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Abstract

In this paper we investigate the ruin probability in the classical risk model under a positive constant interest force. We
restrict ourselves to the case where the claim size is heavy-tailed, i.e. the equilibrium distribution function (e.d.f.) of the claim
size belongs to a wide subclass of the subexponential distributions. Two-sided estimates for the ruin probability are developed
by reduction from the classical model without interest force.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The classical risk model with homogeneous Poisson arrival process, constant premium rate and constant interest
force has been investigated by many authors suSluadt and Teugels (1995, 199&smussen (1998), Klippelberg
and Stadtmuller (1998nd Kalashnikov and Konstantinides (200@)/e address in the present paper two-sided
bounds for the ruin probability in this model. The well-known inequalities in the classical risk model without
interest force enable us to derive accurate two-sided estimates. The idea of the reduction is not new, but only
recently this method became effective as the necessary tools were accumulated. This approach is also applicable tc
the study of the convergence rate of the ruin probability approximations.

We suppose that the claim siz&%),>1, form a sequence of i.i.d. non-negative r.v.’s, with a common d.f.
B(x) = 1— B(x) = P(Z1 < x),x > 0, and afinite expectatidn Throughout this paper, the dB.always satisfies
B(x) > O forall x > 0. We denote by

F(x) = %/ox B(z)dz, x>0, (1.1)

the equilibrium distribution function (e.d.f.) of the dB. We assume that, as usual, the claim arrival times constitute
a homogeneous Poisson procéssr));>o, Which is independent aiZ)>1 and has an intensity > 0. Therefore,
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the compound Poisson procesg) = ,i\’:(’l) Z; represents the total claim amount accumulated up to time,

with X(r) = 0 whenN(t) = 0. We writep = Ab and letc be the constant gross premium rate which is not
necessarily positive. We assume that there exists a constant interest for@evhich affects the risk process. Let
u > 0 be the initial surplus of the insurance company, then the total surplus up to,theyresented by, (),
satisfies the equation

t t
U, (1) :uert+c/ erzdz—/ e€=9dx(z), t>0.
0 0

The ultimate ruin probability for this risk process is then defined by
Y, (u) =P (im;U,(t) < 0|U,(0) = u) , u=>0.
1>

As many recent references in the fields of risk theory, we are interested in heavy-tailed claim sizes. The most
important class of heavy-tailed d.f.’s is the subexponential cfa$dy definition, a d.f.F' supported on [0oo)
belongs to the clasS iff for any (or equivalently for some) > 2, it holds that
T
iim £ _,
X—>00 F(X)
where F*" denotes the-fold convolution of the d.fF. We refer toEmbrechts et al. (1997), Rolski et al. (1999)
andAsmussen (2000pr thorough reviews of the applications of the cl&® insurance and finance.
Itis well known that, if the e.d.fF of the claim size belongs to the claSand the safety loading conditign< ¢
holds, then

’

Yolu) ~ ﬁﬁ(m, U — oo, (1.2)

seeFeller (1971)andEmbrechts and Veraverbeke (198Based on the classical asymptot{és2), Kalashnikov
and Tsitsiashvili (1999, 200@ndMikosch and Nagaev (200introduced as an auxiliary function the relative error
of the approximatiorf1.2)

_ Yo(u) B
(p/(c = pP)F(u)

Then they studied the bounds and the convergence rate of the quaqtity> 0 asu — oo.

Recently,Asmussen (1998), Klippelberg and Stadtmiiller (1988) Kalashnikov and Konstantinides (2000)
considered the ruin probability, (1) with the constant interest foree> 0. They established an asymptotic formula
which is similar to the classical asymptotids2).

In this paper we continue the work of the cited papers. Asmussen’s formula for the ruin prob@apilityis
the starting point of our present investigation. FirstSection 2 after some analysis on Asmussen’s formula, we
introduce an additional condition on the claim size distribution. By this condition we characterize a new broad subex-
ponential subclass. Then, based on Asmussen’s formula we drive some two-sided bounds for the ruin probability
¥, (u) in Section 3 Some examples are laid Bection 4 and numerical results are 8ection 5

Au) > 0.

2. Main results
2.1. On an asymptotic formula for the ruin probability

Recall thatF represents the e.d.f. of the claim size distributbhitUnder the assumptiofi € S, Asmussen (1998)
first established an asymptotic formula for the ruin probabilityu) with » > 0 that
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A [ - dz

Y (u) ~ —/ B(z)—, u— oo. (2.1)
rJu Z

Almost simultaneousllippelberg and Stadtmdller (1998%ed sophisticated analytical arguments to d€gve)
in the presence of claim size having regularly varying tail with expoaestl, i.e.

B(x) =x"%L(x), x>0,

whereL(x) is a positive function which is slowly varying astends to infinity (we rewriteB € R_, as usual).
Later,Kalashnikov and Konstantinides (20Q&pvided a simple proof for Asmussen’s form(fal)for the whole
subexponential case. In the proofs providedAsmussen (1998and Kalashnikov and Konstantinides (2000)
however, some supporting arguments should be required. This was pointedAsrigsen et al. (2002, pp. 403
and 404)We also refer readers to the proof of Lemma RBalashnikov and Konstantinides (200@here the authors
used an implication that, for infinitesimal quantitiés(u), 1 <i < 4, if A1(u) ~ A2(u) andAz(u) ~ Aa(u) then

Ar(u) — Az(u) ~ A2(u) — Ag(u),

which is wrong, in general.
We prove thaf2.1) remains valid under an additional restriction. That is we have the following theorem.

Theorem 2.1. In the classical risk model with a constant interest force 0, the asymptotic§2.1)is true if the
e.d.f.F € Sand that for somev > 1,

. F

lim supﬂ <1 (2.2)

X—>00 X

Clearly, if the claim size distributioB € R_, for somex > 1 then the e.d.fF satisfies all the conditions asked
in Theorem 2.1
Motivated byTheorem 2.dwe introduce a new subclass of subexponential d.f.’s below.

Definition 2.1. Let F be a d.f. supported on [80). We say that" belongs ted if F € Sand(2.2)holds for some
v> 1.

We point out that the clas4 covers almost all the well-known subexponential d.f.’s. In fact, by its definition one
easily checks the following remark.

Remark 2.1. All the d.f.’s listed in Table 1.2.6 irEmbrechts et al. (199helong to the classi. Namely the
Pareto, the log-normal, the Weibull, the log-gamma, the Burr, the Benktander | and Il distributions are included in
the classA.

With the notation

X ® _ dz
D(x)_l_F(x)/x FOZ, +20

we immediately obtain fronTheorem 2.%the following corollary.

Corollary 2.1. In the classical risk model with a constant interest farce 0, the asymptotic formula
vy () ~ %D(H)F(M), i — 00, (2.3)

is true if the e.d.fF € A.
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Proof. From(2.1)we have

A [ d Ab ©1 _
Iﬂr(u)’v—/ B(z)—z=—[—/ —dF(z)],
rJu Z r u <

the right-hand side of which equalsto/ru) D(u) F (1) by integration by parts. O
2.2. Two-sided estimates for the ruin probability

In order to investigate two-sided estimates for the ruin probabijlitg) with r > 0, now we seek for another
auxiliary function which plays a similar role in the present situation as that(af in the case without interest
force. The asymptotic formul@.3) urges us to use
_ Yy (u) _

(p/rW)D@Fw)

Obviously,I" (1) represents the relative error of the approximafti@i3).
Now we state the main result of the paper.

u=>0

I'(u)

Theorem 2.2. In the classical risk modeif o < ¢, then for anyu > 0 we have that

I'_(u) < I'(w) < I't(u), (2.4)
where
1 c Au) + Yo(u)
=0="35w <c TR D(“)]) ’
_ 1 c Au) + Yo(u)
ey ==t D(u) (c+ru 1— you) )

and A(u) = sup,-, A(x).
The following bound foit I" (1) | is sometimes more convenient for applications.

Corollary 2.2. Under the conditions ofheorem 2.2we have thatfor anyu > 0,

) < 1 ( c A(u>+wo(u>>
=~ D) \c+ru 1—vyow) /J°

Proof. The proof is straightforward fror(2.4). O

Note that inTheorem 2.2andCorollary 2.2 we did not require any condition on the tail behavior of the claim
size. Now we assume thé.2) holds for some» > 1. By Lemma 3.3ve know thai{2.2) holds for any > 1. Thus,
for anyv > 1, there exists somgv) = [y (v) > 0 such that

F(vX)

d(v) = sup — <1
x>1(v) F(x)

For convenience we writé(1) = 1. With thev, /(v) andd (v) given above, we introduce

o0

F(vkx) dw,k—1) —d(v, k)
d(v, k) = - , = )
. k) xilzj(g) F(x) oW ,;1 vt

Obviously, it holds for any > 1 thatd(v, 0) = d(1) = 1 andd (v, 1) = d(v). We obtain the following theorem.
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Theorem 2.3. In addition to the conditions dfheorem 2.2we assume thgP.2) holds for some > 1. Then the
following inequalities hold for any > 1 andu > I(v):

e = — ( ¢, AW+ (/e p)FlL+Aw], _G(U)])
T o \edru o 1—(p/(c— p)F@)[L+ Aw)] ’
( A(u) + (p/(c — p) Fu)[1 + A(u)])
c+ru o(v) c+ru 1—(p/(c —p)F)[1+ Aw)]

) < L ( c A(u)+(p/<c—p)>F<u>[1+A<u)]>
To \et+ru 1—(p/c—p)FWl+Aw] /)

I'i(u) <—

We notice that all the bounds givenTineorem 2.2ssentially depends on three quantiti¢g& + ru), A(«) and
F(u). This enables us to investigate the convergence rate of the deviatiorto 0 asu — oo by reduction from
the existing results in the literature. We refer readerKatashnikov and Tsitsiashvili (2000pr some estimates
for A(u) or yo(u), and toMikosch and Nagaev (2001pr some details on the convergence rate\@f:) to O as
u — oQ.

3. Proofs of the main results
3.1. Some lemmas

In this section we propose some lemmas about the gla3fiey will play crucial roles in the proofs of our main
results.

Lemma3.1. Let F be a d.f. supported dp, oo). If (2.2) holds for some > 1, then for all x > I(v),

1—-dw)
D(x) > o(v) >

> 0, (3.1)
where the notations involved were giverSaction 2

Proof. Recall the definitions ofl (v), d(v, k) ando (v). We have that the quantiy(v, k) is non-decreasing in
k > 0. Therefore,
dw,0)—dw,l) 1—d()

o(v) > = >0, v>1
v v

As for the first inequality in(3.1), we have

X dz > B 1 1
D(x)>1— WZF(M 10 —>1- Zd(vk 1)( — — F) =o(v). (3.2)

This ends the proof. O
Lemma3.2. Let F be a d.f. supported df, oo). Then
. X - dz
= limsup—— Fz)— <1 3.3
x%oopF(x) /x (Z) Z2 = ( )

if and only if(2.2) holds for some > 1.
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Proof. The proof of the “if " assertion follows frohemma 3.1 Now we only need to prove the “only if " assertion.
Clearly, for anyv > 1,

* /NF()%>_X /UXF()%>LF(UX)<E_i)
F(x) Jx ZZZ_F()C) x ZZZ_I:"()C) x  vx/)’

It follows that:

. F(vX) v X ® _ dz v
lim sup— < ——Ilimsup—— F(2)—= = Ap, v>1
x—oo F(x) v—1 x50 F(x) Jx Z v—1
So(2.2)holds for allv > (1 — Ar)~1 > 1. This ends the proof. d

Lemma 3.3. Let F be a d.f. supported dB, co) with a density functiory (x) which is eventually non-increasing.
Then the following statements are equivalent

(11) (2.2)holds for some > 1;
(I2) (2.2)holds for any > 1; .
(13) the hazard rate of Fg(x) = f(x)/F (x), satisfies

liminf xg(x) > 0. (3.4)
X—>00

Proof. We prove the lemma by the following order of implicatiods:= I3 = I» = I3.
(1) I = I3. For the fixedv > 1 in I; and all sufficiently larga > 0,
- vX
F_(UX) =1- fx _f(t) dr >
F(x) F(x)

from which it follows that:

1- (v —Dxqlx),

lim inf xq(x) = —— lim inf <1_ F(x) > 70

(2) I3 = I,. For any fixedv > 1 and all largex > 0O,

Fx) F(vX) - F(vX) _ 1
F(x) [P f@dt+Fx ~ (v—Dxfwx) + Fwx) (v — Dxqx) + 1’

which, together witl{3.4), implies that(2.2) holds for anyv > 1.
(3) I> = I1. This step is trivial.

Remark 3.1. Let F be the e.d.f. of the claim size distributidgh We write

L1(v) = liminf F_(”’;) and Lz(v)zlimsupF_((vX), v>1

x—>o00  F(x x—oo F(x)

Clearly, Lemma 3.3indicates that ifL2(v) = 1 for somev > 1 then it holds for albv > 1. Furthermore, going
along the line of the proof diemma 3.3we also obtain that

Li(v) <1 Fv>1l<= Li(v) <1 Vv>1<= limsupxqx) > 0.

X—> 00

So we have that it.1(v) = 1 for somev > 1 then it holds for alb > 1. From these discussions we can classify all
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possibilities of the values df1(v) andL2(v) into three cases:

1. L1(v) = La(v) =1 Vv > 1;
2. L1(v) <1lbutLo(v) =1 Vv > 1;
3. Lo(v) <1 Vv>1.

The first case indicates that(x) is slowly varying ast — oo. The third case is just the fundamental assumption
of the present paper. Our past experience shows that problems for the second case are often very complicated.

3.2. Proof of Theorem 2.1

We shall need two auxiliary functions

Yr (1)

Gr(u)=1— ,
w0 7, 0)

kr(u)=/ z0dG,(z), u >0,

and a notation

1-— 1//r (0)
Yr(0)

which were first introduced byundt and Teugels (1995 hese expressions enable us to take the following
representation for the ruin probability:

Uy (1) = _r (kr(u) _/ k,(z)d—§> , u>0. (3.5)
u u z

K, +p
Further we shall use the following two-sided boundg,af:):

(0 + Ky)u Fl) < k() < (p+ Ky)(c—p) You) ’
c+ru rp 1— o)

r =

(3.6)

seeKalashnikov and Konstantinides (2000)
We assume temporarily that the safety loading conditioa ¢ holds. Therefore the classical formya2)is
valid. The inequalitie$3.6), together with the asymptoti¢s.2), give the relationship

k)~ P K B u S . 3.7)
r
Hence,
_ [* ke (2)(dz/2%) u /OO . dz
limsupt————= = limsup—— F(z2)—.
Iu—>ogp kr(u)/u Iu—>oloEIpF(M) u 2 22

It is easy to see that, {3.3) holds then we are allowed to substit({87) into (3.5) on the way to the asymptotic
relationship(1.2)

p p+K [(1_ © _  dz A © _ %
Yy (u) Kr—-i-,o p <;F(M)—/u F(Z)z_2>_r/,; B(Z)Z7 u — 00.

But we have proved ihemma 3.2hat(3.3)is equivalent to the assertion th{&t2) holds for some > 1, which is
implied by the membership af in .A. This provesTheorem 2.%or the case wherg < c.

If p > ¢, then, by the same argument as the proof of Lemmakaiashnikov and Konstantinides (200@)e can
still obtain(2.1). Hence, the validity 0f2.1)is independent of the safety loading condition. This ends the proof.
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3.3. Proof of Theorem 2.2

From (3.5) and (3.6)and noting that the function&(z) andv(z) are non-increasing in > 0, we derive the
following lower bound ofyr, (u):

- c—p [® Yol dz
Fu == f 1—wo(z>z_2

zﬁm)( - f [L+A@IFG) 2>
ek - 1/fo(u)]F()

. oF (1) ( U 1+ Au)
ru c+ru  1—vyou)

_P 1 ¢ A@+yo)
—EF(M)D(M) [1 % <C+ru+ 1 vot) [1 D(u)])]. (3.8)

Similarly, we obtain the upper bound ¢f. (1) as follows:

c—p Yol © - dz
o 1—yow) ' / A

ﬁF( )( Vo) [1 —D(u)])
U (0/(c — PHF@IL — Yow)] c+ru

_ Pz ru 1 ¢ A(u) + Yro(u)
= fwbw <c+ D) [c+ T 1= vow) D ' (3.9)

o
Yr(u) > c+ru

- D<u>]>

Yr(u) <

By these two bounds i(8.8) and (3.9)we get the proof 0f2.4).

3.4. Proof of Theorem 2.3

Note that, for our case has a density functiorf (x) = b~1B(x) which is non-increasing in > 0 and tends
to 0 asx — oo. Since(2.2) holds for somey > 1, then byLemmas 3.1 and 3,3or anyv > 1, there exists some
[(v) > 0 such tha{3.1) holds for allu > I(v). The remaining proof of heorem 2.3s trivial.

4. Examples

Example4.1. Now we put forward some concrete examples to illustrate how to determine the valges dfv),
o (v), andD(u) involved in our main results:

(1) Let F be the Pareto distribution withh > 1 andx > 0, i.e. the tail ofF satisfies

- { 1 when x < «,
F(x) (4.2)

K a
(—) when x > «.
X

Clearly, for anyw > 1, we have

a

-1
dw) =v?, a(v):h and [(v) =«.
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(2) LetF be the Burr distribution with tail

a
F(x):( ~ ) , a,k,s >0 x>0.
K+ x5

Modeling the proof of3.2) with slight adjustment yields that, for any> 1 andu > O,

1 F 1 S\ sa_1
D(u)Z—[l— (vu)}:_[1_<x+u >j|~vs >0 asu — oo.
v vsatl

F(u) v K + (vu)s
(3) Let F be the Weibull distribution with tail
F(x) =expl—ax"}, A>0, be(0,1), x>0. (4.2)

We analogously obtain that, for amy> 1 andu > 0,

_ b b
F_(vu)i|:1—eXp{—)»(v — Du }—>E>0 asu — oo.
F(u) v v

D(u) > } [1—
v

Example4.2. Next, we study the convergence rate of the deviafign) to 0 asu — oc:
(1) Clearly, under the assumption ttfat2) holds for some > 1, the inequality(2.4) implies
IF'w) =O0w™t + A®w) + Fu)). (4.3)

(2) RecentlyMikosch and Nagaev (200&xamined the case where the e.d.fof claim size belongs to the class
D of d.f.’s with dominatedly varying tails. We say a dA.supported on [0co) belongs to the clasB iff for
some (or equivalently for any) & ¢ < 1, it holds that

F(cX)

lim sup— < 0
X—>00 F()C)

The work inMikosch and Nagaev (2001dicates that if the e.d.f” € D with a finite mean, them\ (u) =
O(x~1) and therefore\ (1) = O(u~1) asu — oo. From this and4.3) we immediately obtain the following

proposition.

Proposition 4.1. In the classical model with a constant interest force 0, if the e.d.f. F of the claim size belongs
to AN D and has a finite meathenI" (1) = O 1) asu — .

We remark that the intersectiofin D is a large subclass of heavy-tailed distributions. For example, if the e.d.f.
F e ERV(—a,—fB)forl<a < B < o0, l.e.
FoX) . F(vX)

.. F
v < liminf _( < limsup— <v* forany v > 1,

x—oo  F(x x—oo F(x

then F satisfies all the conditions iRroposition 4.1seeBingham et al. (1987andTang et al. (2001jor details.
Clearly, ifa = g then the class ER\-«, — ) coincides with the clasR _,.

(3) We notice that ifProposition 4.xhe finite mean of the e.d.t’ should be assumed in order for us to apply the
related result ilMMikosch and Nagaev (2001%0 it excludes the case wheFefollows a Pareto distribution
with 0 < a < 1 (recall(4.1)), which is of interests in insurance practice. In this case, from the relation (1.17)
of Kalashnikov and Tsitsiashvili (200@nd the concrete value @f- given in p. 268 of that paper, we can
obtain the asymptotic expressiar(u) = O(u~%/@*tD) asu — oo. This formula, in combination witk4.3),
yields I (1) = O(u~%/@*+D) asy — oco. This convergence rate is slightly worse than tha®inposition 4.1
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(4) If F follows the Weibull distribution given irf4.2), then, by the same approach and using the valygrof
given in p. 269 ofKalashnikov and Tsitsiashvili (2000ve obtainA (x) = O((In u)Y?u*~1) asu — oo.
This formula, together witk.3), yields I" («) = O((In u)Y?u®~1) asu — oo.

(5) If F follows the log-normal distribution with the density function:

In2x

1
N 2mx p{ 2
then, the same approach, together with the valugofiven in p. 270 ofKalashnikov and Tsitsiashvili

(2000) gives A(u) = O(u~1(In u) exp{v/2 In u}) asu — oo, from which we similarly obtain™(x) =
O 1(In u) exp(~/2 In u}) asu — .

fx) =

}, x>0,

5. Numerical results

We wrrite, foru > 0,
Uo) = max{[l n F_(u)]%D(u)F(u), 0} ,
Y =1+ M@l ZDw e and v w = LD Fw).

Under the conditions ofheorem 2.1we know fromCorollary 2.1that vy, (u) ~ ¥ (u) asu — oo; under the
conditions ofTheorem 2.2ve know thaty,” (u) < ¥, (u) < ¥,;"(u) for u > 0. We proceed to the calculation of
these estimates in the Pareto and Weibull cases. The upper bounds for the ruin propgbilitinvolved can be
found inKalashnikov and Tsitsiashvili (2000)Ve take the numerical results produced in the package Mathematica.
In each table we vary the interest force from 0.01 to 0.31 by step 0.1. For simplicity we asstithe

In the first case we assume the e.d.fiollows a Pareto distribution, the tail of which has form

Fu)=Q+bu™, a,b,u=>0.

We take the parameters above with values 3,» = 0.5. In Tables 1-3ve take the numerical results fpor= 0.1
andu = 9, 100, 1000.
In Tables 4—-6wve takep = 0.9 andu = 9, 100, 1000.

Table 1

Pareto case with = 3,b = 0.5, p = 0.1, u = 9, Yo(u) = 0.000725,A (1) = 0.0855969,D (1) = 0.718924

r Y (u) ¥, (u) Vit (u)

0.01 0.00480123 0 0.00710027
0.11 0.000436475 0.000116647 0.000574674
0.21 0.00022863 0.000110868 0.000287031
0.31 0.000154878 0.0000928057 0.000189465
Table 2

Pareto case with = 3,5 = 0.5, p = 0.1, u = 100, yo(x) = 8.44 x 1077, A(u) = 0.007617,D(u) = 0.74702

r V() v (u) v (u)

0.01 563147x 10~7 1.84765x 107 6.64245% 107
0.11 511952x 10°8 45352x 1078 5.3162x 1078

0.21 268165x 1078 2.51156x 108 2.75028x 108

0.31 18166x 1078 1.73592x 1078 1.85435x 1078
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Table 3
Pareto case with = 3,b = 0.5, p = 0.1, u = 1000,%0(u) = 8.85 x 1071°, A(u) = 0.00161071D(u) = 0.749592
r Wyl (u) ¥, (u) Vit (u)
0.01 59609x 10~11 5.23476x 1011 6.15473x 10711
0.11 5419x 10712 5.35095x 10712 5.44695x 10712
0.21 283852x 10712 2.81905x 1012 2.84911x 10712
0.31 192287x 10712 1.91359x 1012 1.92907x 10712
Table 4
Pareto-like case with = 3,6 = 0.5, 0 = 0.9,u = 9, ¥o(u) = 0.356,A(u) = 5.58106,D (1) = 0.718924
r Yl (u) Y, () Yt (u)
0.01 0.0432111 0 0.612822
0.11 0.00392828 0 0.0550738
0.21 0.00205767 0 0.0287223
0.31 0.0013939 0 0.0194123
Table 5
Pareto case with = 3,b = 0.5, p = 0.9, u = 100, ¥o(x) = 0.000348,A (1) = 4.12917,D(u) = 0.74702
r Y (u) /)] Yt (u)
0.01 506832x 10~ 0 0.0000339539
0.11 460756x 10~7 0 30217x 10°©
0.21 241349x 107 0 15797x 1076
0.31 163494x 107 0 1.06933x 106
Table 6
Pareto case with = 3,b = 0.5, p = 0.9, = 1000,0(1) = 8.24 x 10°8, A(u) = 0.151325,D(x) = 0.749592
r W) (u) V() V()
0.01 536481x 1010 4.44297x 10710 6.61076x 10710
0.11 48771x 10711 457194x 10711 5.87635x 10~11
0.21 255467x 10711 2.40937x 10711 3.07444x 10711
0.31 173058x 1011 1.63568x 1011 2.08181x 10~ 11
Table 7
Pareto case with = 5,b = 0.25,p = 0.1, u = 9, ¥o(u) = 0.000355,A (1) = 0.158478,D(u) = 0.78556
r ¥t (u) ¥, () v, (u)
0.01 0.00240724 0 0.003497
0.11 0.00021884 0.0000693594 0.000293123
0.21 0.000114631 0.0000591667 0.000148644
0.31 0.0000776531 0.0000482031 0.0000989523

Now we assume = 5, b = 0.25. InTables 7—-9ve takep = 0.1 andu = 9, 100, 1000.

In Tables 10—-12ve takep = 0.9 andu = 9, 100, 1000.

Inthe second case we assume the eftifdllows a Weibull distribution with the forntd.2). We take the parameters
in (4.2)with values\ = 4.52874,b = 0.1.

In Tables 13-16ve takep = 0.5 andu = 10, 100, 1000, 10000.

In Tables 17—2@ve takep = 0.95 andu = 10, 100, 1000, 10,000.
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Table 8

Pareto case with = 5,b = 0.25,p = 0.1, u = 100, ¥o(u) = 9.47 x 1072, A(u) = 0.0126497,D(u) = 0.828618

r Yk () Y () Yt (u)

0.01 697409x 109 2.74757x 1072 7.80178x 107°
0.11 634008x 10710 5.68588x 1010 6.54614x 10710
0.21 332099x 1010 3.13013x 10710 3.40291x 10710
0.31 224971x 10710 2.15898x 10710 2.29859x 10710
Table 9

Pareto case with = 5,b = 0.25,p = 0.1, u = 1000,¥o(x) = 1.12 x 10713, A(u) = 0.00422063D(x) = 1

r Yl (u) ¥, () /()

0.01 100376x 10714 9.12512x 10715 1.008 x 10~14
0.11 912512x 1016 9.04291x 1016 9.16364x 10716
0.21 477983x 1016 4.75717x 10716 48x 10716

0.31 323795x 10716 3.22754x 10716 3.25161x 10716
Table 10

Pareto case with = 5,b = 0.25,0 = 0.9,u = 9, ¥o(u) = 0.364,A(u) = 13.6648,D (1) = 0.78556

r Yk (u) Y () ¥t (u)

0.01 0.0216652 0 0.635431
0.11 0.00196956 0 0.0575433
0.21 0.00103168 0 0.0300977
0.31 0.000698878 0 0.0203731
Table 11

Pareto case with = 5, b = 0.25, p = 0.9, u = 100, vo(x) = 0.00013,A () = 17062, D(u) = 0.828618

r W (u) ¥, (u) Yt (u)

0.01 627668x 10°8 0 0.0000129952
0.11 570607x 10°8 0 1.18089x 10°°
0.21 298889x 108 0 6.18538x 10~
0.31 202474x 1078 0 4.19004x 1077
Table 12

Pareto case with = 5,b = 0.25, p = 0.9, u = 1000,%o(x) = 1.14 x 10711, A(u) = 0.261917.D(u) = 1

r Yk (u) Y () Yt (u)

0.01 903387x 10~ 14 8.21261x 10714 114 x 10718

0.11 821261x 10715 8.13862x 10715 1.03636x 10~ 14
0.21 430184x 10715 4.28146x 10715 5.42857x 1015
0.31 291415x 10715 2.90478x 10715 3.67742x 10715
Table 13

Weibull case withh = 4.52874,b = 0.1, p = 0.5, u = 10, ¥o(u) = 0.00335,A () = 0.00255419D(u) = 0.377721

r Y (u) Y, (1) Vit (u)

0.01 0.00631071 0 0.0158612
0.11 0.000573701 0 0.00103277
0.21 0.00030051 0.000040936 0.000464925
0.31 0.000203571 0.0000701342 0.000288563
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Table 14
Weibull case withh = 4.52874,b = 0.1, p = 0.5, u = 100, vo(x) = 0.000766,A (1) = 0.00324607 D (u) = 0.431774
r Yt (u) ¥, () v ()
0.01 0.000164834 0 0.00027483
0.11 0.0000149849 0.0000120136 0.0000167677
0.21 784925x 10~ 6.98146x 1076 8.39178x 1076
0.31 531724x 10°© 4.9043x 1076 5.58536x 1076
Table 15
Weibull case withh = 4.52874,b = 0.1, p = 0.5, u = 1000,0(x) = 0.00012,A () = 0.00803757 D (u) = 0.487477
r Y (u) /)] Wt (u)
0.01 290154x 106 2.33555x% 10~ 3.22743x 107
0.11 263777x 107 2.56639x 107 2.7069x 10°7
0.21 138169x 10~/ 1.3564x 1077 1.4117x 1077
0.31 935981x 108 9.21779x 1078 9.5481x 10°8
Table 16
Weibull case with = 4.52874,b = 0.1, p = 0.5, u = 10000,1o(x) = 0.0000115A (1) = 0.00252021,D () = 0.543501
r W (u) Y, (u) Yt (u)
0.01 311727x 1078 3.05386x 108 3.15772x 1078
0.11 283388x 10° 2.82312x 1079 2.84925x 1079
0.21 148442x 107° 1.47996x 1072 1.49192x 1079
0.31 100557x 107° 1.00284x 107° 1.01053x 107°
Table 17
Weibull case withh = 4.52874,b = 0.1, p = 0.95,u = 10, ¥o(x) = 0.0658,A (1) = 0.0364189,D(u) = 0.377721
r ¥ (u) ¥ () Y ()
0.01 0.0119903 0 0.0334215
0.11 0.00109003 0 0.00226093
0.21 0.000570969 0 0.0010398
0.31 0.000386785 0.0000673069 0.000654247
Table 18
Weibull case withh. = 4.52874,b = 0.1, p = 0.95,u = 100, yo(u) = 0.0156,A (1) = 0.0753496,D (1) = 0.431774
r V() ¥, () Ui (u)
0.01 0.000313185 0 0.000586281
0.11 0.0000284714 0.0000195145 0.0000376861
0.21 0.0000149136 0.0000115302 0.0000189969
0.31 0.0000101028 0.00000814317 0.00001268
Table 19
Weibull case withh. = 4.52874,b = 0.1, p = 0.95,u = 1000,yo(x) = 0.00246,A (1) = 0.0876195,D (1) = 0.487477
r ¥l (u) Y, () Yt (u)
0.01 551293x 10~ 3.96143x 107 7.06109x 1076
0.11 501175x 107 4.44331x 1077 5.98762x 10~7
0.21 26252x 1077 2.35044x 10~/ 3.12459x 10~/
0.31 177836x 10~/ 1.59779x 107 2.11381x 107
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Table 20

Weibull case withh. = 4.52874,b = 0.1, p = 0.95,u = 10000,o(x) = 0.00024,A («) = 0.101166,D(u) = 0.543501
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r

v ()

v, (u)

¥ ()

0.01
0.11
0.21
0.31

592282x 1078
538438x 109
282039x 10°°
191059x 10~°

5.31033x 1078
4.91666x 102
2.57764x 10°°
1.74668x 107°

7.07742x 1078
6.39334x 107°
3.34787x 10°°
2.26767x 1072
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