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1 Distributions, wedges and risk measures

We study coherent-like risk measures, defined on certain sets of random vari-
ables. We remind that a set C ⊆ L in a linear space L is called wedge
if satisfies C + C ⊆ C and r C ⊆ C for any r ≥ 0. A wedge for which
C ∩ (−C) = {0} is called cone.

Definition 1. A class of distributions J is called wedge-closed if it is con-
volution closed F1 ∗ F2 ∈ J , whenever F1, F2 ∈ J and nonnegative scalar
product closed FrX ∈ J , whenever FX ∈ J , for any scalar r ≥ 0.

Let us consider the following set of random variables

W←(J ) := {X ∈ L0(Ω, F , µ) | FX ∈ J } ,

where L0 denotes the linear space of the F-measurable functions X : Ω → R
and J some class of heavy-tailed distributions. The map W : L0(Ω,F , µ)→
D, which is implied by the definition of the above set is W(X) = FX , where D
denotes the set of the distribution functions and FX denotes the (cumulative)
distribution function of X.

We look for a risk measure on L1+ε(Ω,F , µ) for any ε ≥ 0. We consider the
Lundberg or the renewal risk model, where we face an optimization problem,
having in mind the minimization of the solvency capital for an insurance com-
pany. The proposed risk measure, represents a modification of the classical
Expected Shortfall. The definition relies on its dual (robust) representation.
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The domain of this new risk measure is a wedge in L1+ε(Ω, F , µ) for any
ε ≥ 0, which is connected to a class of heavy-tailed distributions. For an
actuarial definition of Solvency Capital, we refer to [9], where the capital re-
quirement functional was connected with both risk measures and solvency.
Further, we show the existence and uniqueness of the solution for the op-
timization problem of this risk measure over some constraint set X , which
represents a convex, closed and bounded set in L1+ε.

So, we start with a classical result (see [5, Th. 25.6] or [6, Th. 6.7]).

Lemma 1 (Skorohod [21]). Consider a sequence of the random variables
{Xn , n ∈ N} and X from space L0(Ω,F , µ) and W(X) with separable sup-

port, such that holds the weak convergence Xn
d→ X. Then, there exist ran-

dom variables {Yn , n ∈ N} and Y from L0(A, G, ν), all defined on a common

probability space (A, G, ν), such that Xn
d
= Yn, for any n ∈ N, X

d
= Y and

holds the convergence Yn → Y , ν-a.s.

The W←(J )
d

denotes the weak closure in L0(Ω, F , µ), in the sense of the
convergence in distribution.

Proposition 1. If J is wedge-closed, then W←(J )
d

is wedge of L0(A, G, ν),
where (A, G, ν) is an appropriate probability space.

Remark 1. In order to use the conclusion of Proposition 1 the probability space
may be changed from (Ω, F , µ) to (A, G, ν).

Thus, we refer to sets of random variables of the form W←(J ) that are
closed under addition (if X1, X2 ∈ W←(J ), then X1 + X2 ∈ W←(J )), and
closed under non-negative scalar multiplication (if X ∈W←(J ), then r X ∈
W←(J ), for any r ≥ 0).

Definition 2. A family of distributions J is called convex-closed, if for any
F1 ∈ J and F2 ∈ J , holds aF1 + (1− a)F2 ∈ J for any a ∈ (0, 1).

Lemma 2. If a family J is wedge-closed, then the family J is convex-closed.

Definition 3. A risk measure ρ : C → R, where C is a wedge of an ordered
linear space L, is called (C, L+)-wedge-coherent if it satisfies the following
properties

1. ρ(X + t1) = ρ(X)− t, where t ∈ R is such that X + t1 ∈ C ( the C-Cash
Invariance property),

2. ρ(X1 + X2) ≤ ρ(X1) + ρ(X2), where X1, X2 ∈ C (the Sub-additivity
property),

3. ρ(r X) = r ρ(X), where X ∈ C and r ≥ 0 (the Positive Homogeneity
property),

4. ρ(X) ≥ ρ(Y ) if Y ≥ X under the partial ordering in L and X,Y ∈ C (the
L+-Monotonicity property).
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The wedge C may be either of the form W←(J )
d

where J is a wedge-
closed class of distributions, or a cone of the form W←(J ) ∪ {0} where J is
wedge-closed too. In the last case the risk measure is called cone-coherent.

A distribution function FX =: W(X) of a random variable X : Ω → R be-
longs to the class of heavy-tailed distributions K, if does not exist exponential
moment (violates the Cramér condition)

Eµ(erX) =∞,

for any r > 0.
Due to the properties of Sub-additivity ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) and

the Positive Homogeneity ρ(r X) = r ρ(X), for any r ≥ 0, the domain of
any coherent risk measure has to be in general a wedge of the space of the
financial positions. Since the domain C of such a risk measure contains the
subspace C ∩ (−C), we have to include zero random variable in our analysis.
As the next Example indicates, the degenerated zero random variable may
be the weak-limit (in the sense of convergence in distribution), of a sequence
of heavy-tailed random variables.

Example 1. Consider the following sequence of Pareto-type random variables
{Xn , n ∈ N}, where their distribution functions are given by

Fn(x) = 1− 1

n (x+ 1)n
, ∀ x ≥ 1

n1/n
− 1 ,

and Fn(x) = 0 , ∀ x < 1/n1/n − 1. The point-wise limit of this sequence is
equal to F (x) = 0 , x < 0 and F (x) = 1 , x ≥ 0, but this function represents
the defective distribution function of the random variable zero.

We also mention the remark [16, Rem. 2.1] concerning the ’explosion’ of
the tail for extreme values of the parameters of heavy-tail distributions which
contradicts with the typical decreasing form of tails. According to the above
Example, the appropriate form of the domain for a coherent risk measure
related to a class of heavy-tailed distributions J is not W←(J ) but its weak

closure W←(J )
d
.

We point out that the coherent risk measures are the appropriate func-
tionals for the investigation of heavy-tailed phenomena, since they determine
effectively the minimal size of the solvency capital, needed for the exclusion of
the risk exposure. We construct coherent risk measures, whose the acceptance
sets represent general conic subsets of topological linear spaces. Furthermore,
the sub-additivity in coherent risk measures is related to the properties of the
convolution closure and the max-sum equivalence of distributions. We remind
the classes of distributions with long tails

L =

{
F
∣∣∣ lim
x→∞

F (x− y)

F (x)
= 1, ∀ y ∈ R

}
,
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(or equivalently for some y ∈ R), where F = 1 − F denotes the tail of the
distribution, with subexponentiality

S =

{
F
∣∣∣ lim
x→∞

Fn∗(x)

F (x)
= n, ∀ n = 2, 3, . . .

}
,

and with dominatedly varying tails

D =

{
F
∣∣∣ lim sup

x→∞

F (xu)

F (x)
<∞, ∀ u ∈ (0, 1)

}
.

By 1 is denoted the constant random variable with 1(ω) = 1, ∀ ω ∈ Ω.

Lemma 3. If FX ∈ D, then FX+a1 ∈ D, for any a ∈ R.
If FX ∈ L, then FX+a1 ∈ L, for any a ∈ R.

Lemma 4. If FX ∈ D, then FrX ∈ D for any r ≥ 0.
If FX ∈ L, then FrX ∈ L for any r ≥ 0.

Remark 2. We notice that the properties indicated by both Lemmas 4 and 3
are related to Positive Homogeneity and Translation Invariance, respectively.

In order to examine whether the class of heavy-tailed distributions L ∩
D, is wedge-closed in the corresponding Lp-space, we check not only the
convolution-closure property but the existence of the moments

Eµ(|X|p) ,

as well. For example, Pareto distributions belong to the convolution-closed
family L ∩ D, but there are members from this class, which do not belong
to L1. In our approach we stay clear from the classical financial setup. This
deviation is to be expressed in geometrical terms.

Let us consider the Lundberg risk model, namely a sequence {Yk , k =
1, 2, . . .} of i.i.d. positive random variables with generic distribution FY and
an independent homogeneous Poisson process N(t) with constant intensity
λ > 0. Then we have a compound Poisson process in the form

S(t) :=

N(t)∑
k=1

Yk ,

with distribution

Ft(x) := P[S(t) ≤ x] =

∞∑
n=0

(λ t)n

n!
e−λ t Fn∗Y (x) , (1)

where we denote by

Fn∗Y (x) := P[Y1 + · · ·+ Yn ≤ x] ,
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the n-th order convolution of FY . From [10, Th. 3] we find that the following
statements are equivalent

1. Ft ∈ S.
2. FY ∈ S.
3.

lim
x→∞

F 1(x)

FY (x)
= λ .

Lemma 5. If FY1
, FY2

∈ L ∩ D, then

aFY1
+ (1− a)FY2

∈ L ∩ D ,

for any a ∈ (0, 1).

The superposition of the two independent Poisson process N1(t) and N2(t)
forms another Poisson point process N(t) = N1(t) + N2(t), which contains
all the points of the two initial point processes. Its intensity λ := λ1 + λ2 is
the sum of the intensities of the two component processes.

Proposition 2. If S1(t), S2(t) ∈W←(L ∩ D) then S1(t) + S2(t) ∈W←(L ∩
D). Furthermore L ∩ D is wedge-closed according to Definition 1.

The moment index

I(X) = sup{v > 0 | Eµ(|X|v) <∞} ,

of a random variable X ∈ L0(Ω, F , µ), determines the minimal locally con-
vex Lp-space which contains X, if I(X) ≥ 1. If the value of I(X) is equal to
∞ this implies that every moment of it exists X, therefore is not a heavy-tail
distributed random variable. In this case, the corresponding minimal Lp-
space is L∞. If 1 ≤ I(X) = p <∞, then the random variable is heavy-tailed
distributed, and the corresponding minimal space is actually LI(X). This is
the way by which the clases of heavy-tailed distributions are combined with
the Lp spaces.

2 Adjusted Expected Shortfall

Definition 4. The risk measure

AESa, b, ε(X) := sup
Q∈Za, b, ε

EQ(−X) ,

defined on the wedge C ∩ L1+ε for any ε ≥ 0, where a < b with (a, b) ∈
(0, 1]× [0, ∞) and
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Za, b, ε =

{
Q� µ

∣∣∣ 1

b
≤ dQ

dµ
≤ 1

a
, µ− a.s. ,

dQ

dµ
∈ L1+1/ε(Ω,F , µ)

}
,

is called Adjusted Expected Shortfall.

Due to the result [15, Th. 4.1] about the dual representation for the usual
Expected Shortfall on L1, the financial solvency capital under AESa, b, ε(X)
is less than ESa(X) for a position X ∈ C ∩ L1+ε, where C ⊆W←(K),

ESa(X) ≥ AESa, b, ε(X) .

This fact indicates that the regulator under AESa, b, ε is more risk averse,
underestimating the needed capital for the solvency of position X. This cap-
ital conservatism should be justified by the presence of a, b where a < b with
(a, b) ∈ (0, 1]× [0, ∞). Moreover, the reduction of the solvency capital based
on the knowledge of the class of the heavy-tailed distribution of X, merits a
special attention.

It is essential to define AESa, b on some L1+ε-space, where ε ≥ 0, since
these are Banach spaces in which heavy-tailed random variables belong. The
importance of the moment index is related to the local convexity of the
topologies which are compatilbe with the dual pair〈

L1+ε, L1+ 1
ε

〉
,

for ε ≥ 0. The compactness properties of these linear topologies affect the
optimization problems related to the risk minimization of AESa, b. For ex-
ample, in the corresponding problems, if ε = 0, the uniqueness of solution
via saddle-points cannot be assured by Theorem [20, Th. 4.2], since L1 has
not a separable dual.

Proposition 3. AESa, b, ε is a (W←(L∩D)∪ {0}, L1+ε
+ )-cone-coherent risk

measure, for any ε ≥ 0.

Remark 3. Proposition 2 implies the Subadditivity of AESa, b.

Let us assume that the distribution FY lies in the class J . If we suppose
that the interest force is zero, the surplus of an insurance company is equal
to

Zt = u+ ct− S(t) ,

for some time horizon t ∈ [0, T ] of a fixed length T , where c is the premium
rate and u is the initial capital of the company. In order to remain inside
the acceptance set of AESa, b, ε continuously, we need that AESa, b, ε(Zt) =
AESa, b, ε(u+ ct1− S(t)) ≤ 0 and hence
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AESa, b, ε(Zt) = sup
Q∈Za, b, ε

EQ(−u− ct1 + S(t))

= −u− ct− inf
Q∈Za, b, ε

EQ[−S(t)] ≤ 0 . (2)

The process S(t) represents a random sum in L1+ε(Ω, F , µ)∩W←(J ) for
any ε ≥ 0, hence S(t) ∈W←(J ), given that E(Y 1+ε) <∞. Let us introduce
the set

Da, b, ε :=

{
dQ

dµ
∈ L1+ 1

ε (Ω, F , µ)
∣∣∣ 1

b
≤ dQ

dµ
≤ 1

a
, µ− a.s.

}
.

We restrict ourselves in the class of distributions with long and dominatedly
varying tails L ∩ D.

Lemma 6. The set Da, b, ε is a σ(L1+1/ε, L1+ε)-compact (weak-star) set in
the space L1+1/ε(Ω, F , µ), for ε ≥ 0.

A quantitative advantage of AESa, b related to ESa, is that AESa, b may
be calculated via its dual representation. However, what is deduced is that
AESa, b(X) as a supremum on the set of Radon-Nikodym derivatives Da, b, ε
represents the maximum over the subset of the probability measures Q� µ
with

dQ

dµ
=

1

b
1 .

This property of AESa, b is not extensible in the case of ESa.
Since ρ := AESa, b, ε is wedge-coherent for X ∈ L1+ε, we find ρ(Aρ, 1) = ρ,

where

Aρ = {X ∈ L1+ε|ρ(X) ≤ 0} .

Capital conservatism is useful, given that the company avoids ruin during
the time-horizon [0, T ]. It is well-known by [17, Pr. 2.3] or [18, Def. 3.10],
that

ρ(L1+ε
+ , e)(X) = inf{m ∈ R |me+X ∈ L1+ε

+ } ,

is a (L1+ε
+ , e)-coherent risk measure, where L1+ε

+ is wedge and e represents a
radial interior point on the ordered linear space L. The precise value of the
solvency capital is equal to ρ(L1+ε

+ , 1)(ZT ). Since

L1+ε
+ ⊆ AAESa, b, ε = Aρ ,

we have that ρ(L1+ε
+ , 1)(ZT ) ≥ AESa, b, ε(ZT ).

Hence, conditionally on the fact that the insurance company avoids ruin,
the part of the solvency capital is equal to AESa, b, ε(ZT )ψ(u, T ), where
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ψ(u, T ) = 1 − ψ(u, T ) denotes the ruin probability of the company over
the time-horizon [0, T ] with initial capital u. The actuarial solvency capital,
conditionally on the ruin of the company through the time-horizon [0, T ],
is equal to ρ(L1+ε

+ , 1)(ZT ). Therefore, the total solvency capital permits a

representation in the form

SRMa, b, ε, u(ZT ) := AESa, b, ε(ZT )ψ(u, T ) + ρ(L1+ε
+ ,1)(ZT )ψ(u, T ),

named Solvency Risk Measure over the time-horizon [0, T ]. The first term is
negative and represents a reserve which has to be formed by the insurance
company as a result of its survival, while the second positive term corresponds
to the deficit which should be covered by extra finance backing (as for example
through some loan).

The point-wise ordering, that is the partial ordering induced by the cone
Lp+ = {x ∈ Lp | x ≥ 0, µ − a.e.} on Lp, makes the space Lp a Banach
lattice, for 1 ≤ p ≤ ∞. We find from [14, Th.4.4.4], that for an infinite-
dimensional Banach lattice L, whose cone L+ is well-based, the norm-interior
of the positive cone L+ is empty. A cone C is a well-based, if there exists a
base of the form {x ∈ C | f(x) = 1} with f ∈ L∗. The cone L1

+ is well-based,
since with f = 1 ∈ L∞ such a base is defined. However, as µ is a probability
measure on (Ω, F), then 1 ∈ L1

+(Ω, F , µ) is also probability measure on
(Ω, F) but by the previous result it does not represent an interior point of
L1
+.
In [2, Th. 7.52], is indicated that in a Riesz pair 〈L, L∗〉 a vector x ∈ L+

is strictly positive if and only if the ideal Lx = {y ∈ L | |y| ≤ r |x|, r > 0}
is weakly dense in L. If Lx is weakly dense in L, it is also norm-dense in L,
because Lx is a subspace of L, hence x is a quasi-interior point of L+.

An element x ∈ L+ is called strictly positive in L+ if x∗(x) > 0 for any
x∗ ∈ L∗+ \ {0}. We notice that 1 is a strictly positive element of L1

+, hence
it is a quasi-interior point of L1

+. This holds because
〈
L1, L∞

〉
is a Riesz

pair, or else L∞ is an ideal in the order dual space of L1, since L1 and L∞

among others, are defined on a probability space.
Since the risk measure ρ is defined with respect to L1

+ and 1, we use the
fact that 1 is a quasi-interior point of L1

+ to deduce properties of ρ.

Theorem 1. The risk measure SRMa, b, ε, u over the time-horizon [0, T ], rep-
resents a cone-coherent risk measure, defined on W←(L∩D)∩L1+ε, for ε ≥ 0.

The advantage of AESa, b, where 0 < a < b ≤ ∞, with regard to ESa
is that due to its definition by a specific dual representation, the supremum
indicated by this dual representation is attained on the set of probability
measures on (Ω,F), which are absolutely continuous with respect to µ and
their Radon-Nikodym derivative

dQ

dµ
,
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is equal to 1/b, µ − a.e.. This makes the calculation of AESa, b easier ei-
ther combined with Wald identity or with Blackwell Renewal Theorem, if we
would like to find AESa, b(ZT ). The same attempt of calculation of ESa(ZT )
through its own dual representation (see [15, Th. 4.1]), does not permit such
a simplification. Namely, despite the fact that the set of the Radon-Nikodym
derivatives Da in its dual representation is σ(L∞, L1)-compact set, the ex-
treme set on which the maximum is attained (implied by Krein-Milman The-
orem), cannot be directly specified.

Finally, we have the following convergence:

Theorem 2. For any X ∈ L1+ε, AESa, b(X) → ESa(X), if b → ∞, where
ε ≥ 0.

3 Optimization in L1+ε

Let us consider the following risk minimization problem

Minimize AESa, b, ε(X) subject to X ∈ X , (3)

where we suppose the set X to be a convex, (closed and) bounded. Namely,
it is a subset of an appropriate multiple of the closed unit ball of the space
L1+ε. By Eberlein-Šmulian and Alaoglou theorems of weak compactness, the
closed unit ball in this case is weakly compact.

The meaning of this problem is that if X is a set of investments’ payoffs
at time-period T , the investor would like to know the minimal capital to put
in advance, which is to be spent for the solvency of his investment.

According to previous setup, X represents a subset of the wedge

C = W←(L ∩ D)
d
,

under a possible change of the probability space, according to Lemma 1.
Moreover, we consider this set X in the relevant L1+ε-space, for some ε > 0.
Since the convolution-closure holds for the classes of distributions L ∩ D,
and D (see [11], [7]), from Lemma 4 and Lemma 2 we see that these classes
are also convex-closed. Hence the solution of the optimization problem (3)
depends only on the existence of the moments

Eµ(Y k) ,

of the claim variable Y .
In order to solve the problem (3), we use the following min-max Theorem,

suggested in [8, p. 10].
Let K be a compact, convex subset of a locally convex space Y. Let L be

a convex subset of an arbitrary vector space E. Suppose that u is a bilinear
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function u : E × Y → R. For each l ∈ L, we suppose that the partial (linear)
function u(l, ·) is continuous on Y. Then we have that

inf
l∈L

sup
k∈K

u(l, k) = sup
k∈K

inf
l∈L

u(l, k) . (4)

A relevant dual system 〈E, F 〉 is to be considered in the definition of the
metric space on the functionals

M2 =


u : u(X, ·) l.s.c. on Π , u(·, π) u.s.c. on Σ ,

supΣ×Π |u(X, π)| <∞ ,

∃ (X0, π0) ∈ Σ ×Π saddle point of u ,


for any functions u : Σ ×Π → R, endowed by the metric

ρ2(u1, u2) = sup
Σ×Π

|u1(X,π)− u2(X,π)| ,

with u1, u2 ∈M2. The pair (M2, ρ2) is a metric space of the saddle-point prob-
lems mentioned in [20, Lem. 4.4]. Since under the weak topology, the weak
compactness and the weak sequentially compactness coincide in a normed
space according to the Eberlein-Šmulian Theorem, Σ, Π have to be weakly
compact in the relevant weak topologies (σ(E,F ) and σ(F,E) respectively).
If we select our dual system to be

〈
L1, L∞

〉
, the order-intervals are σ(L∞, L1)

(weak-star) compact in L∞, see [2, Lem. 7.54]. By this way we may extend
the Lemma 6 for the case of weak-star compactness for

Da, b,0 ⊂ L∞(Ω, F , µ) .

According to [20, Th. 4.2], the uniqueness of the saddle-point for the rele-
vant optimization problem (3) depends on the compactness of the sets Σ, Π
( weak compactness and weak sequentially compactness respectively) of the
sets of the arguments of the objective functional f .

Proposition 4. The minimization problem (3) has a solution in L1+ε with
ε ≥ 0.

Definition 5. A residual subset of a Hausdorff topological space M is a
set Q ⊆M which contains the intersection of countable dense, open subsets
of M .

Based on [20, Rem. 2.2], we find that the space (L1+ε, σ(L1+ε, L1+1/ε))
belongs to the class Λ of Hausdorff spaces with the property that every u.s.c.
mapping S2 : M2 → 2Σ×Π is almost l.s.c. on some dense residual subset of
its domain (the almost l.s.c. at u ∈ M2 property means that if there exists
x ∈ S2(u) such that for each open neighborhood U of x, there exists and an
open neighborhood O of u, such that U ∩S2(u′) 6= ∅ for each u′ ∈ O). So, we
can apply [20, Th. 4.2] to establish the uniqueness of the saddle-point of u.
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Definition 6. If there exists a dense residual subset Q of the Baire space M
such that for any u ∈ Q a certain property P depending on u holds, then we
say that the property P is generic in M .

In order to deduce the generic uniqueness of the saddle point for the prob-
lem (3), we have to examine whether this problem belongs to the space of
the saddle point problems (M2, ρ2).

Lemma 7. 1. For X ∈ L1+ε, the function uX : L1+1/ε → R, with uX(π) =
u(X,π) = π(−X), for any π ∈ L1+1/ε is σ(L1+1/ε, L1+ε) lower-
semicontinuous on L1+1/ε, for ε > 0.

2. For π ∈ L1+1/ε, the function uπ : L1+ε → R, with uπ = u(X,π) = π(−X),
for any X ∈ L1+ε is σ(L1+ε, L1+1/ε) upper semicontinuous on L1+ε, for
ε > 0.

3. The function u : L1+ε×L1+1/ε → R, with u(X,π) = π(−X), for X ∈ L1+ε

and π ∈ L1+1/ε satisfies

sup
X×Da, b, ε

|π(−X)| <∞ .

Let us keep in mind [20, Th.4.2] and [20, Le.2.1], where this last Lemma
together with Closed Graph Theorem (see [2, Th. 16.11]) and Theorem [2,
Th. 16.12] imply that if Σ is Hausdorff then the conclusion of this Lemma
can be replaced by the fact that S is an u.s.c. map, namely S(u) is compact
for any u ∈M .

Theorem 3. The saddle-point which solves the problem (3) is unique in the
dual system

〈
L1+ε(Ω, F , µ), L1+1/ε(Ω, F , µ)

〉
, for ε > 0.

Proposition 5. The problem (3) has generically a unique solution, if FX ∈
D for any X ∈ X and 1 + ε < δFX , while X ≥ 0, µ − a.s., where ε ≥ 0, if

L1+ 1
ε is separable.

The problem (3) has generically a unique solution, if FX ∈ D ∩ L for any

X ∈ X and 1 + ε < δFX , while X ≥ 0, µ− a.s., if L1+ 1
ε is separable.

Among the topological spaces of class Λ, we consider separately the metric
spaces, since by Lemma [20, Lem. 2.2, Lem. 2.3], when S is a u.s.c. mapping
then it is also l.s.c. at any u ∈ Q for some residual subset Q.

If the Hausdorff spaces X, Y , endowed with the weak and the weak-star
topology of Σ = L1+ε and Π = L1+ 1

ε , respectively for any ε > 0, are weakly
and weak-star compact sets, then holds the generic uniqueness of the saddle
point, as shown in Theorem [20, Th. 4.2]. We remark that in this case, we use
James Theorem (see [2, Th. 6.36]) and the reflexivity of the corresponding
Lp spaces in order to apply [20, Lem. 2.1] for the map S2 in [20, Th. 4.2],
which requires the space Σ ×Π to be compact under the product topology.

In case the financial positions belong to L1, the generic uniqueness result
in [20, Th. 4.2] is no more applicable. Therefore, the generic uniqueness in
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Proposition 5 fails. The cause of this failure is that [20, Th. 4.2] together with
[20, Lem. 2.1] require both the Σ, Π (of L1 and L∞ respectively) to be weakly
compact and weakly-star compact respectively. Hence, for application of [20,
Lem. 2.1], we need Σ to be a weakly compact subset of L1 and moreover
we must check the metrizability of X as a weakly compact subset of L1,
so that we verify its membership of the class Λ. This makes us to ask if a
countable total subset of L∞ exists, according to [2, Th. 6.36]. However, L∞

spaces are not separable, since L∞[0, 1] is not separable. Indeed, there exists
an uncountable set of L∞[0, 1] elements, such as the indicator functions of
the intervals [0, t] for any t ∈ [0, 1], for which ‖f − g‖∞ = 1 whenever f 6= g
(see [19, Pr. 1.21.1 and Exam. 1.24]). Furthermore, in case Ω is uncountable,
we consider the set of the indicator functions GA of the non-empty subsets
of the uncountable A ∈ F . Hence, if C,B ∈ GA, then ‖1C − 1B‖∞ = 1.

By the Extension Theorem [13, Th. 2.2], the canonical space of law-
invariant convex risk measures is considered to be L1. However, by the above
argument this is not valid, due to the fact that the optimization results for
uniqueness in Theorem 3 can not be extended to L1.

3.1 Estimation of AESa, b(ZT )

Under the assumption that the second moment of the claim-size variable is
finite, in the Lundberg risk model the random variable ZT belongs to L1+ε.
Thus, the AESa, b, ε(−S(T )) may be understood as solvency capital for the
company at the end of the time interval [0, T ] and its minimization is deduced
to the problem of minimization of a linear functional of L1+ε (namely the
variable −S(T )), over a weakly compact and convex set of Radon-Nikodym
derivatives Da, b, ε.

According to Krein-Milman Theorem (see [2, Th. 5.117]) and the Bauer
Maximum Principle (see [2, Th. 5.118]) exists a Radon-Nikodym derivative
in Da, b, ε, such that minimizes AESa, b, ε and it represents an extreme point
of Da, b, ε, since the mean value EQ(−S(T )) represents the value of the eval-
uation map 〈

−S(T ),
dQ

dµ

〉
,

in L1+ε(Ω, F , µ), which is weakly u.s.c. at the first variable.
Lemma 6 allows the computation of AESa, b, ε(ZT ) in the Lundberg risk

model and it remains invariable for certain classes of heavy-tailed distribu-
tions.

Lemma 8. In the Lundberg risk model, if FY ∈ L ∩ D and the inter-
occurrence times follow the Exponential Distribution Exp(λ), holds
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AESa, b, ε(ZT ) = −u− c T +
λT

b
Eµ(Y ) , (5)

if the claim-size Y ∈ L1+ε for any ε ≥ 0.

Let us consider now the class of extended regularly varying tailed distri-
butions ERV (−γ,−δ), where 0 ≤ γ ≤ δ <∞, a subclass of the class L ∩ D,
for some more calculations, specifically relying on Matuszewska indexes (see
[22]). This class includes all distributions F , such that

y−δ ≤ lim inf
x→∞

F (xy)

F (x)
≤ lim sup

x→∞

F (xy)

F (x)
≤ y−γ .

We remind that the lower Matuszewska index of a c.d.f. F is defined as
follows:

δF = − lim
y→∞

lnF
∗
(y)

ln y
,

where

F
∗
(y) = lim sup

x→∞

F (xy)

F (x)
.

Thereupon, we reach the next results for the solvency capital in the Lund-
berg risk model with respect to the Adjusted Expected Shortfall. We observe
that the calculations of AESa, b(ST ) on certain subclasses of D ∩ L under
the Lundberg or the renewal risk model are extended over D, under some
appropriate conditions, related to the values of the lower Matuszewska index
of the claim-size distribution.

Theorem 4. In the Lundberg risk model, if the inter-occurrence distribution
is Exp(λ) and the claim size distribution FY belongs to class D with 1 < δFY ,
then relation (5) remains intact.

Remark 4. In the Lundberg risk model, if the inter-occurrence time distribu-
tion is Exp(λ), the claim size distribution FY belongs to class L∩D or belongs
to class ERV (−γ,−δ) with 1 ≤ γ ≤ δ <∞ or belongs to class R−(1+ε) with
ε > 0 and 1 < δFY , then relation (5) remains intact.

Further, we calculate the solvency capital with respect to the Adjusted
Expected Shortfall in the case of the Renewal Risk Model, by using the
Blackwell Theorem (see [3, p. 118] or [12]).

Corollary 1. If in the renewal risk model, where the distribution of the inter-
occurrence of the claim-payments is FA such that Eµ(A) <∞, the claim size
variable Y has the property that FY belongs to the class D or that FY belongs
to the class L ∩ D or that FY belongs to the class ERV (−γ,−δ), where
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1 ≤ γ ≤ δ <∞ and 1 < δFY or that FY belongs to the class R−(1+ε), where
ε > 0 and 1 < δFY , then

AESa, b, ε(ZT ) = −u− c T +
T

bEµ(A)
Eµ(Y ) .

Remark 5. We observe that the calculation of AESa, b(ZT ) remains in tact
for the Renewal Model under certain assumptions.

4 Proofs

Proof of Proposition 1

Let us consider a sequence {Xn, n ∈ N}, whereXn ∈W←(J ) andXn
d→ X

and another sequence {Yn, n ∈ N}, where Yn ∈W←(J ) and Yn
d→ Y . Then

we apply Proposition 1 to find the probability space (A,G, ν) and the random
variables

X ′n , X
′ , Y ′n , Y

′ ∈ L0(A, G, ν) ,

such that hold X ′n
d
= Xn and Y ′n

d
= Yn for any n ∈ N. Hence we find X ′

d
= X,

Y ′
d
= Y and X ′n → X ′, Y ′n → Y ′ ν-a.s. The ν-a.s. convergence of both

sequences impliesX ′n+Y ′n → X ′+Y ′, ν-a.s., which impliesX ′n+Y ′n
d→ X ′+Y ′.

If

Xn ∈W←(J ) ,

for any n ∈ N and further Xn
d→ X as n → ∞, again we obtain random

variables

X ′n , X
′ ∈ L0(A, G, ν) ,

with X ′n
d
= Xn and X ′

d
= X such that X ′n → X ′, ν-a.s. In case r = 0 this

means that 0 is the a.s. limit and even the weak limit of the sequence of
{r X ′n , n ∈ N} and of the sequence {r Xn , n ∈ N} too. In case r > 0, since
X ′n → X ′, ν-a.s., then we obtain r X ′n → r X ′, ν-a.s. and hence it implies

r X ′n
d→ r X ′. Therefore, W←(J )

d
is a wedge of L0(A,G, ν). ut

Proof of Lemma 2
Since J is wedge-closed, it is convolution-closed. Namely, for any distri-

butions FX1 , FX2 ∈ J , where X1, X2 are random variables, we have that
FX1+X2 ∈ J . We may also suppose that X1 = a1 Y1, for a1 > 0 and
X2 = a2 Y2, for a2 > 0, due to the fact that J is wedge-closed. We define the
random variable
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D =
a1

a1 + a2
Y1 +

a2
a1 + a2

Y2 ,

being the abstract convex combination of two variables which belong to J .
Due to the properties of the family J , we have FD ∈ J . By induction we
take the required result. ut

Proof of Lemma 3
We have that FX+a1(x) = µ(X + a1 ≤ x) = FX(x− a), for any x, a ∈ R.

Hence

lim sup
x→∞

FX+a1(xy)

FX+a1(x)
= lim sup

x→∞

FX(xy − a)

FX(x− a)
.

We set u := x − a and therefore we can notice that for a certain a ∈ R if
x→∞, then u→∞. Then the last expression becomes

lim sup
u→∞

FX(uy − [1− y] a)

FX(u)
,

which is equal to

lim sup
u→∞

FX(uy)

FX(u)
.

Hence the initial limit is finite for any y ∈ (0, 1), since FX ∈ D.
As before, FX+a1(x) = FX(x− a) for any x ∈ R for a certain a ∈ R. The

assumption FX ∈ L is equivalent to

lim
x→∞

FX(x− y)

FX(x)
= 1 ,

for all y ∈ R. For X + a1 we have to show that

lim
x→∞

FX+a1(x− y)

FX+a1(x)
= 1 ,

for all y ∈ R. Indeed, this is equivalent to

lim
x→∞

FX(x− y − a)

FX(x− a)
= 1 .

Put u := x− a and then u→∞, as x→∞. Therefore

lim
u→∞

FX(u− y)

FX(u)
= 1 ,

for any y ∈ R by assumption. This completes the proof, since it shows that
for any a ∈ R, X + a1 ∈W←(L).
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We finish with W←(C). If X ∈W←(C), then

lim
y↑1

lim sup
x→∞

F (xy − a)

F (x)
= lim

y↑1
lim sup
x→∞

F (xy)

F (x)
= 1 ,

since for any specific a ∈ R, FX+a1(x) = FX(x− a) for any x ∈ R. ut
Proof of Lemma 4
We have to show that

lim sup
x→∞

F rX(xy)

F rX(x)
<∞ ,

for any y ∈ (0, 1). This is equivalent with

lim sup
x→∞

FX(xy/r)

FX(x/r)
<∞ .

However, u := x/r →∞ as x→∞ and this last observation implies

lim sup
u→∞

FX(uy)

FX(u)
<∞ ,

for any y ∈ (0, 1), which is the condition for FX ∈ D.
The assumption FX ∈ L is equivalent to

lim
x→∞

FX(x− y)

FX(x)
= 1 ,

for any y ∈ R. So, for r X we have to show that

lim
x→∞

F rX(x− y)

F rX(x)
= 1 ,

for some y ∈ R. Indeed, this is equivalent to

lim
x→∞

FX ([x− y]/r)

FX(x/r)
= 1 .

From x → ∞, we find that u = x/r → ∞. Then for any y′ = y/r ∈ R we
need that

lim
u→∞

FX(u− y′)
FX(u)

= 1 ,

as we assumed. We finish with W←(C). If X ∈W←(C), then
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lim
y↑1

lim sup
x→∞

F (xy/r)

F (x/r)
= lim

y↑1
lim sup
x→∞

F (xy)

F (x)
= 1 ,

since for any specific r > 0,
Therefore

FrX(x) = FX

(x
r

)
,

for any x ∈ R and also for r = 0 the subsequent asymptotic form 0/0 may
be posed by definition equal to 1. ut

Proof of Lemma 5
Let us consider 0 < u < 1. We show first that aFY1

+ (1− a)FY2
∈ D or

equivalently

lim sup
x→∞

1− aFY1
(ux)− (1− a)FY2

(ux)

1− aFY1(x)− (1− a)FY2(x)
:= lim sup

x→∞
R(x) <∞ .

Indeed, we can write

R(x) =
aFY1

(ux) + (1− a)FY2
(ux)

aFY1
(x) + (1− a)FY2

(x)

=
FY1

(ux)

FY1
(x) +

1− a
a

FY2
(x)

+
FY2

(ux)
a

1− a
FY1(x) + FY2(x)

≤ FY1
(ux)

FY1
(x)

+
FY2

(ux)

FY2
(x)

,

which has finite superior limit by the assumption FY1
, FY2

∈ D.
Now we employ [11, Pr. 2] to establish that if FY1

, FY2
∈ D ∩ S then

aFY1
+ (1− a)FY2

∈ S ∩ D .

So, it remains to take into account that S ∩ D = L ∩ D. ut
Proof of Proposition 2
The sum S1(t)+S2(t) represents a compound Poisson process with Poisson

point process N(t) with intensity λ = λ1 + λ2 > 0 and at each point of this
process appears a step with random height

Y = p Y1 + (1− p)Y2 ,

as mixture of two random variables Y1 and Y2 with weights p = λ1/λ and
1− p = λ2/λ respectively.

By assumption we know that Y1, Y2 ∈ L ∩ D. Thus by Lemma 5 we find
that Y ∈ L ∩ D and this through [10, Th. 3] gives the result. ut

Proof of Proposition 3
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It suffices to prove that the four properties in Definition 3 are valid.

1. For any t ∈ R, such that X + t1 ∈ C we find that

AESa, b, ε(X + t1) = sup
Q∈Za, b, ε

EQ(−X)− t = AESa, b, ε(X)− t .

2. For any X1, X2 ∈ C, we see that X1 +X2 ∈ C and

AESa, b, ε(X1 +X2) = sup
Q∈Za, b, ε

[EQ(−X1) + EQ(−X2)]

≤ sup
Q∈Za, b, ε

EQ(−X1) + sup
Q∈Za, b, ε

(EQ(−X2)

= AESa, b, ε(X1) +AESa, b, ε(X2) .

3. For any X ∈ C we see that for any r ≥ 0 we have r X ∈ C and

AESa, b, ε(r X) = sup
Q∈Za, b, ε

rEQ(−X)

= r sup
Q∈Za, b, ε

EQ(−X) = r AESa, b, ε(X) .

4. For any X,Y ∈ C such that Y ≥ X under the usual partial ordering in
L1+ε, where ε ≥ 0, we see that −X ≥ −Y and for any Q ∈ Za, b, ε we have

EQ(−X) ≥ EQ(−Y ) .

By taking supremums over Za, b, ε we obtain

AESa, b, ε(X) ≥ AESa, b, ε(Y ) . ut

Proof of Lemma 6
Since 〈

L1+1/ε, L1+ε
〉
,

is a Riesz pair (see [2, Lem. 8.56]) we obtain that the order-interval [1/b , 1/a]
is σ(L1+1/ε, L1+ε)-compact, for ε ≥ 0. Then, it suffices to prove that

Da, b, ε ⊆
[

1

b
,

1

a

]
,

is σ(L1+1/ε, L1+ε)-closed. Let us consider a net (Qi)i∈I ⊆ Za, b, ε such that

dQi
dµ

σ(L1+1/ε, L1+ε)−→ f . (6)

From the fact that
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dQi
dµ
∈ Da, b, ε ,

for any i ∈ I, we obtain that

dQi
dµ
∈ L1+1/ε(Ω, F , µ) .

We have to prove that f is a Radon-Nikodym derivative of some measure
Q1 ∈ Za, b, ε with respect to µ. Let us consider the map Q0 : F → [0, 1] where

Q0(A) =

∫
Ω

f χAdµ ,

and χA is the indicator function of the set A. In order to show that Q0 is a
probability measure, we should establish

Q0(Ω) =

∫
Ω

fdµ = 1 .

Indeed, it is equal to

lim
i∈I

∫
Ω

dQi ,

and every of the terms of the net of real numbers(∫
Ω

dQi

)
i∈I

,

is equal to 1. By the same argument, we may deduce that Q0(∅) = 0. If
(An)n∈N is a sequence of disjoint sets in F , then

Qi

(
n⋃
k=1

Ak

)
=

n∑
k=1

Qi(Ak) , i ∈ I, n ∈ N .

Hence,

Q0

(
n⋃
k=1

Ak

)
=

n∑
k=1

Q0(Ak) , n ∈ N ,

due to the weak star convergence (6). With limiting n→∞, we get that

Q0

( ∞⋃
n=1

An

)
=

∞∑
n=1

Q0(An) ,
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from the σ(L1+1/ε, L1+ε)-convergence in (6), the definition of Q0 and the
fact that any indicator function χA, A ∈ F belongs to L1+ε(Ω, F , µ) and
also to the space L1(Ω, F , µ). We make use of the Monotone Convergence
Theorem [2, Th. 11.18], where the indicator function of the set

∞⋃
n=1

Ak ,

is the µ-integrable function deduced by the Theorem. This holds, because the
indicator functions of the sets

n⋃
k=1

Ak ,

for n ∈ N belong to the space L1(Ω, F , µ), since they belong to L1+ε(Ω,F , µ).
For the µ-continuity of Q0, we have that if holds µ(A) = 0 for a set A ∈ F ,
then

Qi(A) = 0 =

∫
A

dQi
dµ

dµ ,

for any i ∈ I, since Qi, i ∈ I is µ-continuous. But from (6) we obtain

Q0(A) =

∫
A

fdµ = lim
i∈I

∫
A

dQi
dµ

dµ = 0 .

Therefore, Q0 is µ-continuous. Since Qi, i ∈ I are probability measures, holds

dQi
dµ

(ω) ≥ 0 ,

µ-a.s. From the fact that Q0 is a µ-continuous probability measure, by Radon-
Nikodym Theorem we have

dQ0

dµ
= f ,

µ-a.s. and f(ω) ≥ 0, µ-a.s. In order to show that

1

b
≤ f ≤ 1

a
, (7)

with respect to the usual (point-wise) partial ordering on L1+1/ε(Ω, F , µ),
we use the convergence argument∫

A

dQi
dµ

dµ→
∫
A

fdµ ,
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for any A ∈ F . This implies that∫
A

fdµ ∈
[

1

b
,

1

a

]
, (8)

for any A ∈ F and therefore holds (7). Indeed, if we suppose that it does
not hold, then we could find some B ∈ F such that either f(ω) > 1/a, or
f(ω) < 1/b for any ω ∈ B. Then, we would have either∫

B

fdµ >
1

a
,

or ∫
B

fdµ <
1

b
,

which is the absurd, because of (8). Therefore, the Da, b, ε is σ(L1+1/ε, L1+ε)-
closed, for ε ≥ 0. ut

Proof of Theorem 1
The measure SRMa, b, 0, u is a cone-coherent risk measure on the cone

[W←(L∩D)∪{0}]∩L1, since it is a convex combination of two cone-coherent
risk measures. The first one, the AESa, b, ε is cone-coherent on [W←(L∩D)∪
{0}] ∩ L1, due to Propositions 1, 2 and 3.

The second one ρ(L1
+,1)

is cone-coherent as a restriction of the (L1
+,1)-

coherent risk measure ρ(L1
+,1)

on the cone [W←(L ∩ D) ∪ {0}] ∩ L1. Indeed,

we observe that 1 is a quasi-interior point in L1
+. This means that for any

x ∈ L1, the convergence ‖x− un‖ → 0 is established, where un ∈ I1, and

I1 =
⋃
n∈N

[−n1, n1]L1
+
.

Hence x = un + tn, where tn → 0, and there are kn ∈ N with |un| ≤ kn 1.
This implies the existence of a subsequence of {tn}, called again {tn}, which
converges µ-a.s. to 0, see [1, Th. 12.6]. But, according to [1, Lem. 7.16], this
convergence is in fact an order convergence. This implies that the elements
of the subsequence {tn} may be initially replaced by the elements of the
sequence of yn, since |tn| ≥ yn, where yn ↓ 0. Hence, there exists some yn ≥ 0
and the inequalities

−kn1 + yn ≤ un + yn ≤ kn1 + yn ,

imply yn ≤ x ≤ 2kn1+yn, hence there is m = kn > 0 such that x+m1 ∈ L1
+

and ρ(L1
+,1)

(x) 6= +∞.

In order to prove that ρ(L1
+,1)

(x) 6= −∞ for any x ∈ L1, let us suppose at

moment the existence of some x0 ∈ L1, for which ρ(L1
+,1)

(x0) = −∞. Thus,
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we have that for any k /∈ {m ∈ R | m1 + x0 ∈ L1
+}, there is h ∈ {m ∈

R |m1 + x0 ∈ L1
+} such that h < k. This necessarily holds, because in the

opposite case, we would have k ≤ ρ(L1
+,1)

(x0) = −∞ which leads to absurd.

Then, for some such k, k − h > 0 and by the properties of L1
+ as a wedge,

we take that x0 + k 1 = x0 + h1 + (k− h) 1 ∈ L1
+, which is in contradiction.

Hence, there is not any x0 ∈ L1, such that ρ(L1
+,1)

(x0) = −∞. This implies

that this risk measure takes only finite values and the properties of coherence
as they are indicated in [17, Th. 2.3].

Since 1 is a quasi-interior point in L1+ε
+ , with ε > 0, the same proof

holds for SRMa, b, ε, u defined on (W←(L ∩ D) ∪ {0}) ∩ L1+ε. ut
Proof of Theorem 2
For the real parameters from AESa,b, we have a < b and their domain is

(a, b) ∈ (0, 1]× (0, ∞]. We will show the Theorem by using Berge Maximum
Theorem (see [2, Th. 16.31]). For any X ∈ L1+ε, we define

φX : (0, 1]× (0,∞]→ 2L
1+ 1

ε ,

where φX(a, b) = Da, b, ε. We have to prove both the upper and lower hemi-
continuity of φX . The upper hemicontinuity of φX is verified as follows. Con-
sider some sequence of points (an, bn) ⊂ (0, 1]× (0,∞]. For this sequence we
assume that (an, bn) → (a0, b0) with respect to the product topology. If we
pick a sequence in φX(an, bn), it has limit points in φX(a0, b0). For the lower
hemicontinuity of φX we notice that for any π ∈ Da0, b0 , there is a subnet
(πλ)λ∈Λ in it, such that

πλ
σ(L∞, L1)−→ π .

Without loss of generality, we may suppose that Λ = (0, ∞). Consider
(aλ, bλ) → (a0, b0) with respect to the product topology. There exist a
subnet (aλκ , bλκ), such that |aλκ − a0| < 1/κ and |bλκ − b0| < 1/κ with
κ ∈ (0, ∞). These convergence inequalities imply the existence of a sequence
(πλκ)κ∈N ⊂ Da0, b0 , satisfying the following inequalities with respect to usual
partial ordering of L∞

1

b0 + 1/κ
1 <

1

bλκ + 1/κ
1 ≤ πλκ ≤

1

aλκ − 1/κ
1 <

1

a0 − 1/κ
1 .

Due to the weak-star compactness of Da0, b0 , a σ(L∞, L1)-converging to the
subnet (πλκ)κ∈(0,∞). Finally, we notice that πλκ ∈ Daλκ , bλκ .

For any X ∈ L1 the function fX : GrφX → R is defined as follows

fX((a, b), πQ) = EQ[−X] ,

for Q ∈ φX(a, b) = Da, b. The corresponding value function is

m(X) = max
πQ∈φX(a, b)

EQ[−X] ,
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while the values of the argmax correspondence are defined as follows

µX(a, b) = {πQ ∈ Da, b | m(x) = EQ[−X]} .

The conclusion of the Berge Maximum Theorem implies that the corre-
spondence µX has weak-star compact values and it is upper hemicontinous.
Namely, if we consider a sequence an, bn → (a0, ∞) and πQ0

∈ µ(a0, ∞),
then there exists a sequence πQn ∈ µX(an, bn), such that

πQn
σ(L∞, L1)−→ πQ0

.

The last weak-star convergence implies that πQn(−X) = AESan, bn(X) →
πQ0

(−X) = ESa0(X), namely adjusted expected shortfall converges to ex-
pected shortfall. ut

Proof of Proposition 4
If we apply the min-max theorem (see [8, p. 10]), we find Y = L1+1/ε

endowed with the σ(L1+1/ε, L1+ε)-topology and E = L1+ε, where ε > 0.
We also suppose that K = Da, b, ε , L = X . The space Y is locally convex,
the space E = L1+ε is linear and u : L1+ε × L1+1/ε → R, where u(X,π) =
π(−X), X ∈ L1+ε, π ∈ L1+1/ε. By Lemma 6 we obtain that the set Da, b, ε is
σ(L1+1/ε, L1+ε)-compact and the set L = X is convex.

For any X ∈ X and in general for any X ∈ L1+ε, the partial function
u(X, ·) represent the function uX : L1+1/ε → R, where uX(π) = π(−X).
This function is weak-star continuous for any X ∈ L1+ε, and hence for any
X ∈ X too. If we consider a weak-star convergent net (πi)i∈I of K, the
convergence implies that for any X ∈ L1+ε we have πi(X) → π(X), which
also implies

u(X,πi) = πi(−X)→ u(X,π) = π(−X) ,

that is equivalent to uX(πi)→ uX(π). The function u is bilinear by definition.
Then, the following result (see [4, Pr. 3.1] ) hold.

A function u satisfies the min-max equality (4) if and only if it has a
saddle-point.

So, the min-max equation for u implies the existence of some saddle-point
(X∗, πQ∗) ∈ X ×Da, b, ε, such that

inf
X∈X

AESa, b, ε(X) = inf
X∈X

sup
πQ∈Da, b, ε

u(X,πQ) = sup
πQ∈Da, b, ε

inf
X∈X

u(X,πQ)

= u(X∗, πQ∗) = AESa, b, ε(X∗) . ut

Proof of Lemma 7

1. Consider a net

(πi)i∈I ⊆ L1+1/ε ,
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such that for the specific a ∈ R the inequality u(X,πi) ≤ a holds. Then, if

πi
σ(L1+1/ε,L1+ε)→ π ,

we have that πi(X)→ π(X), hence πi(−X)→ π(−X), which implies

u(X,πi)→ u(X,π) .

But from the inequalities u(X,πi) ≤ a for any i ∈ I and the weak conver-
gence, the inequality u(X,π) ≤ a holds, which concludes the first point.

2. Consider a net

(Xi)i∈I ⊆ L1+ε ,

such that for the specific a ∈ R the inequality u(X,πi) ≥ a holds. Then, if

Xi
σ(L1+ε,L1+1/ε)→ X ,

we have that π(Xi)→ π(X), hence π(−Xi)→ π(−X), which implies

u(Xi, π)→ u(X,π) .

But from the inequalities u(Xi, π) ≥ a for any i ∈ I and the weak con-
vergence holds the inequality u(X,π) ≥ a, which concludes the second
point.

3. The inequality ‖X‖1+ε ≤ k holds for some k > 0, since we assume that X is
bounded. The inequality ‖π‖1+1/ε ≤ k1 holds for any k1 > 0, sinceDa, b, ε is

norm-bounded, because of the order intervals in L1+1/ε are norm-bounded.
This could be interpreted as a consequence of the fact that L1+1/ε is a Ba-
nach lattice. Hence, from Hölder inequality we obtain the third point. ut

Proof of Theorem 3
We just apply Theorem [20, Th. 4.2]. Indeed, there is a saddle point

(X0, π0) ∈ X×Da, b, ε, such that the min-max equality holds. For the assump-
tions concerning the uniqueness of this saddle-point, we only mention that
the sets X ,Da, b, ε are σ(L1+ε, L1+1/ε)-compact and σ(L1+1/ε, L1+ε)-compact
respectively and both of these weak topologies are Hausdorff topologies on
the corresponding spaces. ut

Proof of Proposition 5
The family of distribution with dominatedly varying tails D is convex-

closed and the same holds for the family L ∩ D (see Lemma 5). ut
Proof of Lemma 8
By the Wald identity we obtain from (2)
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AESa, b, ε(ZT ) = − inf
Q∈Za, b, ε

EQ(−S(T ))− c T − u

= −1

b
Eµ(−S(T ))− c T − u =

λT

b
Eµ(Y )− c T − u . ut

Proof of Theorem 4
By the Proof of [22, Lem. 3.5] we find that if FY (x) = o(x−v) for any

v < δFX then

Eµ(Y p1) <∞ ,

if 1 ≤ p1 < δFY and X takes positive values. Together with the fact, that the
distribution FY belongs to the class D, we have the result. ut

Proof of Corollary 1
By the Wald identity, we find Eµ(S(T )) = Eµ(Y )Eµ(N(T )), where the

N(T ) is the random number of inter-occurrence times θk in [0, T ], with com-
mon distribution is Fθ. By the Blackwell Renewal Theorem

Eµ(N(T ))

T
→ 1

Eµ(θ)
.

We replace Eµ(N(T )) by its limit and the proof is the same for the renewal
risk model. ut
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