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Abstract

In this paper we investigate the ruin probability in the classical risk model under a positive constant interest force. We
restrict ourselves to the case where the claim size is heavy-tailed, i.e. the equilibrium distribution function (e.d.f.) of the claim
size belongs to a wide subclass of the subexponential distributions. Two-sided estimates for the ruin probability are developed
by reduction from the classical model without interest force.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The classical risk model with homogeneous Poisson arrival process, constant premium rate and constant interest
force has been investigated by many authors such asSundt and Teugels (1995, 1997), Asmussen (1998), Klüppelberg
and Stadtmüller (1998)andKalashnikov and Konstantinides (2000). We address in the present paper two-sided
bounds for the ruin probability in this model. The well-known inequalities in the classical risk model without
interest force enable us to derive accurate two-sided estimates. The idea of the reduction is not new, but only
recently this method became effective as the necessary tools were accumulated. This approach is also applicable to
the study of the convergence rate of the ruin probability approximations.

We suppose that the claim sizes,(Zk)k≥1, form a sequence of i.i.d. non-negative r.v.’s, with a common d.f.
B(x) = 1− B̄(x) = P(Z1 ≤ x), x ≥ 0, and a finite expectationb. Throughout this paper, the d.f.B always satisfies
B̄(x) > 0 for all x ≥ 0. We denote by

F(x) = 1

b

∫ x

0
B̄(z)dz, x ≥ 0, (1.1)

the equilibrium distribution function (e.d.f.) of the d.f.B. We assume that, as usual, the claim arrival times constitute
a homogeneous Poisson process(N(t))t≥0, which is independent of(Zk)k≥1 and has an intensityλ > 0. Therefore,
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the compound Poisson processX(t) = ∑N(t)
k=1 Zk represents the total claim amount accumulated up to timet ≥ 0,

with X(t) = 0 whenN(t) = 0. We writeρ = λb and letc be the constant gross premium rate which is not
necessarily positive. We assume that there exists a constant interest forcer > 0 which affects the risk process. Let
u > 0 be the initial surplus of the insurance company, then the total surplus up to timet , represented byUr(t),
satisfies the equation

Ur(t) = uert + c

∫ t

0
erz dz −

∫ t

0
er(t−z) dX(z), t ≥ 0.

The ultimate ruin probability for this risk process is then defined by

ψr(u) = P

(
inf
t≥0

Ur(t) < 0|Ur(0) = u

)
, u ≥ 0.

As many recent references in the fields of risk theory, we are interested in heavy-tailed claim sizes. The most
important class of heavy-tailed d.f.’s is the subexponential classS. By definition, a d.f.F supported on [0,∞)

belongs to the classS iff for any (or equivalently for some)n ≥ 2, it holds that

lim
x→∞

F ∗n(x)
F̄ (x)

= n,

whereF ∗n denotes then-fold convolution of the d.f.F . We refer toEmbrechts et al. (1997), Rolski et al. (1999)
andAsmussen (2000)for thorough reviews of the applications of the classS to insurance and finance.

It is well known that, if the e.d.f.F of the claim size belongs to the classS and the safety loading conditionρ < c

holds, then

ψ0(u) ∼ ρ

c − ρ
F̄ (u), u → ∞, (1.2)

seeFeller (1971)andEmbrechts and Veraverbeke (1982). Based on the classical asymptotics(1.2), Kalashnikov
and Tsitsiashvili (1999, 2000)andMikosch and Nagaev (2001)introduced as an auxiliary function the relative error
of the approximation(1.2)

�(u) = ψ0(u)

(ρ/(c − ρ))F̄ (u)
− 1, u ≥ 0.

Then they studied the bounds and the convergence rate of the quantity�(u) → 0 asu → ∞.
Recently,Asmussen (1998), Klüppelberg and Stadtmüller (1998)andKalashnikov and Konstantinides (2000)

considered the ruin probabilityψr(u)with the constant interest forcer > 0. They established an asymptotic formula
which is similar to the classical asymptotics(1.2).

In this paper we continue the work of the cited papers. Asmussen’s formula for the ruin probabilityψr(u) is
the starting point of our present investigation. First, inSection 2, after some analysis on Asmussen’s formula, we
introduce an additional condition on the claim size distribution. By this condition we characterize a new broad subex-
ponential subclass. Then, based on Asmussen’s formula we drive some two-sided bounds for the ruin probability
ψr(u) in Section 3. Some examples are laid inSection 4, and numerical results are inSection 5.

2. Main results

2.1. On an asymptotic formula for the ruin probability

Recall thatF represents the e.d.f. of the claim size distributionB. Under the assumptionF ∈ S, Asmussen (1998)
first established an asymptotic formula for the ruin probabilityψr(u) with r > 0 that
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ψr(u) ∼ λ

r

∫ ∞

u

B̄(z)
dz

z
, u → ∞. (2.1)

Almost simultaneously,Klüppelberg and Stadtmüller (1998)used sophisticated analytical arguments to derive(2.1)
in the presence of claim size having regularly varying tail with exponentα > 1, i.e.

B̄(x) = x−αL(x), x ≥ 0,

whereL(x) is a positive function which is slowly varying asx tends to infinity (we rewriteB ∈ R−α as usual).
Later,Kalashnikov and Konstantinides (2000)provided a simple proof for Asmussen’s formula(2.1)for the whole
subexponential case. In the proofs provided byAsmussen (1998)and Kalashnikov and Konstantinides (2000),
however, some supporting arguments should be required. This was pointed out byAsmussen et al. (2002, pp. 403
and 404). We also refer readers to the proof of Lemma 3 inKalashnikov and Konstantinides (2000), where the authors
used an implication that, for infinitesimal quantitiesAi(u), 1 ≤ i ≤ 4, if A1(u) ∼ A2(u) andA3(u) ∼ A4(u) then

A1(u) − A3(u) ∼ A2(u) − A4(u),

which is wrong, in general.
We prove that(2.1) remains valid under an additional restriction. That is we have the following theorem.

Theorem 2.1. In the classical risk model with a constant interest forcer > 0, the asymptotics(2.1) is true if the
e.d.f.F ∈ S and that, for somev > 1,

lim sup
x→∞

F̄ (vx)

F̄ (x)
< 1. (2.2)

Clearly, if the claim size distributionB ∈ R−α for someα > 1 then the e.d.f.F satisfies all the conditions asked
in Theorem 2.1.

Motivated byTheorem 2.1we introduce a new subclass of subexponential d.f.’s below.

Definition 2.1. LetF be a d.f. supported on [0,∞). We say thatF belongs toA if F ∈ S and(2.2)holds for some
v > 1.

We point out that the classA covers almost all the well-known subexponential d.f.’s. In fact, by its definition one
easily checks the following remark.

Remark 2.1. All the d.f.’s listed in Table 1.2.6 inEmbrechts et al. (1997)belong to the classA. Namely the
Pareto, the log-normal, the Weibull, the log-gamma, the Burr, the Benktander I and II distributions are included in
the classA.

With the notation

D(x) = 1 − x

F̄ (x)

∫ ∞

x

F̄ (z)
dz

z2
, x ≥ 0,

we immediately obtain fromTheorem 2.1the following corollary.

Corollary 2.1. In the classical risk model with a constant interest forcer > 0, the asymptotic formula

ψr(u) ∼ ρ

ru
D(u)F̄ (u), u → ∞, (2.3)

is true if the e.d.f.F ∈ A.
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Proof. From(2.1)we have

ψr(u) ∼ λ

r

∫ ∞

u

B̄(z)
dz

z
= λb

r

[
−

∫ ∞

u

1

z
dF̄ (z)

]
,

the right-hand side of which equals to(ρ/ru)D(u)F̄ (u) by integration by parts. �

2.2. Two-sided estimates for the ruin probability

In order to investigate two-sided estimates for the ruin probabilityψr(u) with r > 0, now we seek for another
auxiliary function which plays a similar role in the present situation as that of�(u) in the case without interest
force. The asymptotic formula(2.3)urges us to use

Γ (u) = ψr(u)

(ρ/ru)D(u)F̄ (u)
− 1, u ≥ 0.

Obviously,Γ (u) represents the relative error of the approximation(2.3).
Now we state the main result of the paper.

Theorem 2.2. In the classical risk model, if ρ < c, then for anyu > 0 we have that

Γ−(u) ≤ Γ (u) ≤ Γ+(u), (2.4)

where

Γ−(u) = − 1

D(u)

(
c

c + ru
+ �̄(u) + ψ0(u)

1 − ψ0(u)
[1 − D(u)]

)
,

Γ+(u) = − c

c + ru
+ 1

D(u)

(
c

c + ru
+ �(u) + ψ0(u)

1 − ψ0(u)

)
,

and�̄(u) = supx≥u �(x).

The following bound for|Γ (u)| is sometimes more convenient for applications.

Corollary 2.2. Under the conditions ofTheorem 2.2, we have that, for anyu > 0,

|Γ (u)| ≤ 1

D(u)

(
c

c + ru
+ �̄(u) + ψ0(u)

1 − ψ0(u)

)
.

Proof. The proof is straightforward from(2.4). �

Note that inTheorem 2.2andCorollary 2.2, we did not require any condition on the tail behavior of the claim
size. Now we assume that(2.2)holds for somev > 1. ByLemma 3.3we know that(2.2)holds for anyv > 1. Thus,
for anyv > 1, there exists somel(v) = lF (v) > 0 such that

d(v) = sup
x>l(v)

F̄ (vx)

F̄ (x)
< 1.

For convenience we writed(1) = 1. With thev, l(v) andd(v) given above, we introduce

d(v, k) = sup
x>l(v)

F̄ (vkx)

F̄ (x)
, σ (v) =

∞∑
k=1

d(v, k − 1) − d(v, k)

vk
.

Obviously, it holds for anyv > 1 thatd(v,0) = d(1) = 1 andd(v,1) = d(v). We obtain the following theorem.
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Theorem 2.3. In addition to the conditions ofTheorem 2.2, we assume that(2.2)holds for somev > 1. Then the
following inequalities hold for anyv > 1 andu > l(v):

Γ−(u) ≥ − 1

σ(v)

(
c

c + ru
+ �̄(u) + (ρ/(c − ρ))F̄ (u)[1 + �(u)]

1 − (ρ/(c − ρ))F̄ (u)[1 + �(u)]
[1 − σ(v)]

)
,

Γ+(u) ≤ − c

c + ru
+ 1

σ(v)

(
c

c + ru
+ �(u) + (ρ/(c − ρ))F̄ (u)[1 + �(u)]

1 − (ρ/(c − ρ))F̄ (u)[1 + �(u)]

)
,

|Γ (u)| ≤ 1

σ(v)

(
c

c + ru
+ �̄(u) + (ρ/(c − ρ))F̄ (u)[1 + �(u)]

1 − (ρ/(c − ρ))F̄ (u)[1 + �(u)]

)
.

We notice that all the bounds given inTheorem 2.3essentially depends on three quantitiesc/(c + ru), �(u) and
F̄ (u). This enables us to investigate the convergence rate of the deviationΓ (u) to 0 asu → ∞ by reduction from
the existing results in the literature. We refer readers toKalashnikov and Tsitsiashvili (2000)for some estimates
for �(u) or ψ0(u), and toMikosch and Nagaev (2001)for some details on the convergence rate of�(u) to 0 as
u → ∞.

3. Proofs of the main results

3.1. Some lemmas

In this section we propose some lemmas about the classA. They will play crucial roles in the proofs of our main
results.

Lemma 3.1. Let F be a d.f. supported on[0,∞). If (2.2)holds for somev > 1, then, for all x ≥ l(v),

D(x) ≥ σ(v) ≥ 1 − d(v)

v
> 0, (3.1)

where the notations involved were given inSection 2.

Proof. Recall the definitions ofd(v), d(v, k) andσ(v). We have that the quantityd(v, k) is non-decreasing in
k ≥ 0. Therefore,

σ(v) ≥ d(v,0) − d(v,1)

v
= 1 − d(v)

v
> 0, v > 1.

As for the first inequality in(3.1), we have

D(x) ≥ 1 − x

F̄ (x)

∞∑
k=1

F̄ (vk−1x)

∫ vkx

vk−1x

dz

z2
≥ 1 −

∞∑
k=1

d(vk−1)

(
1

vk−1
− 1

vk

)
= σ(v). (3.2)

This ends the proof. �

Lemma 3.2. Let F be a d.f. supported on[0,∞). Then

AF = lim sup
x→∞

x

F̄ (x)

∫ ∞

x

F̄ (z)
dz

z2
< 1 (3.3)

if and only if(2.2)holds for somev > 1.
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Proof. The proof of the “if ” assertion follows fromLemma 3.1. Now we only need to prove the “only if ” assertion.
Clearly, for anyv > 1,

x

F̄ (x)

∫ ∞

x

F̄ (z)
dz

z2
≥ x

F̄ (x)

∫ vx

x

F̄ (z)
dz

z2
≥ x

F̄ (x)
F̄ (vx)

(
1

x
− 1

vx

)
.

It follows that:

lim sup
x→∞

F̄ (vx)

F̄ (x)
≤ v

v − 1
lim sup
x→∞

x

F̄ (x)

∫ ∞

x

F̄ (z)
dz

z2
= v

v − 1
AF , v > 1.

So(2.2)holds for allv > (1 − AF )
−1 > 1. This ends the proof. �

Lemma 3.3. Let F be a d.f. supported on[0,∞) with a density functionf (x) which is eventually non-increasing.
Then the following statements are equivalent:

(I1) (2.2)holds for somev > 1;
(I2) (2.2)holds for anyv > 1;
(I3) the hazard rate of F, q(x) = f (x)/F̄ (x), satisfies

lim inf
x→∞ xq(x) > 0. (3.4)

Proof. We prove the lemma by the following order of implications:I1 ⇒ I3 ⇒ I2 ⇒ I1.

(1) I1 ⇒ I3. For the fixedv > 1 in I1 and all sufficiently largex > 0,

F̄ (vx)

F̄ (x)
= 1 −

∫ vx
x

f (t)dt

F̄ (x)
≥ 1 − (v − 1)xq(x),

from which it follows that:

lim inf
x→∞ xq(x) ≥ 1

v − 1
lim inf
x→∞

(
1 − F̄ (vx)

F̄ (x)

)
> 0.

(2) I3 ⇒ I2. For any fixedv > 1 and all largex > 0,

F̄ (vx)

F̄ (x)
= F̄ (vx)∫ vx

x
f (t)dt + F̄ (vx)

≤ F̄ (vx)

(v − 1)xf(vx) + F̄ (vx)
= 1

(v − 1)xq(vx) + 1
,

which, together with(3.4), implies that(2.2)holds for anyv > 1.
(3) I2 ⇒ I1. This step is trivial. �

Remark 3.1. Let F be the e.d.f. of the claim size distributionB. We write

L1(v) = lim inf
x→∞

F̄ (vx)

F̄ (x)
and L2(v) = lim sup

x→∞
F̄ (vx)

F̄ (x)
, v > 1.

Clearly,Lemma 3.3indicates that ifL2(v) = 1 for somev > 1 then it holds for allv > 1. Furthermore, going
along the line of the proof ofLemma 3.3we also obtain that

L1(v) < 1 ∃v > 1 ⇐⇒ L1(v) < 1 ∀v > 1 ⇐⇒ lim sup
x→∞

xq(x) > 0.

So we have that ifL1(v) = 1 for somev > 1 then it holds for allv > 1. From these discussions we can classify all
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possibilities of the values ofL1(v) andL2(v) into three cases:

1. L1(v) = L2(v) = 1 ∀v > 1;
2. L1(v) < 1 butL2(v) = 1 ∀v > 1;
3. L2(v) < 1 ∀v > 1.

The first case indicates thatF̄ (x) is slowly varying asx → ∞. The third case is just the fundamental assumption
of the present paper. Our past experience shows that problems for the second case are often very complicated.

3.2. Proof of Theorem 2.1

We shall need two auxiliary functions

Gr(u) = 1 − ψr(u)

ψr(0)
, kr (u) =

∫ ∞

u

z dGr(z), u ≥ 0,

and a notation

Kr = ρ
1 − ψr(0)

ψr(0)
,

which were first introduced bySundt and Teugels (1995). These expressions enable us to take the following
representation for the ruin probability:

ψr(u) = ρ

Kr + ρ

(
kr(u)

u
−

∫ ∞

u

kr(z)
dz

z2

)
, u ≥ 0. (3.5)

Further we shall use the following two-sided bounds ofkr(u):

(ρ + Kr)u

c + ru
F̄ (u) ≤ kr(u) ≤ (ρ + Kr)(c − ρ)

rρ

ψ0(u)

1 − ψ0(u)
, (3.6)

seeKalashnikov and Konstantinides (2000).
We assume temporarily that the safety loading conditionρ < c holds. Therefore the classical formula(1.2) is

valid. The inequalities(3.6), together with the asymptotics(1.2), give the relationship

kr(u) ∼ ρ + Kr

r
F̄ (u), u → ∞. (3.7)

Hence,

lim sup
u→∞

∫ ∞
u

kr(z)(dz/z2)

kr (u)/u
= lim sup

u→∞
u

F̄ (u)

∫ ∞

u

F̄ (z)
dz

z2
.

It is easy to see that, if(3.3) holds then we are allowed to substitute(3.7) into (3.5) on the way to the asymptotic
relationship(1.2)

ψr(u) ∼ ρ

Kr + ρ

ρ + Kr

r

(
1

u
F̄ (u) −

∫ ∞

u

F̄ (z)
dz

z2

)
= λ

r

∫ ∞

u

B̄(z)
dz

z
, u → ∞.

But we have proved inLemma 3.2that(3.3) is equivalent to the assertion that(2.2)holds for somev > 1, which is
implied by the membership ofF in A. This provesTheorem 2.1for the case whereρ < c.

If ρ ≥ c, then, by the same argument as the proof of Lemma 4 inKalashnikov and Konstantinides (2000), we can
still obtain(2.1). Hence, the validity of(2.1) is independent of the safety loading condition. This ends the proof.
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3.3. Proof of Theorem 2.2

From(3.5) and (3.6)and noting that the functions̄�(z) andψ0(z) are non-increasing inz ≥ 0, we derive the
following lower bound ofψr(u):

ψr(u) ≥ ρ

c + ru
F̄ (u) − c − ρ

r

∫ ∞

u

ψ0(z)

1 − ψ0(z)

dz

z2

≥ ρ

ru
F̄ (u)

(
ru

c + ru
− u

[1 − ψ0(u)]F̄ (u)

∫ ∞

u

[1 + �(z)]F̄ (z)
dz

z2

)

≥ ρF̄ (u)

ru

(
ru

c + ru
− 1 + �̄(u)

1 − ψ0(u)
[1 − D(u)]

)

= ρ

ru
F̄ (u)D(u)

[
1 − 1

D(u)

(
c

c + ru
+ �̄(u) + ψ0(u)

1 − ψ0(u)
[1 − D(u)]

)]
. (3.8)

Similarly, we obtain the upper bound ofψr(u) as follows:

ψr(u) ≤ c − ρ

ru

ψ0(u)

1 − ψ0(u)
− ρ

∫ ∞

u

F̄ (z)
dz

z(c + rz)

≤ ρ

ru
F̄ (u)

(
ψ0(u)

(ρ/(c − ρ))F̄ (u)[1 − ψ0(u)]
− ru

c + ru
[1 − D(u)]

)

= ρ

ru
F̄ (u)D(u)

(
ru

c + ru
+ 1

D(u)

[
c

c + ru
+ �(u) + ψ0(u)

1 − ψ0(u)

])
. (3.9)

By these two bounds in(3.8) and (3.9), we get the proof of(2.4).

3.4. Proof of Theorem 2.3

Note that, for our case,F has a density functionf (x) = b−1B̄(x) which is non-increasing inx ≥ 0 and tends
to 0 asx → ∞. Since(2.2)holds for somev > 1, then byLemmas 3.1 and 3.3, for anyv > 1, there exists some
l(v) > 0 such that(3.1)holds for allu > l(v). The remaining proof ofTheorem 2.3is trivial.

4. Examples

Example 4.1. Now we put forward some concrete examples to illustrate how to determine the values ofl(v), d(v),
σ(v), andD(u) involved in our main results:

(1) LetF be the Pareto distribution witha > 1 andκ > 0, i.e. the tail ofF satisfies

F̄ (x) =
{

1 when x ≤ κ,(κ
x

)a
when x > κ.

(4.1)

Clearly, for anyv > 1, we have

d(v) = v−a, σ (v) = va − 1

va+1 − 1
and l(v) = κ.
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(2) LetF be the Burr distribution with tail

F̄ (x) =
(

κ

κ + xs

)a

, a, κ, s > 0, x ≥ 0.

Modeling the proof of(3.2)with slight adjustment yields that, for anyv > 1 andu > 0,

D(u) ≥ 1

v

[
1 − F̄ (vu)

F̄ (u)

]
= 1

v

[
1 −

(
κ + us

κ + (vu)s

)a]
∼ vsa − 1

vsa+1
> 0 as u → ∞.

(3) LetF be the Weibull distribution with tail

F̄ (x) = exp{−λxb}, λ > 0, b ∈ (0,1), x ≥ 0. (4.2)

We analogously obtain that, for anyv > 1 andu > 0,

D(u) ≥ 1

v

[
1 − F̄ (vu)

F̄ (u)

]
= 1 − exp{−λ(vb − 1)ub}

v
→ 1

v
> 0 as u → ∞.

Example 4.2. Next, we study the convergence rate of the deviationΓ (u) to 0 asu → ∞:

(1) Clearly, under the assumption that(2.2)holds for somev > 1, the inequality(2.4) implies

Γ (u) = O(u−1 + �̄(u) + F̄ (u)). (4.3)

(2) Recently,Mikosch and Nagaev (2001)examined the case where the e.d.f.F of claim size belongs to the class
D of d.f.’s with dominatedly varying tails. We say a d.f.F supported on [0,∞) belongs to the classD iff for
some (or equivalently for any) 0< c < 1, it holds that

lim sup
x→∞

F̄ (cx)

F̄ (x)
< ∞.

The work inMikosch and Nagaev (2001)indicates that if the e.d.f.F ∈ D with a finite mean, then�(u) =
O(u−1) and thereforē�(u) = O(u−1) asu → ∞. From this and(4.3)we immediately obtain the following
proposition.

Proposition 4.1. In the classical model with a constant interest forcer ≥ 0, if the e.d.f. F of the claim size belongs
toA ∩D and has a finite mean, thenΓ (u) = O(u−1) asu → ∞.

We remark that the intersectionA ∩D is a large subclass of heavy-tailed distributions. For example, if the e.d.f.
F ∈ ERV(−α,−β) for 1 < α ≤ β < ∞, i.e.

v−β ≤ lim inf
x→∞

F̄ (vx)

F̄ (x)
≤ lim sup

x→∞
F̄ (vx)

F̄ (x)
≤ v−α for any v > 1,

thenF satisfies all the conditions inProposition 4.1, seeBingham et al. (1987)andTang et al. (2001)for details.
Clearly, ifα = β then the class ERV(−α,−β) coincides with the classR−α.

(3) We notice that inProposition 4.1the finite mean of the e.d.f.F should be assumed in order for us to apply the
related result inMikosch and Nagaev (2001). So it excludes the case whereF follows a Pareto distribution
with 0 < a < 1 (recall(4.1)), which is of interests in insurance practice. In this case, from the relation (1.17)
of Kalashnikov and Tsitsiashvili (2000)and the concrete value ofβF given in p. 268 of that paper, we can
obtain the asymptotic expression�(u) = O(u−a/(a+1)) asu → ∞. This formula, in combination with(4.3),
yieldsΓ (u) = O(u−a/(a+1)) asu → ∞. This convergence rate is slightly worse than that inProposition 4.1.
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(4) If F follows the Weibull distribution given in(4.2), then, by the same approach and using the value ofβF
given in p. 269 ofKalashnikov and Tsitsiashvili (2000), we obtain�(u) = O(( ln u)1/bub−1) asu → ∞.
This formula, together with(4.3), yieldsΓ (u) = O(( ln u)1/bub−1) asu → ∞.

(5) If F follows the log-normal distribution with the density function:

f (x) = 1√
2πx

exp

{
− ln 2 x

2

}
, x > 0,

then, the same approach, together with the value ofβF given in p. 270 ofKalashnikov and Tsitsiashvili
(2000), gives�(u) = O(u−1( ln u)exp{√2 ln u}) asu → ∞, from which we similarly obtainΓ (u) =
O(u−1( ln u)exp{√2 ln u}) asu → ∞.

5. Numerical results

We write, foru > 0,

ψ−
r (u) = max

{
[1 + Γ−(u)]

ρ

ru
D(u)F̄ (u),0

}
,

ψ+
r (u) = [1 + Γ+(u)]

ρ

ru
D(u)F̄ (u) and ψ∗

r (u) = ρ

ru
D(u)F̄ (u).

Under the conditions ofTheorem 2.1, we know fromCorollary 2.1thatψr(u) ∼ ψ∗
r (u) asu → ∞; under the

conditions ofTheorem 2.2we know thatψ−
r (u) ≤ ψr(u) ≤ ψ+

r (u) for u > 0. We proceed to the calculation of
these estimates in the Pareto and Weibull cases. The upper bounds for the ruin probabilityψ0(u) involved can be
found inKalashnikov and Tsitsiashvili (2000). We take the numerical results produced in the package Mathematica.
In each table we vary the interest force from 0.01 to 0.31 by step 0.1. For simplicity we assumec = 1.

In the first case we assume the e.d.f.F follows a Pareto distribution, the tail of which has form

F̄ (u) = (1 + bu)−a, a, b, u > 0.

We take the parameters above with valuesa = 3, b = 0.5. In Tables 1–3we take the numerical results forρ = 0.1
andu = 9, 100, 1000.

In Tables 4–6we takeρ = 0.9 andu = 9, 100, 1000.

Table 1
Pareto case witha = 3, b = 0.5, ρ = 0.1, u = 9,ψ0(u) = 0.000725,�(u) = 0.0855969,D(u) = 0.718924

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 0.00480123 0 0.00710027
0.11 0.000436475 0.000116647 0.000574674
0.21 0.00022863 0.000110868 0.000287031
0.31 0.000154878 0.0000928057 0.000189465

Table 2
Pareto case witha = 3, b = 0.5, ρ = 0.1, u = 100,ψ0(u) = 8.44× 10−7, �(u) = 0.007617,D(u) = 0.74702

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 5.63147× 10−7 1.84765× 10−7 6.64245× 10−7

0.11 5.11952× 10−8 4.5352× 10−8 5.3162× 10−8

0.21 2.68165× 10−8 2.51156× 10−8 2.75028× 10−8

0.31 1.8166× 10−8 1.73592× 10−8 1.85435× 10−8
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Table 3
Pareto case witha = 3, b = 0.5, ρ = 0.1, u = 1000,ψ0(u) = 8.85× 10−10, �(u) = 0.00161071,D(u) = 0.749592

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 5.9609× 10−11 5.23476× 10−11 6.15473× 10−11

0.11 5.419× 10−12 5.35095× 10−12 5.44695× 10−12

0.21 2.83852× 10−12 2.81905× 10−12 2.84911× 10−12

0.31 1.92287× 10−12 1.91359× 10−12 1.92907× 10−12

Table 4
Pareto-like case witha = 3, b = 0.5, ρ = 0.9, u = 9,ψ0(u) = 0.356,�(u) = 5.58106,D(u) = 0.718924

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 0.0432111 0 0.612822
0.11 0.00392828 0 0.0550738
0.21 0.00205767 0 0.0287223
0.31 0.0013939 0 0.0194123

Table 5
Pareto case witha = 3, b = 0.5, ρ = 0.9, u = 100,ψ0(u) = 0.000348,�(u) = 4.12917,D(u) = 0.74702

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 5.06832× 10−6 0 0.0000339539
0.11 4.60756× 10−7 0 3.0217× 10−6

0.21 2.41349× 10−7 0 1.5797× 10−6

0.31 1.63494× 10−7 0 1.06933× 10−6

Table 6
Pareto case witha = 3, b = 0.5, ρ = 0.9, u = 1000,ψ0(u) = 8.24× 10−8, �(u) = 0.151325,D(u) = 0.749592

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 5.36481× 10−10 4.44297× 10−10 6.61076× 10−10

0.11 4.8771× 10−11 4.57194× 10−11 5.87635× 10−11

0.21 2.55467× 10−11 2.40937× 10−11 3.07444× 10−11

0.31 1.73058× 10−11 1.63568× 10−11 2.08181× 10−11

Table 7
Pareto case witha = 5, b = 0.25,ρ = 0.1, u = 9,ψ0(u) = 0.000355,�(u) = 0.158478,D(u) = 0.78556

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 0.00240724 0 0.003497
0.11 0.00021884 0.0000693594 0.000293123
0.21 0.000114631 0.0000591667 0.000148644
0.31 0.0000776531 0.0000482031 0.0000989523

Now we assumea = 5, b = 0.25. InTables 7–9we takeρ = 0.1 andu = 9, 100, 1000.
In Tables 10–12we takeρ = 0.9 andu = 9, 100, 1000.
In the second case we assume the e.d.f.F follows a Weibull distribution with the form(4.2). We take the parameters

in (4.2)with valuesλ = 4.52874,b = 0.1.
In Tables 13–16we takeρ = 0.5 andu = 10, 100, 1000, 10000.
In Tables 17–20we takeρ = 0.95 andu = 10, 100, 1000, 10,000.
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Table 8
Pareto case witha = 5, b = 0.25,ρ = 0.1, u = 100,ψ0(u) = 9.47× 10−9, �(u) = 0.0126497,D(u) = 0.828618

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 6.97409× 10−9 2.74757× 10−9 7.80178× 10−9

0.11 6.34008× 10−10 5.68588× 10−10 6.54614× 10−10

0.21 3.32099× 10−10 3.13013× 10−10 3.40291× 10−10

0.31 2.24971× 10−10 2.15898× 10−10 2.29859× 10−10

Table 9
Pareto case witha = 5, b = 0.25,ρ = 0.1, u = 1000,ψ0(u) = 1.12× 10−13, �(u) = 0.00422063,D(u) = 1

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 1.00376× 10−14 9.12512× 10−15 1.008× 10−14

0.11 9.12512× 10−16 9.04291× 10−16 9.16364× 10−16

0.21 4.77983× 10−16 4.75717× 10−16 4.8 × 10−16

0.31 3.23795× 10−16 3.22754× 10−16 3.25161× 10−16

Table 10
Pareto case witha = 5, b = 0.25,ρ = 0.9, u = 9,ψ0(u) = 0.364,�(u) = 13.6648,D(u) = 0.78556

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 0.0216652 0 0.635431
0.11 0.00196956 0 0.0575433
0.21 0.00103168 0 0.0300977
0.31 0.000698878 0 0.0203731

Table 11
Pareto case witha = 5, b = 0.25,ρ = 0.9, u = 100,ψ0(u) = 0.00013,�(u) = 170.62,D(u) = 0.828618

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 6.27668× 10−8 0 0.0000129952
0.11 5.70607× 10−8 0 1.18089× 10−6

0.21 2.98889× 10−8 0 6.18538× 10−7

0.31 2.02474× 10−8 0 4.19004× 10−7

Table 12
Pareto case witha = 5, b = 0.25,ρ = 0.9, u = 1000,ψ0(u) = 1.14× 10−11, �(u) = 0.261917,D(u) = 1

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 9.03387× 10−14 8.21261× 10−14 1.14× 10−13

0.11 8.21261× 10−15 8.13862× 10−15 1.03636× 10−14

0.21 4.30184× 10−15 4.28146× 10−15 5.42857× 10−15

0.31 2.91415× 10−15 2.90478× 10−15 3.67742× 10−15

Table 13
Weibull case withλ = 4.52874,b = 0.1, ρ = 0.5, u = 10,ψ0(u) = 0.00335,�(u) = 0.00255419,D(u) = 0.377721

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 0.00631071 0 0.0158612
0.11 0.000573701 0 0.00103277
0.21 0.00030051 0.000040936 0.000464925
0.31 0.000203571 0.0000701342 0.000288563
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Table 14
Weibull case withλ = 4.52874,b = 0.1, ρ = 0.5, u = 100,ψ0(u) = 0.000766,�(u) = 0.00324607,D(u) = 0.431774

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 0.000164834 0 0.00027483
0.11 0.0000149849 0.0000120136 0.0000167677
0.21 7.84925× 10−6 6.98146× 10−6 8.39178× 10−6

0.31 5.31724× 10−6 4.9043× 10−6 5.58536× 10−6

Table 15
Weibull case withλ = 4.52874,b = 0.1, ρ = 0.5, u = 1000,ψ0(u) = 0.00012,�(u) = 0.00803757,D(u) = 0.487477

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 2.90154× 10−6 2.33555× 10−6 3.22743× 10−6

0.11 2.63777× 10−7 2.56639× 10−7 2.7069× 10−7

0.21 1.38169× 10−7 1.3564× 10−7 1.4117× 10−7

0.31 9.35981× 10−8 9.21779× 10−8 9.5481× 10−8

Table 16
Weibull case withλ = 4.52874,b = 0.1, ρ = 0.5, u = 10000,ψ0(u) = 0.0000115,�(u) = 0.00252021,D(u) = 0.543501

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 3.11727× 10−8 3.05386× 10−8 3.15772× 10−8

0.11 2.83388× 10−9 2.82312× 10−9 2.84925× 10−9

0.21 1.48442× 10−9 1.47996× 10−9 1.49192× 10−9

0.31 1.00557× 10−9 1.00284× 10−9 1.01053× 10−9

Table 17
Weibull case withλ = 4.52874,b = 0.1, ρ = 0.95,u = 10,ψ0(u) = 0.0658,�(u) = 0.0364189,D(u) = 0.377721

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 0.0119903 0 0.0334215
0.11 0.00109003 0 0.00226093
0.21 0.000570969 0 0.0010398
0.31 0.000386785 0.0000673069 0.000654247

Table 18
Weibull case withλ = 4.52874,b = 0.1, ρ = 0.95,u = 100,ψ0(u) = 0.0156,�(u) = 0.0753496,D(u) = 0.431774

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 0.000313185 0 0.000586281
0.11 0.0000284714 0.0000195145 0.0000376861
0.21 0.0000149136 0.0000115302 0.0000189969
0.31 0.0000101028 0.00000814317 0.00001268

Table 19
Weibull case withλ = 4.52874,b = 0.1, ρ = 0.95,u = 1000,ψ0(u) = 0.00246,�(u) = 0.0876195,D(u) = 0.487477

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 5.51293× 10−6 3.96143× 10−6 7.06109× 10−6

0.11 5.01175× 10−7 4.44331× 10−7 5.98762× 10−7

0.21 2.6252× 10−7 2.35044× 10−7 3.12459× 10−7

0.31 1.77836× 10−7 1.59779× 10−7 2.11381× 10−7
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Table 20
Weibull case withλ = 4.52874,b = 0.1, ρ = 0.95,u = 10000,ψ0(u) = 0.00024,�(u) = 0.101166,D(u) = 0.543501

r ψ∗
r (u) ψ−

r (u) ψ+
r (u)

0.01 5.92282× 10−8 5.31033× 10−8 7.07742× 10−8

0.11 5.38438× 10−9 4.91666× 10−9 6.39334× 10−9

0.21 2.82039× 10−9 2.57764× 10−9 3.34787× 10−9

0.31 1.91059× 10−9 1.74668× 10−9 2.26767× 10−9
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