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Abstract. In this paper we present a class of heavy tailed distributions which provide
simple asymptotes for the ruin probability in the classical risk model under a constant
interest force. We examine the properties of this class in comparison with the standard
subexponential distributions.
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1. Motivation.

We cosider a sequence of i.i.d. non-negative ramdom variables (Zk)k≥1(claim sizes) with a

common distrubution function B(x) ≡ 1−B(x) = P (Z1 ≤ x), x ≥ 0, and a finite expectation

b. Let us introduce the integrated tail distribution, denoted by

(1.1) F (x) =
1

b

∫ x

0

B(z) dz, x ≥ 0 .

Definition 1.1. A distribution F on [0,∞) is said to belong to the class E if for some v > 1

(1.2) F
∗
(v) ≡ lim sup

x→∞

F (vx)

F (x)
< 1.

According to this definition, we can find the following property of the class E :

Lemma 1.2. Let F ∈ E, then there exists some α > 0 and c > 0 such that

(1.3) F (x) ≤ cx−α

holds for all large x > 0.

Proof. For the fixed v > 1 taken from (1.2), we write

lim sup
x→∞

F (vx)

F (x)
= y.

Hence, there exists a small enough ε > 0 such that y + ε < 1 and there exists a x0 =

x0(v, y, ε) > 0 such that for any x ≥ x0, it holds

(1.4)
F (vx)

F (x)
≤ y + ε < 1.

Now we start to prove the relation (1.3). For x ≥ x0, we write

n =

[
log(x/x0)

log v

]
,
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where [a] denotes the integer part of the number a. After several applications of the inequality

(1.4), we find:

F (x) ≤ (y + ε)F (x/v) ≤ · · · ≤ (y + ε)nF (x/vn) ≤

≤ exp

{
log(y + ε)

log v
log x/x0

}
F (x0).

Hence (1.3) follows with

c = exp

{
− log(y + ε)

log v
log x0

}
F (x0) > 0, α = − log(y + ε)

log v
> 0.

This ends the proof. �

We can see that this class is similar with the class D of distributions with doninatedly

varying tails. A distribution F on [0,∞) belongs to D if for some v ∈ (0, 1)

(1.5) F
∗
(v) <∞.

or equivalently if for some v > 1

(1.6) F ∗ (v) ≡ lim inf
x→∞

F (vx)

F (x)
> 0.

Lemma 1.3. Let F ∈ D, then there exists some β > 0 and d > 0 such that

(1.7) F (x) ≥ dx−β

holds for all large x > 0.

Proof. For the fixed v > 1 in (1.6), we write

lim inf
x→∞

F (vx)

F (x)
= z.

Hence, for a small ε > 0 such that z−ε > 0, it holds for all large x, say x ≥ x0 = x0(v, z, ε) >

0, that

(1.8) 1 >
F (vx)

F (x)
≥ z − ε > 0.

Now we aim to prove the result in (1.7). For a number x ≥ x0, we write

n =

[
log x/x0

log v
+ 1

]
,

One easily checks the following steps by (1.8):

F (x) ≥ (z − ε)F (x/v) ≥ · · · ≥ (z − ε)nF (x/vn) ≥

≥ exp

{
log(z − ε)

log v
log x/x0

}
F (x0).

Hence (1.7) follows with

d = exp

{
− log(z − ε)

log v
log x0

}
F (x0) > 0, β = − log(z − ε)

log v
> 0.
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The proof is over. �

Let us remark that neither E nor D are restricted in the frame of the heavy tailed distri-

butions. For example we remind that the distribution F on [0,∞) belongs to the class S
if

(1.9) lim
x→∞

F 2∗(x)

F (x)
= 2,

where F 2∗ denotes the convolution of F with itself. It well known that both E and D are

not covered by the class S. However on the subexponential part of these two classes is

concetrated the interest of the risk theory. Let us introduce the notation

A = E ∩ S.

Now we return to the fact that the distribution F is the integrated tail distribution corre-

sponding to a claim distribution B. A distribution B on [0,∞) is said to belong to the class

S∗ if it has a finite expectation b and

lim
x→∞

∫ x

0

B(x− z)

B(x)
B(z)dz = 2b.

In this case we know that B ∈ S and F ∈ S.

Definition 1.4. A distribution B on [0,∞) is said to belong to the class A∗ if it has a finite

expectation b and its e.d.f.

F (x) =
1

b

∫ x

0

B(z) dz, x ≥ 0,

belongs to A.

In this paper we concetrate our attention on the the classes A and A∗. The initial moti-

vation of this investigation comes from an issue arised in risk theory. Namely a risk model

was considered, where the claim arrival times constitute a homogeneous Poisson process

(N(t))t≥0, which is independent of (Zk)k≥1 and has an intensity λ > 0. Therefore, the com-

pound Poisson process X(t) =
∑N(t)

k=1 Zk is representing in actuarial context the total claim

amount accumulated up to time t ≥ 0, with X(t) = 0 when N(t) = 0. Let us denote by c

the constant gross premium rate and assume that there exists a constant interest force r > 0

which affects the risk process. With u > 0 as initial surplus of the insurance company, the

total surplus Ur(t) up to time t, is given as follows

Ur(t) = uert + c

∫ t

0

erzdz −
∫ t

0

er(t−z) dX(z), t ≥ 0.

Let us define the ruin probability

ψr(u) = P

(
inf
t≥0

Ur(t) < 0 | Ur(0) = u

)
, u ≥ 0.
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So the class A appears in Konstantinides et al. (2002) as the space of distributions, where

the following asymtpotics for ψr(u) holds

(1.10) ψr(u) ∼
λ

r

∫ ∞

u

B(z)
dz

z
, u→∞.

Simultaneously this issue was solved with the help of a local limit theory presented in the

papers Asmussen-Kalashnikov et al. (2002) and Asmussen-Korshunov et al. (2002) in the

frame of the class S∗. Thus arises the question of comparison of the two classes and their

applications.

The paper is organized as follows. In the next section we collect some properties of the

classes E and D. In the third section we study the classes A and D∩S . In the forth section

we examine inclusion criteria for the classes A∗ and S∗.

2. Comparison of the classes E and D.

We write

M1 = lim inf
x→∞

xq(x) and M2 = lim sup
x→∞

xq(x)

From Konstantinides et al. (2002) we have the following result:

Lemma 2.1. Let F be a d.f. supported on [0,∞) with a density function f(x) which is

eventually non-increasing. Then the following statements are equivalent:

I1. (1.2) holds for some v > 1;

I2. (1.2) holds for any v > 1;

I3. the hazard rate function of F , q(x) = f(x)/F (x), satisfies

(2.1) M1 = lim inf
x→∞

xq(x) > 0.

Corollary 2.2. 1. F ∈ A, if

0 < M1 ≤M2 <∞.

2. F ∈ S \ E, if

0 = M1 ≤M2 <∞.

3. F ∈ E \ S , if

0 < M1 ≤M2 = ∞.

4. F /∈ E ∪ S , if

0 = M1 < M2 = ∞.

Remark 2.3. Clearly, if F
∗
(v) = 1 for some v > 1 then it holds for all v > 1. Furthermore,

we can obtain that

F ∗ (v) < 1 ∃v > 1 ⇐⇒ F ∗ (v) < 1 ∀v > 1 ⇐⇒ lim sup
x→∞

xq(x) > 0.
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So we have that if F ∗ (v) = 1 for some v > 1 then it holds for all v > 1. From these

discussions we can classify all possibilities of the values of F ∗ (v) and F
∗
(v) into three cases:

1. F ∗ (v) = F
∗
(v) = 1 ∀v > 1;

2. F ∗ (v) < 1 but F
∗
(v) = 1 ∀v > 1;

3. F
∗
(v) < 1 ∀v > 1.

The first case indicates that F (x) is slowly varying as x → ∞. The third case is just the

fundamental assumption of the present paper.

In order to describe the relation between the two classes D and E , let see the following

obvious result:

Corollary 2.4. 1. F ∈ D ∩ E, if and only if

0 < F ∗ (v) ≤ F
∗
(v) < 1, ∀v > 1.

2. F ∈ D \ E, if and only if

0 < F ∗ (v) ≤ F
∗
(v) = 1, ∀v > 1.

3. F ∈ E \ D , if and only if

0 = F ∗ (v) ≤ F
∗
(v) < 1, ∀v > 1.

4. F /∈ E ∪ D , if and only if

0 = F ∗ (v) < F
∗
(v) = 1, ∀v > 1.

Let us now remind the concept of the lower and upper Matuszewska indices. The upper

and lower Matuszewska index J+
F and J−F are defined as follows

(2.2) J+
F = J+(X) = inf

{
− logF ∗(v)

log v
: v > 1

}
= − lim

v→∞

logF ∗(v)

log v
,

(2.3) J−F = J−(X) = sup

{
− logF

∗
(v)

log v
: v > 1

}
= − lim

λ→∞

logF
∗
(v)

log v
.

In the terminology of Bingham et al. (1987), here the quantities J+
F and J−F are the upper and

lower Matuszewska indices of the non-negative and non-decreasing function f(x) =
(
F (x)

)−1
,

x ≥ 0. The latter equalities in (2.3) and (2.2) are due to Theorem 2.1.5 in Bingham et al.

(1987). Without any confusion we simply call the J±F as the upper/lower Matuszewska index

of the d.f. F . For more details of the Matuszewska indices, see Chapter 2.1 of Bingham et

al. (1987), Cline & Samorodnitsky (1994).

By the definitions of the Matuszewska indices and the classes D and E , we immediately

obtain the following result, which clearly illustrate the symmetrical positions of the classes

D and E :
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Lemma 2.5. F ∈ E if and only if J−F > 0; F ∈ D if and only if J+
F <∞;

Proof. From the assumption,

− lim
v→∞

lnF
∗
(v)

ln v
> 0,

and for v large enough, it follows that

ln
[
F
∗
(v)

]
< 0,

which means that there exists a finite v > 1 for F ∈ E . �

Remark 2.6. It is worth to recall that if the upper Matuszewska index J+
F is finite then

F ∈ D. This indicates the symmetry with respect to the Matuszewska indices between the

classes E and D .

3. The class A.

Let us point out that the class A covers most of the well-known subexponential d.f.’s.

Indeed, by the definition one easily checks:

Remark 3.1. The distributions Pareto, Lognormal, Weibull, Loggamma, Burr, Benktander

I and II are members of the class A.

Furthermore, according to Pitman (1980) Th.II , we easily obtain the following criteria:

Corollary 3.2. Suppose that the hazard rate function q(x) = Q′(x) exists and eventually

decrease to 0. We have

1. F ∈ A if and only if

(3.1) lim
x→∞

∫ x

0

exp{yq(y)}f(y)dy = 1,

and

(3.2) lim inf
x→∞

xq(x) > 0.

2. If

(3.3)

∫ ∞

0

exp{yq(y)}f(y)dy <∞,

and (3.2) hold, then F ∈ A.

Theorem 3.3. Let F be a d.f. supported on [0,∞) with an eventually decreasing density

function f(x). If for some v > 1

(3.4) 0 < F ∗ (v) ≤ F
∗
(v) < 1,

then F ∈ A ∩ D.
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Proof. It suffices to prove F ∈ S. Noting that the left-hand side of inequality (3.4) is just the

definition of F ∈ D, we obtain that F ∈ D ∩ L ⊂ S (see Klüppelberg (1988) Cor. 3.4). �

Let us look for some easily verifiable conditions for the inclusion in A. We formulate them

in terms of the hazard function Q = − lnF and its derivative q.

Definition 3.4. A distribution F on [0,∞) is said to belong to the class I of intermediate

varying tails, if

lim
v↓1

F ∗ (v) = 1.

In the following example appears that (3.3) is not a sufficient condition for F ∈ A.

Example 3.5. Let F be a d.f. with a density function that

f(x) =

{
x−1 ln−2 x, x > e,
0, x ≤ e.

Clearly, for y > e, F (y) =
∫∞

y
x−1 ln−2 xdx = ln−1 y. On one hand, we have∫ ∞

0

exp{yq(y)}f(y)dy =

∫ ∞

e

exp

{
ln−2 y

ln−1 y

}
y−1 ln−2 ydy

≤
∫ ∞

e

exp
{
ln−1 e

}
· y−1 ln−2 ydy = e.

So condition (3.3) is fulfilled. On the other hand, it is clear that F /∈ A since, for any v > 0,

lim
x→∞

F (vx)

F (x)
= 1.

Proposition 3.6. Let F and G be two d.f.’s supported on [0,∞) and F ∈ A. We have

G ∈ A if one of the following conditions holds:

1. G(x) ∼ CF (x) for some C > 0;

2. G(x) ∼
∑∞

k=0 pkF ∗k(x), where, {pk, k ≥ 0} is a sequence of non-negative numbers

satisfying that 0 <
∑∞

k=0 pk (1 + ε)k <∞ for some ε > 0.

Proof. 1.By a similar approach as used in the proof of Theorem 3 in Teugels (1975) we

obtain that if F ∈ S then G ∈ S. The remaining proof of G ∈ A is trivial.

2. It is well-known that, if F ∈ S then G ∈ S and G(x) ∼ F (x)
∑∞

k=0 kpk; see for example

Lemma 1 in Chover et al. (1973) and Theorem 2.13 in Cline (1987). Then from the first

part we obtain the assertion G ∈ A. �

A distribution F on [0,∞) is said to belong to the class L (long-tailed d.f.’s) if

lim
x→∞

F (x+ z)

F (x)
= 1

for some z > 0.
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Theorem 3.7. Let F be an absolutely continuous d.f. supported on [0,∞). We have F ∈ A
if one of the following conditions holds:

1. 0 < lim infx→∞ xq(x) ≤ lim supx→∞ xq(x) <∞;

2. q ∈ R0 and eventually decreases to 0 as x→∞, and Q(x)− xq(x) ∈ R−1;

3. q ∈ R−γ for γ ∈ (0, 1);

4. q is eventually decreasing, there exist some δ ∈ (0, 1) and v ∈ (1,∞) such that Q(xz) ≤
zδQ(x) for all x ≥ v, z ≥ 1, and lim infx→∞ xq(x) ≥ (2− 2δ)−1.

Proof. From Proposition 3.8 and Corollary 3.9 in Goldie and Klüppelberg (1998) we take

that F ∈ S∗ ⊂ S. Furthermore, anyone of the four conditions above implies (2.1). Therefore

by Lemma 3.7 we obtain that F ∈ A. �

The following example comes from Su and Tang (2003). It shows that there exist suitable

subexponential d.f.’s which satisfy the request in the case 2 on page 453 of Konstantinides

et al. (2002).

Example 3.8. Let X be a r.v. distributed by

pn = P (X = 2nα

) = c0n
−β2−nα

, n ≥ 0,

where α > 1, β > 1 and c0 > 0 is such that
∞∑

n=1

pn = 1. Then the e.d.f. F of the r.v. X

satisfies

F ∈ S, F /∈ A.

Proof. Clearly, for any large enough x > 0 and some n(x) ≥ 0 such that 2(n−1)α ≤ x < 2nα
,

B(x) = P (X ≥ 2nα
) ∼ P (X = 2nα

). Su and Tang (2003). proved that B ∈M∗, that means

lim sup
x→∞

xB(x)

bF (x)
<∞,

hence F ∈ S follows based on the discussions there. The proof of the following assertion is

straightforward: for any v > 1,

(3.5) F ∗ (v) = 0, F
∗
(v) = 1.

It yields that F /∈ A ∪ D. �

4. Inclusion Criteria for the Classes A∗ and S∗.

Example 4.1. Let τ be a geometric r.v. P (τ = n) = (1− q)qn, 0 < q < 1 and n ≥ 0. Then,
for arbitrarily fixed v, 1 < v < 1/q, the d.f. B = Bv of r.v. Z = vτ satisfies B ∈ A∗ but
B /∈ S∗.

Proof. Clearly, the d.f. B has a finite expectation. Further, we have that d.f. B = Bv of
r.v. Z = vτ satisfies B ∈ A∗ but B /∈ S∗.

lim
x→∞

B(vx)

B(x)
= lim

x→∞

P (vτ > vx)

P (vτ > x)
= lim

x→∞

P (τ > log x/ log v + 1)

P (τ > log x/ log v)
= lim

x→∞

P (τ > x+ 1)

P (τ > x)
= q.
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From this we get to know: 1. B ∈ D and therefore its e.d.f. F = Fv ∈ S (see Embrechts
and Omey (1984)); 2. B /∈ L and therefore B /∈ S∗ (recall Theorem 3.2(b) in Klüppelberg
(1988)); 3. for any fixed ε > 0 and all large x > 0,

(4.1) (1− ε)qB(x) ≤ B(vx) ≤ (1 + ε)qB(x).

Integration on (4.1) from x to ∞ yields (1 − ε)qvF (x) ≤ F (vx) ≤ (1 + ε)qvF (x), which
implies that

lim
x→∞

F (vx)

F (x)
= qv < 1,

i.e. (1.2) holds. Hence B ∈ A∗ . �

We provide now some verifiable conditions for B ∈ A∗.

Theorem 4.2. Let B be a d.f. supported on [0,∞). If

(4.2) 0 < lim inf
x→∞

xB(x)∫∞
x
B(z)dz

≤ lim sup
x→∞

xB(x)∫∞
x
B(z)dz

<∞,

then B ∈ A∗.

Proof. By Lemma 3.7, the left-hand side of ( 4.2) guarantees the condition (1.2) for some
v > 1. Meanwhile, by Cor. 3.4 in Klüppelberg (1988) the right-hand side of (4.2) implies
that F ∈ S. This proves that F ∈ A. �

Corollary 4.3. For any 1 < α ≤ β <∞, ERV (−α,−β) ⊂ A∗.

Proof. Let B ∈ ERV (−α, −β). From the definition of ERV (−α, −β), it follows that
for any ε > 0 and all sufficiently large x > 0 that B(2x) ≤ (1 + ε)2−αB(x). We choose
0 < ε < 2α−1 − 1 in the following inequalities:∫ ∞

x

B(z)dz=
∞∑

k=0

∫ 2k+1x

2kx

B(z)dz ≤
∞∑

k=0

2kxB(2kx)

≤
∞∑

k=0

2kx
(
(1 + ε)2−α

)k
B(x) = CxB(x),

where the constant C satisfies

C =
∞∑

k=0

2k
(
(1 + ε)2−α

)k
=

∞∑
k=0

(
(1 + ε)21−α

)k
<∞.

It follows that, for all sufficiently large x > 0,

0 <
1

C
≤ xB(x)∫∞

x
B(z)dz

≤ xB(x)∫ 2x

x
B(z)dz

≤ B(x)

B(2x)
≤ (1 + ε)2β <∞,

i.e. the condition (4.2) holds. Thus, by Theorem 4.2 we obtain B ∈ A∗. �

Remark 4.4. From Corollary 4.3 we see that the asymptotics (1.10) holds if the d.f. B of
the claim size belongs to the class ERV (−α, −β) for some 1 < α ≤ β <∞. This improves
the main results in Klüppelberg & Stadtmüller (1998) since the corresponding assumption in
that paper is B ∈ R−γ for some γ > 1.
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Let us consider now the criteria based on the hazard rate function. According to Theo-
rem 3.6 in Klüppelberg (1988) and Lemma 3.3 in Konstantinides et al. (2002), we obtain
immediately

Theorem 4.5. Suppose that the hazard rate function qB = Q′B exists and eventually decrease
to 0. We have

1. B ∈ A∗ if and only if

(4.3) lim
x→∞

∫ x

0

exp{yqB(x)}B(y)dy = µ <∞,

and

(4.4) lim inf
x→∞

xqF (x) > 0.

2. If (4.4) and

(4.5)

∫ ∞

0

exp{yqB(y)}B(y)dy <∞

hold, then B ∈ A∗.

Clearly, condition (4.4) can be implied by

(4.6) lim inf
x→∞

xqB(x) > 0.
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[10] Klüppelberg, C. (1988) Subexponential distributions and integrated tails. J. Appl. Probab. 25, no.
1, 132–141.
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