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Abstract In this article, we propose a class of convex risk measures defined on
appropriate wedges of a space of financial positions which denote the cumulative
surplus variables created by undertaking risks by either an insurance or a reinsurance
company. The form of the wedge which is the domain of such a risk measure expresses
the form of the company, and it is a subspace in the case of reinsurance companies and
a cone in the case of the insurance companies. The value of such a risk measure on an
insurance position denotes the capital that the corresponding company has to receive
or to keep in advance so that it will not be exposed to risk due to this position. We
prove some dual representation and continuity results being similar to the unrestricted
case. Finally, we contribute to a decision theory related to the choice of a numeraire
asset when the space in which the positions lie in is reflexive.
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1 A financial approach in solvency capital calculation

In this article, we study the application of convex risk measures in insurance practice.
We consider a closed interval [0, T ] for some constant T > 0 representing the time
horizon in our model and an infinite set of states of the world �. We suppose that
all the transactions take place at time 0. The state ω ∈ � faced by the investors is
contained in some event A ∈ F , where F represents some σ -algebra of subsets of �,
which provides information about the states being available at time T . We denoted by
μ the objective probability measure on the measurable space (�,F), and we consider
the probability space (�,F , μ). The information evolution along time horizon [0, T ]
is represented by a filtration F = (Ft )t∈[0,T ] of (�,F , μ).

We consider an extension of the classical Lundberg risk model of claim arrivals.
We may consider an insurance company whose F-adapted capital process (Ct )t∈[0,T ]
evolves according to the following stochastic differential equation

dCt = (m(t, Ct ) + φt rt Bt )dt − θt s(t, Ct )dW (1)
t , μ − a.e. ,

where C0 = c is some constant, which denotes the initial capital of it, and W (1) is some
one-dimensional Brownian motion with respect to F. It is usual in recent literature
the capital process (Ct )t∈[0,T ] to have a diffusion form (see for example Grandits
et al. 2007; Hipp and Schmidli 2004). The set of admissible trading strategies for the
investment of the capital of the insurance company to the risky asset is denoted by
� = {(θt )t∈[0,T ]}. These processes are adapted to the filtration F of (�,F , μ). �

includes those processes for which θt (ω) = at , at ∈ R, t ∈ [0, T ] for any ω ∈ �. We
may suppose that the interest-rate process (rt )t∈[0,T ] of the riskless bond is uniformly
bounded or else that rt (ω) ≤ M for any (t, ω) ∈ [0, T ] × �. � is a set of admissible
trading strategies for the riskless bond, while � and � have the same properties. The
integrability properties that the investment strategies φ ∈ �, θ ∈ � have to satisfy are
the following:

T∫

0

|θt rt |dt < ∞, μ − a.e.,

T∫

0

|φt rt |dt < ∞, μ − a.e.,

T∫

0

θ2
t s2(t, Ct )dt < ∞, μ − a.e.

These integrability conditions are implied from Karatzas and Shreve (1998, Def. 2.1,
p. 7).

We suppose that the risk model we consider relies on the classical Lundberg risk
model of claim arrivals. Specifically, the present model is an extension of the model
described in Hipp and Schmidli (2004). The process pt = ∫ t

0 m(s, Cs)ds may be
interpreted as the total premium process, or else it indicates the total premium payments
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that the insurance company receives till time period t . The process {m(t, Ct ), t ∈
[0, T ]} is the premium payment intensity, and we may suppose that the pure diffusion
term

∫ t
0 θus(u, Cu)dW (1)

u corresponds to the payoff of the investment of these received
premiums to some risky asset whose volatility term is s(t, Ct ), t ∈ [0, T ] with respect
to an one-dimensional Brownian motion W (1). The premiums are invested to this asset
as soon as they are received by the company. Moreover, the claim process is supposed
to be a compound Poisson process St = ∑Nt

i=1 Yi , t ∈ [0, T ], where Nt , t ∈ [0, T ] is a
Poisson process with rate λ > 0, and claim size random variables Yi , i = 1, 2, . . . are
positive, i.i.d. with common distribution function M and generic element denoted by
Y . Specifically, the generic interoccurrence random time θ is exponentially distributed
with mean 1

λ
, and the random times Tn = ∑n

k=1 θk, , n = 1, 2, . . . of the claims arrival
form a renewal counting process Nt = Card{Tn ≤ t, n = 1, 2, . . .}, t ∈ [0, T ].
Namely, the random variables θk are i.i.d. with an exponential distribution of mean 1

λ
.

We also suppose that the sequence {Yi , i = 1, 2, . . .} is independent of {Nt , t ∈ [0, T ]}.
In a more general model, we suppose that the claim process is a sum of an F-adapted
diffusion process Zt , t ∈ [0, T ] and a compound Poisson process St , t ∈ [0, T ],
described as above. This is the case where the claim process is At = Zt +St , t ∈ [0, T ],
where the dynamics of Zt are also described by the stochastic differential equation 1.1,
where W (2) is an one-dimensional Brownian motion with respect to an appropriate
filtration F of (�,F , μ). If we pose Z to be the zero process, we take the classical
Lundberg risk model case and the process equation A = S holds.

Then,

X =
⎧⎨
⎩U ∈ L2(�,F , μ)|U =

T∫

0

(m(t, Ct ) + φt rt Bt )dt −
T∫

0

θt s(t, Ct )dW (1)
t

−ST , θ ∈ �,φ ∈ �

⎫⎬
⎭ ,

is the set of the attainable surplus positions for the insurance company at the time
period T .

Actually, in this case, X is the transition of the subspace U = {U ∈
L2(�,F , μ)|U = ∫ T

0 φt dBt − ∫ T
0 θt s(t, Ct )dW (1)

t , θ ∈ �,φ ∈ �} at the point∫ T
0 m(t, Ct )dt − ST . Namely, the addition on the affine subspace X is defined as

follows: if θ1, θ2 ∈ �,φ1, φ2 ∈ � then θ1 + θ2 ∈ �,φ1 + φ2 ∈ �. Then,
U1 = ∫ T

0 φ1,t rt Bt dt − ∫ T
0 θ1,t s(t, Ct )dW (1)

t + ∫ T
0 m(t, Ct )dt − ST ∈ X and

U2 = ∫ T
0 φ2,t rt Bt dt − ∫ T

0 θ2,t s(t, Ct )dW (1)
t + ∫ T

0 m(t, Ct )dt − ST ∈ X . Hence,

U1 + U2 =
T∫

0

(φ1,t + φ2,t )rt Bt dt −
T∫

0

(θ1,t + θ2,t )s(t, Ct )dW (1)
t

+
T∫

0

m(t, Ct )dt − ST ∈ X .

123



D. G. Konstantinides, C. E. Kountzakis

Also for the scalar multiplication,

a · U1 =
T∫

0

(a · φ1,t )rt Bt dt −
T∫

0

(a · θ1,t )s(t, Ct )dW (1)
t +

T∫

0

m(t, Ct )dt − ST ∈ X ,

since a ·θ ∈ �, a ·φ ∈ �, for any a ∈ R. The economic meaning of the definition of the
addition and the scalar multiplication over X also expresses that the surplus is affected
by the changes in the trading strategies. Note that since ST comes from a compound
Poisson process, we have that Eμ(ST ) = λT · Eμ(Y ), V (ST ) = λT · Eμ(Y 2). Hence,
the existence or the non-existence of the moment Eμ(Y 2) implies whether X is a
subset of L2(�,F , μ) or not. This relies on the form of the distribution M .

Hence, the reflexive spaces L under which the theorems and propositions of the
present article are valid can be set to be equal to L2(�,F , μ) if the moments
Eμ(Y 2), Eμ(Y ) of the generic claim size element exist, except those which need
a closed wedge of surplus positions N or U , like Proposition 4.4, Theorem 4.5,
Theorem 4.7.

In the present article, we mainly consider a model in which the capital of the
insurance company represents an Itô process, evolving according to the following
stochastic differential equation

dCt = m(t, Ct )dt + s(t, Ct )dW (1)
t , μ − a.e.,

where C0 = c is some constant and W (1) is some one-dimensional Brownian motion
with respect to an appropriate filtration F of (�,F , μ). We also may assume the total
claim process to be approximated by an Itô process

dZt = q(t, Zt )dt + σ(t, Zt )dW (2)
t , μ − a.e., (1.1)

where Z0 = z is the initial total claim and W (2) is some one-dimensional Brownian
motion with respect to the same filtration F, being independent from W (1).

Let us assume two periods, the time period 0 when the company subtracts a solvency
capital in order to anticipate the future potential claims and the time period T when
the total claim should be subtracted from the previous surplus of the company to give
the new surplus on this moment. We suppose that during the time period [0, T ], the
insurance company receives the premiums paid by its clients. At the time period T ,
the net contribution (surplus) UT of the insurance company is equal to UT ,

UT = CT − ZT ,

where ZT represents the claims paid at the period T . Let u = c−z represents the initial
surplus at the time period 0. The stochastic process {Ut , t ∈ [0, T ]} of the surplus of
the insurance company is an Itô process (by consideration of the Itô Lemma), and its
dynamics are demonstrated in the form of a stochastic differential equation:

dUt = (m(t, Ut + Zt ) − q(t, Zt ))dt + [s(t, Ut + Zt ),−σ(t, Zt )] ·
⎡
⎣ dW (1)

t

dW (2)
t

⎤
⎦ ,

μ − a.e.,
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where U0 = u. With notation of dWt =
[

dW (1)
t

dW (2)
t

]
for the stochastic differential of the

2-dimensional Brownian motion W (W (1), W (2) are independent) and l(t, Ut , Zt ) =
m(t, Ct ) − q(t, Zt ), t ∈ [0, T ], while v(t, Ut , Zt ) = [s(t, Ct ) , −σ(t, Zt )] , t ∈
[0, T ], the stochastic differential equation for {Ut , t ∈ [0, T ]} is obtained in the form

dUt = l(t, Ut , Zt )dt + v(t, Ut , Zt )dWt , μ − a.e.,

where U0 = u. For the risk model we propose, we may refer to Norberg (1999) in
which both the capital of the insurance company and the total liabilities of the company
are modeled as simple diffusion processes. The stochastic process W = (W (1), W (2))

is a 2-dimensional Brownian motion with respect to the filtration F
W generated by it,

which means F
W ⊆ F. Hence, the surplus process can be considered as a financial asset

whose drift is l(t, Zt ) and whose volatility process with respect to the 2-dimensional
Brownian motion W is v(t, Zt ) , t ∈ [0, T ], with realizations as vectors of R

2. It is
not restrictive to require

vt (Ut (ω), Zt (ω)) �= 0 , λ[0,T ] ⊗ μ − a.e.,

where λ[0,T ] denotes the Lebesgue measure on [0, T ]. It implies that

rank vt (Ut (ω), Zt (ω)) = 1 , λ[0,T ] ⊗ μ − a.e.

Let us consider a financial market consisted of the surplus asset and a ‘bank account’
(namely, the riskless bond) whose dynamics are driven by the stochastic differential
equation

dBt = rt Bt dt, B0 = 1, μ − a.e.,

where r denotes the short-term rate process, to conclude (see Øksendal 2000, Th.
12.1.8, Th. 12.2.5) that the market is incomplete. This criterion of incompleteness
was established in Karatzas and Shreve (1998, Th. 6.6, p. 24). Hence, the subspace
of the attainable European Contingent Claims U of the specific market is not equal
to L = L2(�,FW

T , Q) for any equivalent martingale measure Q of it. Hence, we
consider as the space in which the positions U = UT lie in, any of the spaces
L2(�,FW

T , Q) for any equivalent martingale measure Q of the market consisted
of the surplus asset and the riskless bond. These spaces are reflexive; therefore,
we can refer to the same frame of ordered normed linear spaces, which appear in
Konstantinides and Kountzakis (2001), where the main results are proved under the
assumption that L is an ordered linear space with a non-empty cone interior. As in
Konstantinides and Kountzakis (2001), the order structure of L is given by a closed
wedge L+, which is not necessarily the positive cone L p

+ of the pointwise partial order-
ing if L = L p. It is in general a wedge whose elements may be financial positions
whose outcomes are negative at some of the states of the world. The geometry of the
positive wedge reflects the joint beliefs of the investors about the payoffs of these
positions. The beliefs of the investors determine the set of the positions which are
‘jointly considered to be the nice investments’. Actually, we mean that the posi-
tive cone L+ is itself an acceptance set in the sense of the definition contained in
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Artzner et al. (1999). Moreover, we mention two families of cones with non-empty
interior, since the results of the present paper will join this frame. An element of these
families may represent the positive cone L+ of L .

Example 1.1 A family of cones in normed linear spaces having non-empty cone inte-
rior are the Bishop–Phelps cones (see in Konstantinides and Kountzakis 2001). The
family of these cones in a normed linear space L is the following:

K ( f, a) = {x ∈ L| f (x) ≥ a‖x‖}, f ∈ L∗, ‖ f ‖ = 1, a ∈ (0, 1).

An argument for the existence of interior points in these cones is found in Jameson
(1970, p. 127).

Example 1.2 Another family of cones with non-empty interior is the family of Henig
Dilating cones. These cones are defined as follows: Consider a closed, well-based
cone C in the normed linear space L , which has a base B, such that 0 /∈ B + δB(0, 1).
Let δ ∈ (0, 1) be such that

2δB(0, 1) ∩ B = ∅,

where B(0, 1) denotes the closed unit ball in L . If

Kn = cone

(
B + δ

n
B(0, 1)

)
, n ∈ N,

then C ⊆ Kn+1 ⊆ Kn, n ∈ N, Kn is a cone for any n ≥ 2, C\{0} ⊆ int (Kn), n ≥ 1.
About these cones, see for example Gong (1994, Lem. 2.1). For example, a Bishop–
Phelps cone C = K ( f, a) in a reflexive space which is a well-based cone as the
construction of the Kn, n ∈ N requires, provides a set of interior points C\{0} of
the cone Kn, n ≥ 1. If we consider the base B f = {x ∈ C | f (x) = 1} defined by
f , this base is a closed set where 0 /∈ B f . Hence there is a g �= 0, g ∈ L∗ such
that g(y) ≥ δ′ > 0 for any y ∈ B f . g can be selected to be such that ‖g‖ = 1,
hence ‖y‖ ≥ g(y) ≥ δ′ > 0. By setting δ′ = 2δ, we may construct a sequence of
approximating cones Kn, n ∈ N, since we can set g = f , δ′ = a ∈ (0, 1). We remind
that if D is a convex set, then the set cone(D) = {x ∈ L|x = λd, d ∈ D, λ ∈ R+} is
a wedge and by cone(D) we denote its norm (or weak) closure.

The importance of the order structure of the space also arises by the following
remarks, which are related to the financial model and the type of the insurance com-
pany. In classical stochastic finance, the debt that the typical investor can tolerate is
supposed to be finite, since the admissible portfolios that are allowed are such that for
the payoff V θ (t, ω) of such a portfolio θ at time period T ,

V θ (t, ω) ≥ −K (θ),

almost surely in terms of the product measure λ⊗ Q, holds in terms of the usual partial
ordering of L2(�,FW

T , Q), where Q is a EMM with K (θ) > 0 (see Øksendal 2000,
Def. 12.1.2). This definition comes from the one of tame portfolio, given in Karatzas
and Shreve (1998, Def. 2.4, p. 9) in which a F-adapted, R

N -valued process θ (where
N denotes the number of the assets in the market) is a tame portfolio, if the discounted
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gains semi-martingale is almost surely bounded from below by a real constant K (θ).
We may pose a similar condition in the case of insurance, if we depart from the usual
partial ordering of the spaces L . The debt constraint expresses an acceptable deficit
level in terms of both shares of the numeraire position E and the partial ordering of
L . We may put a lower debt bound by considering the cone

G = {U ∈ U |U ≥L+ −k E},
in L , directly related to the partial ordering defined on L by L+ and by the numeraire
asset E . We suppose that k > 0 if such a constraint is active. Hence, we may suppose
that the reinsurance companies are those whose restricted risk measure is defined on the
entire subspace U , while the primal insurance companies are those whose restricted
risk measure is defined on a cone of the form G for a numeraire position E . The
numeraire is an interior point of L+.

We will give an example of a non-tame portfolio whose gains become lower-
bounded at t = T when the cone of partial ordering for the space L is substituted
by a Bishop–Phelps ordering.

Example 1.3 Let us consider the Bishop–Phelps cone

L+ = K

(
1,

1

2

)
,

as an ordering cone for L . This cone contains interior points and an interior point is
E = 1. According to what is mentioned in Jameson (1970, p. 127), the radius of the
ball centered at E contained in the cone is r = 4/3. To explain it more, E = 1 is an
element in L such that ‖E‖ = 1 and

f (1) = 〈1, 1〉 = 1 >
1

2
(1 + 2ε),

where ε > 0. Select ε = 1/3 and we get that

1 >
1

2
(1 + 2ε).

If ‖y‖ ≤ 1/6, then ‖1 + y‖ ≤ 4/3 and f (1 + y) ≥ (1 + ε)/2. This is true, since

| f (y)| = |Eμ(y)| ≤ ‖y‖2‖1‖2 ≤ 1

6
,

due to Hölder inequality. Then, 1 + Eμ(y) ≥ 2/3. Hence,

1 + y ∈ K

(
f,

1

2

)
.

According to the Example in Karatzas and Shreve (1998, p. 9) we may construct a
self-financing portfolio θ whose gains process satisfies V θ

T = a, Q almost surely (we
use the probability measure of the space L). We suppose that the market is normalized,
namely the interest rate is equal to zero. Then, if there was a constant k ∈ R such that
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V θ
T ≥L+ k E , this would mean that V θ

T − k E ∈ L+ or else that

EQ(V θ
T − k E) ≥ 1

2

√
EQ((V θ

T − k E)2).

The last inequality means that for any a, there is k such that

a − k ≥ 1

2

√
a2 − 2ka + k2.

What we specified is that for a non-tame portfolio under a specific partial ordering,
there is a constant such that the condition of a tame portfolio for the terminal period
t = T is satisfied under another partial ordering.

In the rest of the article, we suppress the notation of the time period T in the notation
of the surplus positions UT .

2 Previous results, origins of the main ideas and content of the article

First, we remind two general definitions in which A is a wedge of L .

Definition 2.1 A real-valued function ρ : L → R ∪ {+∞} which satisfies the prop-
erties

(i) ρ(x + ae) = ρ(x) − a (translation invariance)
(ii) ρ(λx + (1 − λ)x) ≤ λρ(x) + (1 − λ)ρ(y) for any λ ∈ [0, 1] (convexity) and

(iii) y ≥A x implies ρ(y) ≤ ρ(x) (A-monotonicity)

where x, y ∈ L is called (A, e)-convex risk measure.

Definition 2.2 A real-valued function ρ : L → R ∪ {+∞} is a (A, e)-coherent risk
measure if it is an (A, e)-convex risk measure and it satisfies the following property:
ρ(λx) = λρ(x) for any x ∈ E and any λ ∈ R+ (positive homogeneity).

In Kaina and Rüschendorf (2009, Th. 2.12), the coherent or convex (see
Definition 3.8) risk measures which are defined on a domain which is a proper sub-
set of L p, 1 ≤ p ≤ ∞ are called restricted. We have to remind that in Kaina and
Rüschendorf (2009), the restricted convex risk measures are studied on cash-invariant
subsets of L p-spaces, where 1 ≤ p ≤ ∞. A dual representation theorem is proved
there (Kaina and Rüschendorf 2009, Th. 2.12) for (L p

+, 1)-convex risk measures.
A primal reference for the study of restricted convex risk measures is Filipović and
Kupper (2007), in which such risk measures are studied in L∞ and mainly by means
of theory of conjugate convex functions defined on normed linear spaces. A similarity
between the frame of Filipović and Kupper (2007) and ours is that authors consider
a convex cone P , which implies a partial ordering for a locally convex topological
vector space E and a numeraire  ∈ E\{0}. The examples of Filipović and Kupper
(2007) focus on normed linear spaces and moreover on L p spaces ordered by their
usual (componentwise) partial ordering. In Filipović and Kupper (2007, Lem. 3.5),
Filipović and Kupper (2007, Lem. 3.6), the conditions are directly related with the
boundedness of the base that the numeraire asset, (see Jameson 1970, Th. 4.4.4). It is
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valid only in the case where p = ∞, because 1 is an interior point of L∞+ . We define
the restricted risk measures on wedges of ordered normed linear spaces containing
the numeraire asset E , which may be proper subspaces of reflexive spaces—like the
spaces L p, 1 < p < ∞. We define the restricted measures on such spaces, because
this arises from our financial model (Itô processes correspond to L2 spaces accord-
ing to Itô Isometry). As is well known, the L p(�,F , μ)-spaces are associated with
the existence of the moments Eμ(X p) for 1 ≤ p < ∞, where X : � → R is a
F-measurable random variable. If X ∈ L∞, all these moments are real numbers.
The model of risk measurement would be set in a different mode in which the insur-
ance company examines the effects of its decisions continuously, and it calculates the
equivalent solvency capital according to the evolution of its investment portfolio, by
using dynamic risk measures (see for example Detlefsen and Scandolo 2005; Roorda
et al. 2005; Riedel 2004). But the intention of the present article is to provide a general
theory of static, restricted convex risk measures and emphasizing in their application
in actuarial cases. However, the time moments 0 and T cannot be very far, because
the control of the decision effects of an insurer even if it is set in a static place cannot
refers to a time interval which is great enough. Moreover in practice, the insurance
companies do not pay their clients as far as the claims arrive, but after a certain time
in which they can anticipate the total risk that they adopted by those claims partially
by their investment portfolio and partially by the solvency capital they shaped. This
however fits the definition of the SCR capital or else the solvency capital requirement
as it is defined in Solvency II. This mechanism partially excuses a static frame than a
dynamic one, but a dynamic one is however accurate, too.

In general, there is a similarity of the proved results to the ones of the classic
papers on unrestricted risk measures [Proposition 3.14 is equivalent to Artzner et al.
(1999, Pr. 3.1), while Propositions 3.12, 3.13 follow Föllmer and Schied (2002, Pr. 2),
Föllmer and Schied (2002, Pr. 4) in the case of L∞; moreover, in a general partially
ordered-space setting the conclusions of Propositions 3.11, 3.12, 3.13 are found in
Jaschke and Küchler (2001, pp. 186–187), respectively]. But we have to focus on
some interesting points. The duality representation theorem for restricted convex risk
measures on wedges (see 3.20) relies both on the strong separation theorem for convex
sets in locally convex spaces and on the Hahn–Banach extension theorem for linear
functionals, by which we reach the primal Delbaen (2002, Th. 2.3), which refers to
the case of coherent risk measures defined on L∞(�,F , μ), which is ordered by
its usual partial ordering and the numeraire asset is 1, which is an interior point of
L∞+ . The important is that without the assumption of the existence of interior points
in the positive cone L+, which was given from the idea of the application of the
Krein–Rutman theorem (Jameson 1970, Cor. 1.6.2) and the extension result (Jameson
1970, Pr. 3.1.8), we would not prove this theorem. Of course, any other proposal is
acceptable, and we are waiting for it. Another important point which is also discussed
in Konstantinides and Kountzakis (2001) is that the continuity theorem 3.21 follows a
direction of proof, which arises from Jameson (1970, Th. 3.8.12) and implies Lipschitz
continuity. The choice of the solvency capital scaling corresponds to the choice of an
interior point among the variety of the interior points in the cone L+. The condition
that at least one interior point exists in L+ together with the reflexivity of the spaces
L = L2(�,FW

T , Q) implies—according to the Polyrakis dichotomy theorem for the
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bases of cones (see Polyrakis 2008, Th. 4)—that every strictly positive functional of
L0+ being defined by an element of L defines a bounded base on L0+. Hence, every such
point is an interior point of L+, according to Jameson (1970, Th. 3.8.12). Namely,
Polyrakis (2008, Th. 4) indicates an answer to the problem of what kind of cone with
non-empty interior arises if we work in some reflexive space and more specifically in
some L p space.

A third important remark is the fact that the reflexive L is ordered by a closed cone
L+ with non-empty interior; then by Polyrakis (2008, Th. 4), this cone has a plenty of
interior points, which are the elements of L+ which define bounded bases on the dual
cone L0+. In Sect. 6, we develop a numeraire selection theory, which directly relies on
the fact that the interior point E we may select for the solvency capital scaling is not
unique.

The insurance company determines a reference financial position E , which corre-
sponds to an insurable claim and belongs to an acceptance set A. This set A, namely
it demonstrates the exposure limits of risk for this insurance company. If U ∈ A, then
the company can anticipate the risk arising from the variability of U among the states
of �. A is a wedge of L , because it should satisfy the main properties of the acceptance
sets of the coherent risk measures introduced in Artzner et al. (1999):

(i) A + A ⊆ A
(ii) λA ⊆ A , λ ∈ R+.

We remind that a set C ⊆ L satisfying C + C ⊆ C and λC ⊆ C for any λ ∈ R+ is
called wedge. A wedge for which C ∩ (−C) = {0} is called cone. The coherence of
the acceptance set A is related to the property of monotonicity. In Artzner et al. (1999,
Ax. 2.1), a coherent acceptance set is supposed to contain the cone L+ of the space
in which the financial positions lie in. In the case where the risk measure is defined in
the whole subspace U , this property can be expressed in the following way:

U ∩ L+ ⊆ A,

which indicates that the cone of the induced partial ordering of the subspace U of L
is contained in the acceptance set. The acceptance set A is not necessarily a subset
of U because the risk exposure limits are rather independent from the specific net
contribution process (Ut , t ∈ [0, T ]). Also, if we talk about convex risk measures
which are not coherent, A is an unbounded convex subset of L containing L+.

If D is a subspace of L , this subspace becomes a partially ordered linear space itself
by using the order structure of (L ,≥). In this case, we call D an ordered subspace of
(L ,≥) whose ordering wedge is C ∩ D. For the rest notions related to the partially
ordered linear spaces, the reader may append to the Appendix of Konstantinides and
Kountzakis (2001).

If ρ : U → R, then the value ρ(U ), U ∈ U can be understood as the solvency
capital for the financial position U under ρ or else as the minimum amount of shares
of E that allows U jointly with these shares of E to belong to the acceptance set of ρ,

Aρ = {U ∈ U |ρ(U ) ≤ 0}.
The solvency position that the insurance company needs in order to be insured itself is
ρ(U )E . But since the solvency capital of the numeraire position E can be normalized
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according to a price-functional π ∈ L∗, which is normalized at E (π(E) = 1). Then
the solvency capital of E with respect to ρ is equal to −1. By the same way, the number
of shares ρ(U ) also indicates also the amount of money that the company which is
characterized by risk exposure limit set Aρ has to keep in advance as a premium for
the insurance toward U . The premium calculation for the surplus position U is more
meaningful when U /∈ A. In this case, the insurance company, in order to insure its
surplus U , needs a positive number of shares ρ(U ) of the numeraire asset E in order
to be induced with respect to ρ.

We notice that according to the description of the model, the initial surplus u of the
insurance company becomes u −ρ(U ), since the company keeps the solvency capital
in advance, so that it can anticipate the risk against the surplus position U . For these
reasons, in relevant optimization problems, the constraint ρ(U ) ≤ u is active. But
such problems are out of the content of this article. ρ(U ) is the optimal payment of the
company for this scope, as it is indicated by Propositions 3.12, 3.13, where N = U .

A point of discussion is whether the value ∞ must be taken to be a possible value
of a ρ for the actuarial case. In general, this is realistic, since there are catastrophic
claims. But the results that follow are valid without this assumption, which does not
fit the form of the diffusion model we described. Moreover, the implications of the
Propositions 3.11, 3.12 verify this fact.

3 Restricted convex risk measures defined on wedges

Restrictions in cash invariance or actually in numeraire invariance may appear in the
attempt of the insurance company to draw the limits of its risk exposure. The sorts of
invariance are described in the following definitions.

Definition 3.1 The subset N ⊆ L is E-translation invariant (cash translation
invariant) if E ∈ N (1 ∈ N ) and for any U ∈ N and any n ∈ R, U + nE ∈ N
(U + n1 ∈ N ).

Definition 3.2 The subset N ⊆ L is weak E-translation invariant (weak cash
translation invariant) if there is some t ∈ R such that for any U ∈ N , U + λE ∈ N
(U + λ1 ∈ N ), where λ ≥ t .

The sets of particular interest are the wedges of L , since the domain of a risk
measure used for insurance purposes is a wedge (it is either a subspace in the case of
a reinsurance company or a cone in the case of a primal insurance company), and the
equivalent terminology restricted coherent or restricted convex will be used in the
case of a wedge N containing 1 or E respectively, since a wedge N satisfying this
property is weak 1 (E)-translation invariant.

Lemma 3.3 A wedge N of L is weak E-translation invariant with respect to any
element E of it.

Proof If U ∈ N , then for any t ≥ 0, U + t E ∈ N . Hence, N is weak E-translation
invariant. ��
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The definition of translation invariance for a risk measure defined on a wedge N
takes a more general form

Definition 3.4 Let N be a wedge of L and ρ be a function ρ : N → R. ρ is
E-translation invariant if

ρ(U + aE) = ρ(U ) − a,

for any U ∈ N and any a ∈ R such that U + aE ∈ N .

Definition 3.5 Let N be a wedge of L , ρ be a function ρ : N → R, and L+ be a cone
of L . Then, ρ is L+-monotone (or equivalently it satisfies the L+ -monotonicity), if
the inclusion

N ∩ L+ ⊆ Aρ,

holds.

Definition 3.6 Let N be a wedge of L and the function ρ : N → R satisfy the
properties of (L+, E)-translation invariance, sub-additivity, positive homogeneity and
L+-monotonicity. Then, we call it (L+, E)-restricted coherent.

Definition 3.7 A risk measure ρ : N → R satisfies the convexity property if it is a
convex function

ρ(λU1 + (1 − λ)U2) ≤ λρ(U1) + (1 − λ)ρ(U2),

for any λ ∈ [0, 1] and U1, U2 ∈ N .

Definition 3.8 If N is a wedge of the ordered linear space L and a function ρ :
N → R satisfies the properties of (L+, E)-translation invariance, convexity and L+-
monotonicity, then it is called (L+, E)-restricted convex.

The rest results concerning the primal insurance and the reinsurance companies’
risk measures are simple implications of the following results.

Remark 3.9 The main condition under which the following results hold is that N is a
(closed) wedge of an ordered normed space L (which is reflexive if it is required and
equal to some appropriately defined L2-space, too) such that N ∩ L+ is a non-empty
wedge of L containing the numeraire E .

Definition 3.10 The risk measure ρN
(A,E)

: N → R defined on a wedge N of L is
defined as follows:

ρN
(A,E)(U ) = inf{m ∈ R|m E + U ∈ A},

where E is supposed to be an interior point of the positive cone L+ of L . We call the
above risk measure N -restricted risk measure associated with the pair (A, E).
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Proposition 3.11 If E is an interior point of the cone L+, then ρN
(A,E)

is a (L+, E)-
restricted coherent risk measure.

Proof We have to verify that the properties of a coherent risk measure hold for ρN
(A,E)

.
Note that according to Jameson (1970, Pr. 3.1.3), E is an order unit of L . Further, for
any U ∈ N , there is some m ∈ R such that U + m E ∈ L+. That is because

L = ∪∞
n=1[−nE , nE],

where [ . , . ] denotes the corresponding order interval with respect to the partial order-
ing induced on L by L+. Hence, for some n(U ) ∈ N,

U ∈ [−n(U )E , n(U )E],
which implies U + n(U )E ∈ L+ for any U ∈ L . The set {m ∈ R | U + m E ∈ A} is
non-empty for any U ∈ L and hence for any U ∈ N . This is true because if U ∈ N ,

U + n(U )E ∈ N ∩ L+ ⊆ A,

which indicates that ρN
(A,E)

(U ) �= ∞ for any U ∈ N .
In order to show that

ρN
(A,E)(U ) �= −∞,

for every U ∈ N , we have to show that for any U ∈ N , the set of real numbers
{m ∈ R | m E + U ∈ A} is lower-bounded. Since E ∈ intL+, this implies that E is
an order unit of L . As we mentioned before, this implies that for any U ∈ L there is
some n(U ) ∈ N such that

U ∈ [−n(U )E , n(U )E],
where [ . , . ] denotes an order interval with respect to the partial ordering induced by
L+ on L . But, on the other hand, for any U ∈ L there is some nonzero m0(U ) ∈ R+
such that

U − m0(U )E /∈ L+.

If U = 0 this m0 is any ε > 0. If U �= 0 we suppose that such a positive real number
does not exist, so we would have for any λ > 0, that

U − λE ∈ L+.

Since E ∈ intL+, then

L = ∪∞
n=1[−nE , nE].

Suppose that n(U ) ∈ N is some natural number such that

U ∈ [−n(U )E , n(U )E].
Since U ≥ n(U )E by assumption, we get that

n(U )E ≤ U ≤ n(U )E,
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in terms of the partial ordering induced by L+ on L and because L+ is a cone, it
implies

U = n(U )E .

But U ∈ [−(n(U ) + 1)E , (n(U ) + 1)E] and by the same assumption

U ≥ (n(U ) + 1)E,

which implies by the same way that

U = (n(U ) + 1)E,

which is a contradiction because if this is the case, we find U = 0. Hence, for any
U �= 0, there exists some nonzero m0(U ) ∈ R+ such that

U − m0(U )E /∈ L+.

After all, we remark that −m0(U ) is a lower bound for the set {m ∈ R | m E+U ∈ L+},
for any U ∈ N , too. −m0(U ) is a lower bound of the set {m ∈ R|U + m E ∈ A}
because if we suppose that there are some Z0 ∈ N and k < −m0(Z0) such that

k E + Z0 ∈ A ,

then we come to a contradiction since then we would have

Z0 − m0(Z0)E = Z0 + k E + (−m0(Z0) − k)E ∈ A
from the well-known properties of a wedge, since Z0 + k E ∈ A by assumption and

(−m0(U ) − k)E ∈ N ∩ L+ ⊆ A ,

(notice that (−m0(U ) − k) > 0). Finally, we found that ρN
(A,E)

cannot take the value
−∞.

About the properties of a coherent risk measure, we have the following:

(i) (E-translation invariance):

ρN
(A,E)(U + aE) = inf{m ∈ R | (U + aE) + m E ∈ A}

= inf{(m + a) − a | U + (m + a)E ∈ A}
= inf{k ∈ R | U + k E ∈ A} − a = ρN

(A,E)(U ) − a,

for any U ∈ N and any a ∈ R such that U + aE ∈ N .
(ii) (Sub-additivity):

If m1 ∈ {m ∈ R | U + m E ∈ A} and m2 ∈ {m ∈ R | U ′ + m E ∈ A} then

m1 + m2 ∈ {k ∈ R | (U + U ′) + k E ∈ A}.
It means

ρN
(A,E)(U + U ′) ≤ m1 + m2.
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Hence ρN
(A,E)

(U + U ′) − m1 ≤ m2 which implies

ρN
(A,E)(U + U ′) − m1 ≤ ρN

(A,E)(U
′)

for any such m1. In the same way, by ρN
(A,E)

(U + U ′) − ρN
(A,E)

(U ′) ≤ m1 we
obtain

ρN
(A,E)(U + U ′) − ρN

(A,E)(U
′) ≤ ρN

(A,E)(U )

and the required property holds for any U, U ′ ∈ N .
The above proof of sub-additivity holds in case where U, U ′ ∈ N are such that
ρN

(A,E)
(U + U ′), ρN

(A,E)
(U ), ρN

(A,E)
(U ′) ∈ R. If

ρN
(A,E)(U + U ′) = −∞,

and at least one of ρN
(A,E)

(U ), ρN
(A,E)

(U ′) is equal to −∞ the sub-additivity holds.

Note that if ρN
(A,E)

(U + U ′) = −∞ and ρN
(A,E)

(U ), ρN
(A,E)

(U ′) ∈ R the sub-
additivity property is true.
Finally, we note that if for example

ρN
(A,E)(U ) = −∞,

and ρN
(A,E)

(U ′) ∈ R, then ρN
(A,E)

(U +U ′) = −∞. This is true since ρN
(A,E)

(U ) =
−∞ there is a sequence (an)n∈N of real numbers, such that an → −∞ and

U + an E ∈ A.

Also, since ρN
(A,E)

(U ′) ∈ R consider some a ∈ R with U ′ + aE ∈ A. Then since
for the sequence (dn)n∈N with dn = an + a for any n ∈ N

(U + U ′) + (an + a)E ∈ A,

from the property A+A ⊆ A of A, while limn(an +a) = −∞, we get ρN
(A,E)

(U +
U ′) = −∞. In case where A is a cone, this point may be omitted since ρN

(A,E)
takes only finite values.

(iii) (Positive Homogeneity):
For λ = 0 we have that

ρN
(A,E)(0) ≤ 0,

since 0 ∈ {m ∈ R | 0 + m E ∈ A}. If we suppose that ρN
(A,E)

(0) < 0, then for

δ = −ρN
(A,E)(0),

and by the definition of ρN
(A,E)

(0) as the infimum of a subset of the real numbers,
there is some mδ ∈ {m ∈ R | 0 + m E ∈ A} such that

mδ < ρN
(A,E)(0) + δ = 0.
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Hence, mδ E ∈ A with mδ < 0. But from the properties of a wedge, we have that
mδ E ∈ −A. Then,

E ∈ A ∩ (−A) = {0}
because A is a cone, a contradiction since E is an interior point of L+. The
contradiction is implied by the assumption that ρN

(A,E)
(0) < 0. This implies

ρN
(A,E)(0) = 0,

and the positive homogeneity if λ = 0 holds.
If λ > 0 we remark that

{λm ∈ R | m ∈ R is such that U + m E ∈ A} ⊆ {k ∈ R | λU + k E ∈ A},
which implies the inequality

ρN
(A,E)(λU ) ≤ λρN

(A,E)(U ). (3.1)

We can see that{
k

λ
∈ R | k ∈ R is such that λU + k E ∈ A

}
⊆ {m ∈ R | U + m E ∈ A}.

This last remark implies

ρN
(A,E)(U ) ≤ ρN

(A,E)
(λU )

λ
,

and from the above inequality, together with the relation (3.1), the required property
is established for any U ∈ N and any λ ∈ R+.

(iv) (L+-Monotonicity):
If U, U ′ ∈ N and U ′ ≥ U with respect to the partial ordering induced on the
elements of N by L+, we notice that

{m ∈ R | U + m E ∈ A} ⊆ {m ∈ R | U ′ + m E ∈ A}. (3.2)

Indeed, if m1 ∈ {m ∈ R | U + m E ∈ A}, then

U + m1 E ∈ A, (3.3)

and since U ′ ≥ U ,

U ′ − U ∈ N ∩ L+ ⊆ A. (3.4)

By the relations (3.3) and (3.4), we find that

U ′ + m1 E = (U ′ − U ) + (U + m1 E) ∈ A
by the properties of a wedge. Hence, m1 ∈ {m ∈ R | U ′ + m E ∈ A} and the (3.2)
is true. Therefore

ρN
(A,E)(U

′) ≤ ρN
(A,E)(U ),

and the required property holds for any U, U ′ ∈ N . ��
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Proposition 3.12 If N is a wedge of L and ρ : N → R is a (L+, E)-restricted
coherent risk measure, then

ρN
(Aρ,E) = ρ.

Proof By following the lines of the proof of Föllmer and Schied (2002, Pr. 2), we
have that

ρN
(Aρ,E)(U ) = inf{m ∈ R|U + m E ∈ Aρ}

= inf{m ∈ R|ρ(U ) − m ≤ 0} = inf{m ∈ R|ρ(U ) ≤ m}
= ρ(U ), U ∈ N .

��
Proposition 3.13 If N is a wedge of L and the wedge A is a closed sub-wedge of N ,
then AρN

(A,E)
= A.

Proof Obviously, A ⊆ AρN
(A,E)

because 0 ∈ {m ∈ R|m E + U ∈ A} if U ∈ A, hence

ρN
(A,E)(U ) ≤ 0,

and U ∈ AρN
(A,E)

. Suppose there is some Z0 ∈ AρN
(A,E)

\A. Then, ρN
(A,E)

(Z0) ≤ 0. If

ρN
(A,E)

(Z0) = 0, then for any ε > 0, there is some mε > 0 with mε < 0 + ε = ε

such that mε E + Z0 ∈ A. If we put εn = 1/n for any n ∈ N, we take a sequence
(mn)n∈N of real numbers, such that mn E + Z0 ∈ A and 0 < mn < 1/n. The limit of
the last sequence of elements of A is Z0 and since A is closed, Z0 ∈ A. But this is a
contradiction, since we supposed that Z0 is not an element of A. Then, we conclude
that such a Z0 does not exist in case where ρN

(A,E)
(Z0) = 0. If ρN

(A,E)
(Z0) < 0, then

for ε0 = −ρN
(A,E)

(Z0) we have that there is some

mε0 < ρN
(A,E)(Z0) + ε0 = 0,

such that mε0 E + Z0 ∈ A. Hence, Z0 ∈ A − mε0 E ⊆ A + A ⊆ A. But this is a
contradiction, since we supposed that Z0 is not an element of A. Then, we conclude
that such a Z0 does not exist in case where ρN

(A,E)
(Z0) < 0. Hence, AρN

(A,E)
= A is

true. ��
A last proposition that can be proved for restricted (L+, E)-convex risk measures

defined on a wedge N is the following:

Proposition 3.14 If N is a wedge of some ordered normed space L with non-empty
cone interior and

ρP (U ) = sup{π(−U )|π ∈ P},
where P ⊆ {π ∈ A0

ρ |π(E) = 1} then ρP is a (L+, E)-restricted coherent risk
measure.
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Proof Let us check the four properties of the coherent measure.

(i) (E-translation invariance):

ρP (U + aE) = sup{π(−U − aE) | π ∈ P} = sup{π(−U ) − aπ(E) | π ∈ P}
= sup{π(−U ) − a | π ∈ P} = sup{π(−U ) | π ∈ P} − a

= ρP (U ) − a,

for any U ∈ N and any a ∈ R such that U + aE ∈ N .
(ii) (Sub-additivity):

ρP (U + U ′) = sup{π(−U − U ′) | π ∈ P} = sup{π(−U ) + π(−U ′) | π ∈ P}
≤ sup{π(−U ) | π ∈ P} + sup{π(−U ′) | π ∈ P}
= ρP (U ) + ρP (U ′),

for any U, U ′ ∈ U . U + U ′ ∈ N in this case, because N is a wedge.
(iii) (Positive homogeneity):

ρP (λU ) = sup{π(−λU ) | π ∈ P} = sup{λπ(−U ) | π ∈ P}
= λ sup{π(−U ) | π ∈ P} = λρP (U )

for any U ∈ N and any λ ∈ R+. In this case, λU ∈ N because N is a wedge.
(iv) (L+-monotonicity): If U ′ ≥ U in the partial ordering of L , then −U ≥ −U ′,

hence

π(−U ) ≥ π(−U ′)

for any π ∈ P . Taking supremums over P we get that

ρP (U ) = sup
π∈P

π(−U ) ≥ sup
π∈P

π(−U ′) = ρP (U ′).

��

3.1 Dual representation and Lipschitz continuity

The following theorem relies on Hahn–Banach extension theorem for linear function-
als defined on subspaces of linear spaces.

Theorem 3.15 (Krein–Rutman) (Jameson 1970, Cor. 1.6.2) Let L be an ordered linear
space and J be a linear subspace of it containing an order unit of L. Then a positive
linear functional defined on J has a positive extension to L.

The following proposition assures the continuity of this extension.

Proposition 3.16 (Jameson 1970, Pr. 3.1.8) Let L be an ordered locally convex space
with positive wedge P and suppose that E ∈ intP. Let J be a linear subspace con-
taining E and f a positive linear functional defined on J . Then f has a continuous,
positive extension to L.

123



The restricted convex risk measures

The above theorem and proposition are crucial for the similarity between the proof
of the theorem of dual representation for convex risk measures in case where the
domain is the whole reflexive space L and the cone interior intL+ is non-empty
(like the ones studied in Konstantinides and Kountzakis 2001) and the restricted ones
studied in this article. The results in Konstantinides and Kountzakis (2001) and other
related articles cannot be proved in the restricted case, because the separation theorem
for convex sets cannot be applied in this case. Thus, we assure that every positive
linear functional has a continuous extension all over L , by the previous theorem and
proposition.

For the application of the above theorem and the above proposition, we need the
following:

Lemma 3.17 If D is a wedge of L then D − D is a subspace of L.

Proof It suffices to verify that the set D − D is closed under the addition of vectors
and the scalar multiplication. If y1, y2 ∈ D − D, then y1 = x1 − x2, y2 = x3 − x4,
where x1, x2, x3, x4 ∈ D. Then

y1 + y2 = (x1 + x3) − (x2 + x4),

and by the properties of D as a wedge, x1 + x3 ∈ D, x2 + x4 ∈ D. Also, if λ ≥ 0,
λy1 = λx1 − λx2 and by the properties of D as a wedge, λx1 ∈ D, λx2 ∈ D.
Finally, if λ < 0, λy1 = (−λ)x2 − (−λ)x1 and by the properties of D as a wedge,
(−λ)x1 ∈ D, (−λ)x2 ∈ D. ��
Lemma 3.18 The set D = N ∩ L+ is a cone of L.

Proof Obviously, D = N ∩L+ is a wedge. In order to prove that it is a cone, it suffices
to prove that

D ∩ (−D) = {0}.
Suppose that n ∈ D ∩ (−D). Then n ∈ L+, n ∈ (−L+). Hence, n ∈ L+ ∩ (−L+) =
{0}. ��
Corollary 3.19 The set N ∩ L+ − N ∩ L+ is a subspace of L.

Theorem 3.20 If N is a closed wedge in a reflexive ordered normed space L with
non-empty cone interior containing the L+-interior point E, ρ : N → R is a (L+, E)-
restricted convex risk measure with σ(L , L∗)-closed acceptance set, then

ρ(U ) = sup{π(−U ) − a(π) | π ∈ BE }, (3.5)

for any U ∈ N, where BE = {y∗ ∈ L0+ | Ê(y∗) = 1} and a : BE → R is a ‘penalty
function’ associated with ρ, with a(π) ∈ (−∞,∞] for any π ∈ BE . On the other
hand, every ρ defined through (3.5) is a (L+, E)-restricted convex risk measure.

Proof If we consider a (L+, E)-restricted convex risk measure ρ, there exists a penalty
function a such that ρ has a representation like the one indicated in (3.5). To see this,
we remark that for any π ∈ BE we define

a(π) = sup{π(−U ) − ρ(U ) | U ∈ N }. (3.6)
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Then as in the proof of Föllmer and Schied (2002, Th. 5), we denote

â(π) = sup{π(−U ) | U ∈ Aρ}. (3.7)

We will prove that a(π) = â(π) for any π ∈ BE . We remark that a(π) ≥ â(π). This
holds because for any U ∈ Aρ , π(−U ) − ρ(U ) ≥ π(−U ). Hence,

sup{π(−U ) − ρ(U )|U ∈ U} ≥ sup{π(−U ) − ρ(U )|U ∈ Aρ}
≥ sup{π(−U )|U ∈ Aρ}.

To prove the inverse, we take U ∈ N and we consider U ′ = U + ρ(U )E ∈ Aρ .
Hence,

â(π) ≥ π(−U ′) = π(−U ) − ρ(U ),

so a(π) = â(π) by taking supremums over all U ∈ N . We remark that a(π) ∈
(−∞ , +∞] for any π ∈ BE . Next, we remark that for any U ∈ N and by the
expression (3.6) of a, we have

ρ(U ) ≥ sup{π(−U ) − a(π) | π ∈ BE }
for any U ∈ N . In order to prove the desired equality, we have the following: Suppose
that there is some U0 ∈ N , such that

ρ(U0) > sup{π(−U0) − a(π) | π ∈ BE }.
Hence, there exists some m ∈ R such that

ρ(U0) > m > sup
π∈BE

{π(−U0) − a(π)}.

From the last remark, we take that

ρ(U0 + m E) = ρ(U0) − m > 0

and that U0 + m E /∈ Aρ .
The singleton {U0 +m E} is a convex, weakly compact set and Aρ is by assumption

a weakly closed set of L which is also convex, since ρ is an (L+, E)-restricted convex
risk measure. Since these two sets are disjoint, from the strong separation theorem for
convex sets in locally convex spaces there is some � ∈ L∗, � �= 0, an α ∈ R and a
δ > 0 such that

�(U0 + m E) ≥ α + δ > α ≥ �(U )

for any U ∈ Aρ . Hence, we take that

�(U0 + m E) > sup{�(U ) | U ∈ Aρ}.
The functional � takes negative values on N ∩ L+ since if there is some Z0 ∈

N ∩ L+ \ {0} such that �(Z0) > 0, then for any λ ∈ R+ we take λZ0 ∈ N ∩ L+. Then
if λ → +∞

�(λZ0) > �(U0 + m E),
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being a contradiction according to the previous separation argument. Then, since
we have that −� is a positive linear functional on the subspace, J = N ∩ L+ −
N ∩ L+. But from Theorem (Jameson 1970, Cor. 1.6.2) and Proposition (Jameson
1970, Pr. 3.1.8) since E is an order unit of L which belongs to N ∩ L+, −� has a
continuous, linear extension all over L . For the sake of brevity, we denote again this
functional by −� and we have that −� ∈ L0+. If we suppose that −�(E) = 0, then
we would take −�(U ) = 0 for any U ∈ L . This is true since U ∈ [−n0(U )E, n0 E],
for appropriate n0(U ) ∈ N, for any U ∈ L , because E is an order unit of L . Hence,
n0(U )�(E) ≤ −�(U ) ≤ −n0(U )�(E). But since �(E) = 0 by assumption, this
implies −�(U ) = 0 for any U ∈ L . Hence −� = 0 because L = ∪∞

n=1[−nE, nE].
This implies that the initial assumption that −�(E) = 0 is not true and −�(E) > 0
holds. Hence, we may suppose that

−�(E) = 1

holds, or else −� ∈ BE .
Hence, the separation of the sets {U0 + m E} and Aρ implies that

(−�)(−U0) − m > sup
U∈Aρ

(−�)(−U ) = a(−�).

Denote −� by π0 and we get

π0(−U0) − a(π0) > m,

which is a contradiction, since in this case

m > sup{π(−U0) − a(π) | π ∈ BE } ≥ π0(−U0) − a(π0) > m.

The contradiction was due to the assumption that some U0 ∈ N exists, such that

ρ(U0) > sup{π(−U0) − a(π) | π ∈ BE }.
Hence, for any U ∈ N we get (4.1). For the opposite direction, it suffices to show that
any ρ : N → R, defined through (4.1), is an (L+, E)-restricted convex risk measure.
For this, we have to verify that ρ satisfies the properties of a (L+, E)-restricted convex
risk measure:

(i) (Translation invariance):

ρ(U + k E) = sup{π(−U − k E) − a(π) | π ∈ BE }
= sup{π(−U ) − a(π) − kπ(E) | π ∈ BE }
= sup{π(−U ) − a(π) − k | π ∈ BE }
= sup{π(−U ) − a(π) | π ∈ BE } − k = ρ(U ) − k

for any U ∈ N and any k ∈ R such that U + k E ∈ N .
(ii) (Convexity): The function which maps every U to π(−U ) − a(π) for some

π ∈ BE is a convex real-valued function on N ; hence, ρ is a convex function
on N as the supremum of convex functions defined on N .
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(iii) (L+-monotonicity): If U ′ ≥ U where U, U ′ ∈ N in terms of the partial ordering
of L induced by L+, then −U ≥ −U ′, hence

π(−U ) ≥ π(−U ′)

for any π ∈ BE since BE ⊆ L0+. Hence

π(−U ) − a(π) ≥ π(−U ′) − a(π)

for any π ∈ BE and by taking supremums over the elements of BE we get that

ρ(U ) = sup
π∈BE

{π(−U ) − a(π)} ≥ ρ(U ′) = sup
π∈BE

{π(−U ′) − a(π)}.

��
Theorem 3.21 If N is a closed wedge in a reflexive ordered normed space L with
non-empty cone interior, ρ : N → R is a (L+, E)-restricted convex risk measure with
σ(L , L∗)-closed acceptance set Aρ , then ρ is Lipschitz-continuous.

Proof If { fi : N → R , i ∈ I } is a family of real-valued functions defined on N , then
we observe that

sup
i∈I

fi (U ) − sup
i∈I

fi (U
′) ≤ sup

i∈I

{
fi (U ) − fi (U

′)
}
,

where U, U ′ ∈ L (for better interpretation, we may suppose that the family of functions
{ fi : N → R , i ∈ I } is such that supi∈I fi (U ) �= ∞ for any U ). Indeed, this
holds because if we denote by A the set { fi (U ) − fi (U ′) | i ∈ I } and by D the set
{ fi (U ′) | i ∈ I }, then

{ fi (U ) | i ∈ I } ⊆ A + D.

Hence

sup
i∈I

fi (U ) ≤ sup
i∈I

{ fi (U ) − fi (U
′)} + sup

i∈I
fi (U

′).

We have seen that ρ has the representation (4.1). Then

ρ(U ) − ρ(U ′) = sup{π(−U ) − a(π) | π ∈ BE } − sup{π(−U ′) − a(π) | π ∈ BE }.
By the above remark, we take that

ρ(U ) − ρ(U ′) ≤ sup{π(−U ) − π(−U ′) | π ∈ BE } = sup{π(U ′ − U ) | π ∈ BE }.
We actually have that I = BE and fi = fπ for any π ∈ BE , where fπ : N → R is
such that fπ (U ) = π(−U )−a(π) for any U ∈ N . We suppose that π(−U )−a(π)−
(π(−U ′) − a(π)) = π(−U ) − π(−U ′) for any U, U ′ ∈ N and any π ∈ BE , namely
that a(π) − a(π) = 0. This is a simple substraction in the case where a(π) ∈ R, but
in the case where a(π) = ∞, we have the substraction of two infinity values. But we
may suppose that their difference is equal to zero, since we subtract infinities ‘of the
same form’. On the other hand, we may say that if a(π) = ∞ then −a(π) = −∞,
hence π(−U ) − a(π) = π(−U ) because if we add a real number to −∞ we take the
real number itself.
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In order to complete the proof, we note that

π(U ′ − U ) ≤ |π(U ′ − U )| ≤ ‖π‖ · ‖U − U ′‖ ≤ 1

b
‖U − U ′‖

for any π ∈ BE , from the definition of BE and the fact that Ê is a uniformly monotonic
linear functional of L0+. Hence

ρ(U ) − ρ(U ′) ≤ 1

b
‖U − U ′‖

and in the same way we may show

ρ(U ′) − ρ(U ) ≤ 1

b
‖U − U ′‖.

The last two inequalities imply that

|ρ(U ) − ρ(U ′)| ≤ 1

b
‖U − U ′‖

and the conclusion is ready. ��

4 Implications to solvency capital calculation

4.1 Restricted convex risk measures for reinsurance companies

The reinsurance companies’ restricted coherent and restricted convex risk measures are
defined on the entire subspace U of the attainable European Contingent Claims which
are actually the set of all the surplus positions of this company. Since a reinsurance
company may adopt the insurance of any surplus in a short-time environment, its own
restricted risk measure ρ by which it calculates the solvency capital is defined on U ,
which is a wedge. The proofs of the equivalent results are omitted since they are similar,
except some useful remarks and additions. In this case, the wedge N is the subspace
U and the intersection N ∩ L+ is the cone U ∩ L+ of the induced partial ordering of
U . U is a weak E-translation invariant subset of L , since it contains U ∩ L+, which is
a weak E-translation invariant set of L . This holds, because for any U ∈ U ∩ L+ and
any t ≥ 0, U + t E ∈ U ∩ L+.

These restricted risk measures are adequate for the solvency capital calculation in
insurance applications under the frame we presented, since the value ρ(H) for some
H ∈ U , indicates the minimum amount of shares of the ‘numeraire risk’ E needed
for H to belong in the acceptance set Aρ jointly with H . This ‘functionality’ of the
solvency capital in this case is the same like in the case of ρU

(A,E)
as it is going to

be verified through the following results. The word ‘restricted’ mentioned before is
related to the fact that the domain of ρ is not the whole space L , but a proper subspace
of it. These risk measures are mentioned to be appropriate for reinsurance companies,
since in these cases, there are not ‘debt constraints’ and they can adopt any risk appears,
namely the mechanism of insurance via its own risk measure by using shares of the
numeraire is valid for any attainable surplus of a reinsurance company. On the contrary,
this is not always achieved for a simple insurance company.
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We remind the definition of the acceptance set of a given risk measure, appropriately
stated for this case.

If U is the subspace of L containing the attainable ECC of the financial market of
the surplus asset and the riskless bond and the function ρ : U → R is a risk measure,
then the set Aρ = {U ∈ U |ρ(U ) ≤ 0} is defined to be the acceptance set of ρ.

In the case of reinsurance companies, we may repeat the Definitions 3.5, 3.6, 3.7,
3.8 for N = U . Also, Proposition 3.11 could be repeated for N = U in this case.

Remark 4.1 The only difference between the proof of the proposition being equivalent
to 3.11 for N = U and 3.11 is that U is (L+, E)-translation invariant; hence, in the
point where the translation invariance of ρU

(A,E)
is proved, this property holds for any

U ∈ U and a ∈ R due to the fact that U is (L+, E)-translation invariant.

The same happens with Propositions 3.13 and 3.12.

Remark 4.2 There is not any difference between the proof of the equivalent proposition
to 3.12 in the case of N = U and 3.12, because U is (L+, E)-translation invariant.

Lemma 4.3 and Proposition 4.4 are essential in the the study of the restricted convex
risk measures that are defined on closed subspaces of L2-spaces. The subspace which
is the domain of such a risk measure may be the subspace U of the attainable financial
positions for a market formulated by the surplus asset of insurance company and a bank
account. This is a closed subspace of a L2(�,FW

T , Q) for any equivalent martingale
measure Q of this market and this subspace U will be considered as the subspace of
the surplus positions of the reinsurance company.

Lemma 4.3 Since U is a subspace of L, then U0 is the annihilator

U⊥ = {y∗ ∈ L∗|y∗(x) = 0 , ∀ x ∈ U}.
Proof Let λ > 0 and x ∈ U . Then λx ∈ U and (−λ)x ∈ U . If y∗ ∈ U0, then
y∗(λx) ≥ 0, ∀x ∈ U , while y∗((−λ)x) ≥ 0, ∀x ∈ U . Then y∗(x) ≥ 0, ∀x ∈ U ,
while y∗(x) ≤ 0, ∀x ∈ U since x ∈ U and λ > 0. Hence y∗(x) = 0, ∀x ∈ U , which
means that y∗ ∈ U⊥. This implies U0 ⊆ U⊥. Obviously, U⊥ ⊆ U0. ��
Proposition 4.4 The subspace U is norm-closed under the norm of L = L2(�,FW

T ,Q).

Proof Without loss of generality, we may consider that the market is normalized;
hence the interest-rate process is equal to zero. Let us consider a sequence (Un)n∈N of
attainable ECC under the market generated by the surplus asset and the bank account.
Since these Un are attainable, there is a sequence of admissible portfolio processes
(θ1,n)n∈N which denotes shares of the surplus asset such that

Un =
T∫

0

θ1,n(t)v(t, Ut , Zt )dŴt ,

where Ŵ is the (Q, F
W )-Brownian motion which arises from the change of mea-

sure under the Girsanov–Cameron–Martin theorem. Suppose that Un
L2(�,FW

T ,Q)→ U .
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We actually can assume that EQ(Un) = 0, since if this is not true, the attainability of
Un is equivalent to the following representation equation:

Un = EQ(Un) +
T∫

0

θ1,n(t)v(t, Ut , Zt )dŴt .

Note that if Un
L2(�,FW

T ,Q)→ U , then Un
L1(�,FW

T ,Q)→ U , hence EQ(Un) −→ EQ(U ).
Namely, the norm convergence of the sequence {Un − EQ(Un)1, n ∈ N} to the
random variable U − EQ(U )1, where 1 denotes the indicator random variable of �,
implies the equivalent convergence of the sequence {Un − EQ(Un)1, n ∈ N} to
U − EQ(U )1 in terms of the L1(�,FW

T , Q)-norm. But EQ(Un − EQ(Un)1) = 0
and EQ(U − EQ(U )1) = 0. This means that it is enough to study the case
with EQ(Un) = 0 for any n ∈ N. From Itô isometry, we get that the sequence
of processes (θ1,n(t)v(t, Ut , Zt ))n∈N is a Cauchy sequence in the Banach space
L2([0, T ] × �,B ⊗ FW

T , λ[0,T ] ⊗ Q), where B is the Borel σ -algebra of sets
on [0, T ]. Since this sequence is a Cauchy sequence, it converges with respect to
the norm of the space L2([0, T ] × �,B ⊗ FW

T , λ[0,T ] ⊗ Q) to some process φ.
Then, by Aliprantis and Border (1999, Th. 12.6) there exists some subsequence
(θ1,nk (t)v(t, Ut , Zt ))k∈N of this sequence such that this subsequence converges to
φ, λ[0, T ] ⊗ Q − a.e., or else θ1,nk (t)(ω)v(t, Ut (ω), Zt (ω)) −→ φ(t, ω) for almost
all (t, ω) with respect to the measure λ[0,T ] ⊗ Q. By the last convergence, we have
that φ(t, ω) = κ(t, ω) v(t, Ut (ω), Zt (ω)) , λ[0,T ] ⊗ Q − a.e.. Finally, U is norm-
closed because U = ∫ T

0 κt v(t, Ut , Zt ) dŴt . ��
The next theorem in which the above lemma and the above proposition are actu-

ally used is the following dual representation theorem for (L+, E)-restricted convex
risk measures according to the Definition 3.8, which is similar to Konstantinides and
Kountzakis (2001, Th. 3.6) and the Theorem 3.20.

The space L in the next duality representation theorem is any of the spaces men-
tioned in Proposition 4.4. Actually, the spaces which are of particular interest for the
previous results of this section as immediate examples are the same.

Theorem 4.5 If U is the subspace of the surplus positions of a reinsurance company
in the reflexive ordered normed spaces L = L2(�,FW

T , Q) with non-empty cone
interior containing the L+-interior point E, ρ : U → R is a (L+, E)-restricted
convex risk measure with σ(L , L∗)-closed acceptance set, then

ρ(U ) = sup{π(−U ) − a(π) | π ∈ BE }, (4.1)

for any U ∈ U , where BE = {y∗ ∈ L0+ | Ê(y∗) = 1} and a : BE → R is a ‘penalty
function’ associated with ρ, with a(π) ∈ (−∞,∞] for any π ∈ BE . On the other
hand, every ρ defined through (4.1), is a (L+, E)-restricted convex risk measure.

Remark 4.6 In the proof of the Theorem 4.5, we use that U0 = U⊥ and that U is
norm-closed according to the Proposition 4.4.

Also, Theorem 3.21 can be proved in the same way for N = U .
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Fig. 1 Representation of
domain G

4.2 Restricted convex risk measures for insurance companies

When the insurance company is not a reinsurance one, a debt constraint is present, or
else if the domain of the risk measures is the cone of the admissible surplus positions
G = U ∩(−k E + L+), k > 0. This debt constraint denotes that an insurance company
adopts the insurance of any surplus that it does not exceed a deficit level. In this case, the
wedge N is the cone G and the intersection G∩L+ is the cone L+ of the induced partial
ordering of L . G is a weak E-translation invariant subset of L , because L+ = G ∩ L+
is such a set.

If G is the cone of the admissible surplus positions of the insurance company and
the function ρ : G → R is a risk measure, then the set Aρ = {U ∈ G|ρ(U ) ≤ 0} is
defined to be the acceptance set of ρ.

Then, propositions equivalent to 3.11, 3.12, 3.13 can be proved in the case where
N = G.

The space L in any of the next duality representation theorem is any of the spaces
mentioned in 4.4. Actually, the spaces which are of particular interest for the previous
results of this section as immediate examples are the same.

Theorem 4.7 If G is the cone of the admissible surplus positions of an insurance
company lying in one of the reflexive ordered normed spaces L = L2(�,FW

T , Q)

with non-empty cone interior containing the L+-interior point E, ρ : G → R is a
(L+, E)-restricted convex risk measure with σ(L , L∗)-closed acceptance set, then

ρ(U ) = sup{π(−U ) − a(π) | π ∈ BE } , (4.2)

for any U ∈ G, where BE = {y∗ ∈ L0+ | Ê(y∗) = 1} and a : BE → R is a ‘penalty
function’ associated with ρ, with a(π) ∈ (−∞,∞] for any π ∈ BE . On the other
hand, every ρ defined through (4.2), is a (L+, E)-restricted convex risk measure.

Also, Theorem 3.21 can be proved in the same way for the case of N = G.
Figure 1 shows the geometry of the domain G of the equivalent restricted risk

measures.
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5 Reinsurance and solvency capital calculation via restricted convex risk
measures

If ρ1 : G → R is a (L+, E)-restricted convex risk measure defined on the subspace
of L of European Contingent Claims of the market formulated by the surplus asset of
an insurance company and a riskless bond(Q is any EMM of this market), then the
solvency position which corresponds to the position U is ρ1(U )E . The company has
to buy these shares from some reinsurance company.

The reinsurance company has its own (L+, E)-restricted convex risk measure ρ2 :
V → R. The subspace V is the subspace of the attainable European Contingent Claims
for the equivalent market of the surplus asset of the reinsurance company and a bank
account.

The condition V ∩ G �= ∅ is a required condition for the ability of the insurance
company to apply for reinsurance. Since the reinsurance company provides an amount
of shares of the numeraire asset E , we suppose that E lies in V ∩ U .

If we denote by Aρ1 the acceptance set of the insurance company, the reinsurance
appears in the case where the surplus UT does not belong to the acceptance set Aρ1 .
Since the reinsurance company provides insurance to the primal insurance company,
it seems rational to suppose that this action does not expose the reinsurance company
to risk. Hence, the financial positions for which reinsurance applies are the positions
lying in the set

R(ρ1, ρ2) = Aρ2\Aρ1 .

Here, we suppose that the reinsurance company adopts the insurance of the whole
surplus U of the primal insurance company and not of a part of it.

The set of the financial positions Aρ2\Aρ1 is a subset of V ∩ G.
The question is which is the cost of the shares of the numeraire that the primal

insurance company has to pay to the reinsurance company in order to be insured.
The solvency position for the primal insurance company is

ρ1(U )E .

Hence, since the reinsurance adopts the insurance of U ,

U + ρ1(U )E ∈ Aρ2 .

The fact that the reinsurance company adopts the insurance of U means that ρ1(U )E
which is the solvency position corresponding to U together with U formulates a risk-
less position from the aspect of the reinsurance company. For this reason, this position
lies in the relevant acceptance set Aρ2 . This, by translation invariance, implies that

ρ1(U ) ≥ ρ2(U ).

Of course the insurance company may require a partial reinsurance instead of a com-
plete reinsurance. This corresponds to the reinsurance of the position tU , where
t ∈ (0, 1) is the fraction of the surplus that the company desires to be insured. The
procedure of the reinsurance is the same in this case. The only remark we may make
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is that the fractions are not eliminated in the case of non-coherent, restricted convex
risk measures due to the fact that they lack the positive homogeneity.

The price of the solvency position would be set equal to ρ1(U ), since if we consider
some pricing functional π0 ∈ L0+ concerning the time period 0, this functional could
be normalized and it could be taken to lie on the base BE defined by E on L0+. Hence,
the price of the position ρ1(U )E under π0 is equal to π0(ρ1(U )E) = ρ1(U )π0(E) =
ρ1(U ).

A question is how this price-functional is selected among the functionals in BE ,
which arise in the dual representation of the restricted risk measures. A possible answer
is that π0 is the equilibrium price formulated in the market for the financial positions
corresponding to the time period T viewed as consumption bundles at this time period.
We suppose that insurance company and the reinsurance company are not involved in
price shaping, or else our approach is a ‘partial equilibrium approach’. Namely, we
may suppose that the reinsurance and the insurance company have not market power
so that their actions to affect the prices of the commodities (of the asset payoffs).
Hence, they face the equilibrium price formulated as an exogenous price and not as
an effect of their own selections.

6 Choice of the solvency capital scaling

According to Polyrakis (2008, Th. 4), if L is reflexive and E is an interior point of L+
and we consider some H ∈ L+ as a linear functional of L∗ being a strictly positive
linear functional of L0+, then the base

BH = {π ∈ L0+ | Ĥ(π) = 1}
defined by it is bounded and hence weakly compact, since H is a uniformly monotonic
functional of L∗ ordered by L0+ (See Polyrakis 2008, Pr. 2 and Jameson 1970, Th.
3.8.12. We may apply it for L := L∗, P = L0+, P0 = L00+ = L+, H = f ). In this
case, H can be considered as a price normalization position (numeraire) too, since
Ĥ is a uniformly monotonic functional of L0+ and H is an interior point of L+ from
Jameson (1970, Th. 3.8.12). But if the (re)insurance company desires a selection of
scaling for the solvency capital for the elements which do not belong to the acceptance
set A, how could it select between the scaling provided by E and the scaling provided
by H? Obviously, the company has to adopt a decision function which has to compare
the scaling functionals. Namely, since every scaling of the solvency capital depends
on the normalization position E , it has to compare these positions. First, suppose that
the reinsurance company’s acceptance set is A. One possible decision function for
the company should the following one: The company determines a set of positions
(Ui )i∈I ⊆ U\A, which is the set of surplus positions which are forecast to be more
favorable for reinsurance, where I is a non-empty set and I is a σ -algebra of subsets
of this set. (Ui )i∈I ⊆ U\A indicates the most probable attainable surplus positions
of the reinsurance company, in which case this surplus is exposed to risk. Moreover,
the probability space (I, I, p) is considered, where p is a probability measure which
denotes the subjective probability of the company about demand of reinsurance over
the elements of I . Hence, the decision function could be defined to be the average
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solvency capital over the elements of (Ui )i∈I under p:

E(p,I,A)(E) =
∫

I

ρ(A,E)(Ui )d p(i),

where the function f : I → R with f (i) = ρ(A,E)(Ui ) is supposed to lie in
L1(I, I, p), while this decision function defines the following binary relation on
IntL+:

E1 �(p,I,A) E2 ⇔ E(p,I,A)(E2) ≥ E(p,I,A)(E1).

The strong binary relation is defined as follows:

E1 �(p,I,A) E2 ⇔ E(p,I,A)(E2) > E(p,I,A)(E1).

The above binary relations determine the choice of scaling. Other decision functions
which may be defined are of variation type or of deviation type, respectively. If we
suppose that g : I → R with g(i) = ρ2

(A,E)
(Ui ) is supposed to lie in L1(I, I, p)

while this decision function defines the following binary relation on IntL+:

E1 �(p,I,A) E2 ⇔
∫

I

ρ2
(A,E2)

(Ui )d p(i) ≥
∫

I

ρ2
(A,E1)

(Ui )d p(i).

The strong binary relation is defined as follows:

E1 �(p,I,A) E2 ⇔
∫

I

ρ2
(A,E2)

(Ui )d p(i) >

∫

I

ρ2
(A,E1)

(Ui )d p(i).

The above comparison can be named comparison of variation type. If for the compar-
ison of the solvency capital scaling (or else of the numeraire assets) the square root of
the integral ∫

I

ρ2
(A,E)(Ui )d p(i), E ∈ IntL+

is used, this comparison can be named of deviation type. In the case where g : I → R

with g(i) = ρ2
(A,E)

(U ) is supposed to lie in L1(I, I, p), we may use

1

2

∫

I

ρ2
(A,E)(Ui )d p(i) + 1

2

∫

I

ρ(A,E)(Ui )d p(i), E ∈ IntL+

as a comparison function. 1
2 can be replaced by any other λ ∈ (0, 1).

If we consider the induced norm topology on the cone L+, then we may consider a
relatively compact set of numeraire assets C , being a subset of the interior of the cone
L+. As we explained above, the cone L+ has plenty of interior points if it has non-
empty interior since L is a reflexive space. Hence, the topological space considered is
the interior of the cone intL+ endowed with the relative norm topology. If we consider
the binary relation
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E1 �(p,I,A) E2 ⇔ E(p,I,A)(E2) ≥ E(p,I,A)(E1) (6.1)

for the comparison of the numeraire assets (E1, E2 ∈ intL+), then since C is a
relatively compact set, we may use the finite intersection property in order to deduce
the existence of maximal elements for �(p,I,A) in C . For brevity, the binary relation
6.1 will be denoted by �. The set of maximal elements as it is well known is the
intersection ∩E∈C {E1 ∈ C |E1 � E} and if the sets {E1 ∈ C |E1 � E}, E ∈ C
are relatively closed, the intersection of them is non-empty from the fact that C is a
relatively compact subset of intL+. Instead of L+, if the acceptance set A is assumed
to be a cone with non-empty interior (intA �= ∅), the above arguments are transferred
in intA in the same way. This assumption is also crucial for the following results.

If we suppose that A satisfies the assumptions of the Konstantinides and Kountzakis
(2001, Pr. 2.3), and this is true if for example A is a cone of L containing L+ having
non-empty interior, then according to the dual representation Theorem (Konstantinides
and Kountzakis 2001, Th. 3.1), ρ(A,E)(X) = sup{π(−X)|π ∈ A0 ∩ BE }, where BE is
the base defined on the cone L0+ of L∗ by E . If we suppose that L is partially ordered
by A, this relation becomes ρ(A,E)(X) = sup{π(−X)|π ∈ BE }, E ∈ intA, where
BE denotes the base of A0 defined by E . Since every such base is weakly compact,
the supremum is actually a maximum for any X ∈ L . C in this case is equal to intA.
We define the correspondence φ : C → 2A0

, as follows: φ(E) = BE . The graph of
φ is defined as follows Grφ = {(E, π) ∈ C × A0|π ∈ φ(E)} as well. Consider a
certain X ∈ L as a function fX : Grφ → R, which acts on the arguments of Grφ as
follows : fX (E, π) = (̂−X)(π) = π(−X) for any π ∈ φ(E). The value function for
fX is

m X (E) = max
π∈φ(E)

fX (E, π) = max
π∈BE

π(−X) = ρ(A,E)(X).

Berge’s maximum theorem, (Aliprantis and Border 1999, Lem. 16.29; Aliprantis and
Border 1999, Lem. 16.30; Aliprantis and Border 1999, Th. 16.31; Berge 1963) indi-
cates that lower (upper)-hemicontinuity of φ implies lower (upper)-semicontinuity of
m X .

Proposition 6.1 φ is a lower hemicontinuous correspondence.

Proof According to Duffie (1987, Lem. 2), we may transfer this proof for lower hemi-
continuity of budget correspondences for finite event-tree economies to our setting of
infinite-dimensional economies. We use the sequence (nets’) characterization of lower
hemicontinuity of a correspondence which is indicated by Aliprantis and Border (1999,
Th. 16.19).

Let us take π ∈ φ(E) and a nonzero sequence (πn)n∈N ⊆ A0, which converges
in π , in terms of the norm topology; hence, in terms of the weak topology (since L∗
is reflexive, the weak and the weak-star topology on L∗ coincide). Such a sequence
exists because of the fact that A0 is a norm-closed set of L∗.

We suppose that En → E in terms of the norm topology of L . Since En, n ∈ N

(and E , too) are interior points of the cone A, according to Jameson (1970, Th. 3.8.12),
En, n ∈ N (and E , too) are uniformly monotonic functionals of A0 in this case. Then
since φ(En) is the base that En defines on A0, for any πn there is a unique λn > 0 such
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that πn(λn En) = 1, or else that λnπn ∈ φ(En). We have to prove that the sequence
(λnπn)n∈N converges weakly in π . If we prove that λn → 1, the proof has finished.
This holds because λnπn → π in the norm topology of L∗, hence in terms of the
weak topology. The norm convergence En → E implies that by weak convergence
π(En) → π(E). From the weak convergence πn

w→ π , we get that πn(En) → π(E).
Hence πn(En) → 1 and since λnπn(En) = 1, we get what was needed. ��

Proposition 6.2 The sets of the form⎧⎨
⎩E1 ∈ C |

∫

I

ρ(A,E1)(Ui )d p(i) ≤ c

⎫⎬
⎭

are relatively closed subsets of C (under the induced norm topology in intA) for any
c ∈ R.

Proof ρ(A,E)(Ui ) = mUi (E), E ∈ C, i ∈ I . If φ is lower hemicontinuous, then by
Berge’s maximum theorem, (Aliprantis and Border 1999, Lem. 16.29; Aliprantis and
Border 1999, Lem. 16.30; Aliprantis and Border 1999, Th. 16.31; Berge 1963) the
value function m X for a certain X is lower semicontinuous. This implies that for any i ∈
I , mUi is lower semicontinuous, or else that for any c ∈ R, the sets {E ∈ C |mUi (E) ≤
c} are relatively closed in C . We are going to use Fatou’s lemma (see Aliprantis and
Border 1999, Th. 11.19) and the characterization of semicontinuity by nets (sequences)
in order to show that the same holds for the sets {E ∈ C | ∫I mUi (E)d p(i) ≤ c} if p is
a probability measure over I . We actually notice that if En → E in the norm of L , we
have mUi (E) ≤ lim infn→∞ mUi (En) (by lower semicontinuity of the value function
m E , E ∈ intL+). Hence if mUi (En) ≤ c for any i ∈ I and for any n ∈ N, this implies∫

I

mUi (E)d p(i) ≤
∫

I

lim inf
n→∞ mUi (En)d p(i) ≤ lim inf

n→∞

∫

I

mUi (En)d p(i) ≤ c,

implied by Fatou’s lemma. ��

Theorem 6.3 If C is a relatively compact set in intA under the induced norm topology,
then the set of maximal elements of the binary relation � is non-empty.

Proof This arises from the fact that the family of sets {E1 ∈ C |E1 � E}, E ∈ C
has the finite intersection property, the fact that C is relatively compact and the fact
that the sets {E1 ∈ C |E1 � E}, E ∈ C are relatively closed in terms of the induced
norm topology of intL+, due to the Proposition 6.2. Note that for a certain E ∈ C ,
the set {E1 ∈ C |E � E} = {E1 ∈ C | ∫I mUi (E1)d p(i) ≤ ∫

I mUi (E)d p(i)}. If we
set c = ∫

I mUi (E)d p(i), the set {E1 ∈ C |E � E} takes the form mentioned in 6.2,
hence it is relatively closed. ��

By the last theorem, we conclude that the optimal selection of a numeraire asset is
feasible under the framework we posed.
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