is also true. �

Lemma 8.3. If C is a closed wedge of some normed linear space L then the condition
C0 = {0} is equivalent to C = L.

Proof. If C = L then if y0 ∈ C0 y0(x) ≥ 0 for any x ∈ L, which implies y0(−x) = −y0(x) ≥ 0.
Then for any x ∈ L, we get y0(x) = 0 and by the properties of 〈L, L∗〉 as a dual pair (see for
example Definition 5.79 in [2]) we get y0 = 0. On the other hand, if C is such that C0 = {0},
then if we suppose that there is some x0 ∈ L \ C, then by applying the Strong Separation
Theorem for disjoint convex sets in locally convex spaces, we have that {x0} is a compact
convex set and C is a closed convex set in L which are disjoint. This implies the existence
of some f ∈ L∗, f 6= 0 and of some a ∈ R, δ > 0 such that

f(x0) ≤ a < a + δ ≤ f(c),
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for any c ∈ C. But f takes positive values on C since if there is some c0 with f(c0) < 0 then
for λ →∞ we would take that limλ→∞f(λc0) = −∞, while λc0 ∈ C since C is a wedge. But
in this case the separation condition would be violated and this is a contradiction. Hence
f ∈ C0 = {0}, a contradiction since f 6= 0 by the separation argument. We were led to a
contradiction by supposing that a x0 ∈ L \ C exists. Hence C = L and the conclusion is
ready. �

9. Appendix: Vector Optimization, Convexity

Let L be a normed linear space partially ordered by the cone P and let C be a non-empty
set of L. In an equivalent way, the set of maximal points of C with respect to P is the set of
y ∈ C such that C ∩ (y + P ) = {y}. The set of the maximal points of C with respect to P
is denoted by EM(C, P ) or E(C, P ), called set of Pareto efficient points of C (with respect
to P ). The set which consists of the solution sets of any maximization problem of the form

Maximize f(x) subject to x ∈ C ,(9.6)

where f ∈ E∗ is a strictly positive functional of P is denoted by PosE(C, P ) and it is a
subset of E(C, P ) (see [21]) called set of positive proper Pareto efficient points of C (with
respect to P ).

Theorem 9.1. (Essential theorem about existence of efficient points- [6]) Let C be a non-
empty subset of a partially ordered topological linear space L partially ordered by a closed
cone P . Then :

(i) If the set C has a closed section which has an upper bound and the ordering cone P
is Daniell, then there is at least one maximal element of C.

(ii) If the set C has a closed and bounded section, the ordering cone P is Daniell and X
is boundedly order complete, then there is at least one maximal element of C.

(iii) If the set C has a compact section, then there is at least one maximal element of the
set C.

The subset C ∩ (y + P ) = Cy of C is called y-section of C or else section of C defined by
y.

A topological linear space L is L is boundedly order complete if for every bounded increasing
net in the space X, the supremum of the elements of it exists. A cone P of a linear topological
space L is called Daniell cone if every increasing net of L which is upper bounded converges
to its supremum.

Note that every closed cone in a Euclidean space is Daniell and every Euclidean space
partially ordered by a closed cone is boundedly order complete (nets in these case are replaced
by sequences).

A subset F of a convex set C in L is called extreme set or else face of C, if whenever
x = az + (1− a)y ∈ F , where 0 < a < 1 and y, z ∈ C implies y, z ∈ F . If F is a singleton,
F is called extreme point of C.
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[13] Kaina, M., Rüschendorf, L. (2009) On convex risk measures on Lp-spaces. Mathematical Methods

of Operations Research, 69 475-495
[14] Konstantinides, D.G., Kountzakis, C. (2011) Risk measures in ordered normed linear spaces with

non-empty cone-interior. Insurance: Mathematics and Economics, 48 111-122
[15] Korn, R. (1997) Optimal Portfolios, World Scientific
[16] Kountzakis, C.E. (2011) Risk measures on ordered non-reflexive Banach spaces. Journal of Mathe-

matical Analysis and Applications, 373 548-562
[17] Kroll, Y., Levy, H., Markowitz, H.M. (1984) Mean-Variance versus Direct Utility Maximization

Journal of Finance, 39 47-61
[18] Luenberger, D.G. (1969) Optimization by Vector Space Methods, John Wiley and Sons Inc.
[19] Markowitz, H. (1952) Portfolio Selection. Journal of Finance, 7 77-91
[20] Megginson, R.E. (1998) An Introduction to Banach Space Theory, Springer
[21] Ng, K.F., Zheng, X.Y. (2003) On the Density of Positive Proper Efficient Points in a Normed Space

Journal of Optimization Theory and Applications, 119 105-122
[22] Kountzakis, C.E. (2011) On efficient portfolio selection using convex risk measures, Mathematics and

Financial Economics (to appear)
[23] Rockafellar, T.R., Uryasev, S., Zabarankin, M. (2003) Deviation measures in risk analysis and

optimization, Research Report 2002-7, Risk Management and Financial Engineering Lab, Departmet of
Industrial and Systems Engeineering, University of Florida

[24] Tasche, D. (2002) Expected shortfall and beyond. Journal of Banking and Finance, 26 1519-1533

Department of Statistics and Actuarial -Financial Mathematics, University of the Aegean,
Karlovassi, GR-83 200 Samos, Greece

E-mail address: chr koun@aegean.gr


