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Abstract

In this paper, we consider some non-standard renewal risk models with some

dependent claim sizes and stochastic return, where an insurance company is

allowed to invest her/his wealth in financial assets, and the price process of

the investment portfolio is described as a geometric Lévy process. When the

claim-size distribution belongs to some classes of heavy-tailed distributions and

a constraint is imposed on the Lévy process in terms of its Laplace exponent,

we obtain some asymptotic formulas for the tail probability of discounted

aggregate claims and ruin probabilities holding uniformly for some finite or

infinite time horizons.
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1. Introduction

We consider a non-standard renewal risk model in which successive claim sizes

{Xn, n ≥ 1} form a sequence of identically distributed but not necessarily independent
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nonnegative random variables (r.v.s) with common distribution F and the inter-arrival

times {θn, n ≥ 1} form another sequence of independent and identically distributed

(i.i.d.) nonnegative r.v.s, which are independent of {Xn, n ≥ 1}. We suppose that the

claim arrival times τn =
∑n
k=1 θk, n ≥ 1, constitute a renewal counting process

N(t) = sup{n ≥ 0 : τn ≤ t} , t ≥ 0 ,

which represents the number of claims up to time t, with a finite mean function λ(t) =

E[N(t)] → ∞ as t → ∞. Suppose that the insurer is allowed to make risk-free and

risky investments. The price process of the investment portfolio is described as a

geometric Lévy process {eRt , t ≥ 0} with {Rt , t ≥ 0} being a Lévy process, which

starts from zero and has independent and stationary increments. This assumption on

price processes is widely used in mathematical finance. The reader is referred to [18],

[19], [20], [11], [4], [26], [27], [24] [15] among others.

As usual, we assume that {Xn , n ≥ 1}, {θn , n ≥ 1} and {Rt , t ≥ 0} are mutually

independent. The discounted aggregate claims up to time t ≥ 0 can be expressed as

D(t) =

∞∑
k=1

Xk e−Rτk 1{τk≤t} , (1.1)

where 1A denotes the indicator function of an event A. Then, for any t ≥ 0, the

discounted value of the surplus process with stochastic return on investments of an

insurance company is described as

U(t) = x+

∫ t

0−
c(s) e−Rs ds−D(t) , (1.2)

where x ≥ 0 is the initial risk reserve of the insurance company, and c(t) denotes the

density function of premium income at time t. Throughout the paper, we assume that

the premium density function c(t) is bounded, i.e. 0 ≤ c(t) ≤ M for some constant

M > 0 and all t ≥ 0. In this way, in the above renewal risk model, for any t ≥ 0, the

finite-time ruin probability can be defined as

ψ(x, t) = P
(

inf
s∈[0, t]

U(s) < 0
∣∣∣ U(0) = x

)
,

and the infinite-time ruin probability as

ψ(x, ∞) = P
(

inf
s≥0

U(s) < 0
∣∣∣ U(0) = x

)
.
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In the present paper, we shall investigate the asymptotics for the tail probability of

discounted aggregate claims or ruin probabilities, holding uniformly for all t, such that

λ(t) is positive. For this purpose, as in [22], define Λ = {t : 0 < λ(t) ≤ ∞} = {t :

P(θ1 ≤ t) > 0} with t = inf{t : λ(t) > 0} = inf{t : P(θ1 ≤ t) > 0}. Clearly,

Λ =

 [t,∞] , if P(θ1 = t) > 0 ,

(t,∞] , if P(θ1 = t) = 0 .

For the above risk model with a constant premium rate c > 0 (i.e. c(t) = c for all

t > 0) and a constant interest force δ > 0 (e.g. Rt = δ t for all t > 0), if the claim sizes

{Xn , n ≥ 1} and the inter-arrival times {θn , n ≥ 1} are, respectively, i.i.d. r.v.s,

some earlier works on ruin probabilities can be found in [1], [12], [10], [13], [21] among

others; Tang [22] and Hao and Tang [8] derived some uniform results in Λ. If the claim

sizes {Xn , n ≥ 1} follow a certain dependence structure, ruin probabilities have also

been investigated by many researchers. Chen and Ng [5] considered a dependent risk

model, where the claim sizes are pairwise negatively quadrant dependent (NQD, see

the definition in Section 2.1) with common distribution F , belonging to the class of

extended regularly varying distributions. They obtained the following asymptotics for

the infinite-time ruin probability:

ψ(x, ∞) ∼
∫ ∞

0−
F (x eδu)λ(du) .

Further, assuming some restrictive dependence structure and heavy-tailed claim sizes,

Yang and Wang [25] obtained the relation

ψ(x, t) ∼
∫ t

0−
F (x eδu)λ(du) , (1.3)

holding for each fixed t ∈ Λ or uniformly for all t ∈ Λ.

Two recent interesting papers Tang et al. [24] and Li [15] investigated the above

renewal risk model with stochastic return, allowing the price process of the invest-

ment portfolio being a geometric Lévy process under independence and dependence

structures, respectively. We remark that the paper [24] investigated the independent

renewal risk model, where the claim sizes {Xn , n ≥ 1} and the inter-arrival times

{θn , n ≥ 1} are two sequences of i.i.d. nonnegative r.v.s, respectively, and they

are mutually independent; whereas the recent paper [15] considered a more general
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time-dependent renewal risk model, where {(Xn , θn) , n ≥ 1} are assumed to be

i.i.d. random vectors but a certain dependence exists between Xn and θn for each

fixed n. Motivated by these two papers, the main goal of this paper is to establish

some asymptotic formulas of the tail probability of discounted aggregate claims and

ruin probabilities, holding uniformly for some finite or infinite time horizons, under

the conditions that the claim sizes {Xn , n ≥ 1} are dependent and have common

distribution belonging to the class of long and dominatedly-varying tailed distributions

or to the class of consistently-varying tailed distributions.

The rest of the paper is organized as follows. Section 2 presents the four main results

on the uniform asymptotics for the tail probability of discounted aggregate claims and

ruin probabilities after introducing some preliminaries; Sections 3 and 4 prove these

results, respectively, after preparing a series of lemmas.

2. Preliminaries and main results

Hereafter, all limit relationships hold for x tending to ∞, unless stated otherwise.

For two positive functions a(x) and b(x), we write a(x) ∼ b(x) if lim a(x)/b(x) =

1; write a(x) . b(x) or b(x) & a(x) if lim sup a(x)/b(x) ≤ 1; a(x) = o(b(x)) if

lim a(x)/b(x) = 0; a(x) = O(b(x)) if lim sup a(x)/b(x) < ∞; and a(x) � b(x) if

a(x) = O(b(x)) and b(x) = O(a(x)). Furthermore, for two positive bivariate functions

a(x, t) and b(x, t), we write a(x, t) ∼ b(x, t) uniformly for all t in a nonempty set A,

if

lim
x→∞

sup
t∈A

∣∣∣∣a(x, t)

b(x, t)
− 1

∣∣∣∣ = 0 ,

and write a(x, t) . b(x, t) or b(x, t) & a(x, t) uniformly for all t ∈ A, if

lim sup
x→∞

sup
t∈A

a(x, t)

b(x, t)
≤ 1.

2.1. Dependence structures

Since what we are interested in is some actual dependent risk models, we start this

section by introducing some dependence structures. A sequence of r.v.s {ξn , n ≥ 1}

is said to be pairwise negatively quadrant dependent (NQD), if, for any i 6= j ≥ 1 and

real x, y,

P(ξi > x , ξj > y) ≤ P(ξi > x)P(ξj > y) .
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The pairwise NQD structure was introduced by Lehmann [14], and is weaker and more

verifiable than the commonly used notions of the upper/lower negative dependence

(see [3]), and the negative association (see [9]). A more general dependence structure,

namely upper tail asymptotic independence (UTAI) structure, was proposed by Maulik

and Resnick [16]. A sequence of r.v.s {ξn , n ≥ 1} is said to be UTAI, if P(ξn > x) > 0

for all x ∈ R , n ≥ 1, and for any i 6= j ≥ 1,

lim
min{x, y}→∞

P(ξi > x | ξj > y) = 0 .

Clearly, if a sequence of r.v.s is pairwise NQD, then it is also UTAI.

2.2. Some classes of heavy-tailed distributions

We shall restrict the claim-size distribution F to some class of heavy-tailed distribu-

tions, whose moment generating functions do not exist. An important class of heavy-

tailed distributions is D , which consists of all distributions F = 1−F with dominated

variation. A distribution F on R belongs to the class D , if lim supF (x y)/F (x) < ∞

for any 0 < y < 1. A slightly smaller class is C of consistently varying distributions.

A distribution F on R belongs to the class C , if limy↑1 lim supx→∞ F (x y)/F (x) = 1.

Closely related is a wider class L of long-tailed distributions. A distribution F on

R belongs to the class L , if limF (x + y)/F (x) = 1 for any y ∈ R. There are some

other heavy-tailed subclasses, the class ERV(−α,−β) of distributions with extended

regularly varying tails, and the class R−α of distributions with regularly varying tails.

A distribution F on R belongs to the class ERV(−α,−β), if there are some constants

0 < α ≤ β <∞ such that y−β ≤ lim inf F (x y)/F (x) ≤ lim supF (x y)/F (x) ≤ y−α for

any y ≥ 1. If α = β, F belongs to the class R−α.

For a distribution F on [0, ∞), denote its upper Matuszewska index by

J+
F = − lim

y→∞

logF ∗(y)

log y
with F ∗(y) := lim inf

x→∞

F (x y)

F (x)
for y > 1.

The presented definitions yield, that the following assertions are equivalent (for details,

see [2]):

(i) F ∈ D , (ii) F ∗(y) > 0 for some y > 1 , (iii) J+
F <∞ .

The lemma below is from Proposition 2.2.1 of [2].
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Lemma 2.1. For a distribution F ∈ D on [0,∞) and any p > J+
F , there are positive

constants C1 and D1, such that the inequality

F (y)

F (x)
≤ C1

(y
x

)−p
,

holds for all x ≥ y ≥ D1.

The next lemma follows immediately from Lemma 2.1 (see Lemma 3.5 of [23]).

Lemma 2.2. For a distribution F ∈ D on [0, ∞) and for any p > J+
F , the asymptotics

x−p = o(F (x)) holds.

2.3. Main results

Suppose that the Lévy process {Rt , t ≥ 0} in (1.1) is right continuous with left

limit. Let E[R1] > 0, so that Rt drifts to ∞ almost surely as t → ∞. The Laplace

exponent for the Lévy process {Rt , t ≥ 0} is defined as

φ(z) = logE[e−z R1 ] , z ∈ R .

If φ(z) is finite, then it holds for any t ≥ 0 that

E[e−z Rt ] = et φ(z) <∞ ,

(see, e.g. Proposition 3.14 of [7]).

To simplify the discussion, we assume throughout the paper that t = 0. For any

T ∈ Λ and ε ∈ Λ, set ΛT = [0, T ] and Λε = [ε, ∞]. Note that ε can be chosen to be 0

if P(θ1 = 0) > 0.

We are now ready to state the main results of this paper. The first two results below

consider the UTAI claim sizes, requiring that the Lévy process {Rt , t ≥ 0} is almost

surely nonnegative, which means that the insurer invests her/his wealth only into a

risky-free market. We obtain two uniform asymptotic formulas for the tail probability

of discounted aggregate claims and ruin probabilities, when the claim sizes have both

long and dominatedly varying tails, or consistently varying tails, respectively.

Theorem 2.1. In the non-standard renewal risk model, described in Section 1, let

assume that the claim sizes {Xn , n ≥ 1} are UTAI nonnegative r.v.s with common

distribution F ∈ L ∩D . If Rt ≥ 0 a.s. for any t ≥ 0, then, for any fixed T > 0,

P(D(t) > x) ∼
∫ t

0−
P(X1 e−Rs > x)λ(ds) , (2.1)
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holds uniformly for all t ∈ ΛT .

Corollary 2.1. Under the conditions of Theorem 2.1, if F ∈ C , then, for any fixed

T > 0,

ψ(x, t) ∼
∫ t

0−
P(X1 e−Rs > x)λ(ds) , (2.2)

holds uniformly for all t ∈ ΛT .

Our next two results restrict the claim sizes to be pairwise NQD r.v.s with extended

regularly varying tails, but allow the insurer to make risk-free and risky investments.

This means the Lévy process {Rt , t ≥ 0} can be real-valued.

Theorem 2.2. In the non-standard renewal risk model described in Section 1, let

assume that the claim sizes {Xn , n ≥ 1} are pairwise NQD nonnegative r.v.s with

common distribution F ∈ ERV(−α, −β), 0 < α ≤ β < ∞. If φ(r) < 0 for some

r > β, then, (2.1) holds uniformly for all t ∈ Λε.

Corollary 2.2. Under the conditions of Theorem 2.2, (2.2) holds uniformly for all

t ∈ Λε.

3. Proof of Theorem 2.1

Before proving our first two results, we cite two lemmas. The following lemma is

due to [22].

Lemma 3.1. For the renewal counting process {N(t) , t ≥ 0}, described in Section 1,

for any v > 0 and any fixed T > 0 it holds

lim
x→∞

sup
t∈ΛT

λ−1(t)E[Nv(t)1{N(t)>x}] = 0 .

The second lemma was proven by Maulik and Zwart [16].

Lemma 3.2. Consider the exponential functional of the Lévy process {Rt , t ≥ 0}

defined as Z =
∫∞

0
e−Rs ds. For every v > 0 satisfying φ(v) < 0, it holds E[Zv] <∞.

Proof of Theorem 2.1. Since the positive Lévy process (i.e. a subordinator) {Rt , t ≥

0} has non-decreasing paths, it holds uniformly for all t ∈ ΛT that∫ t

0−
P(X1 e−Rs > x)λ(ds) ≥ P(X1 e−RT > x)λ(t) � F (x)λ(t) ,



8 Y. YANG, K. WANG AND D.G. KONSTANTINIDES

where the second step follows from Theorem 3.3 (iv) in [6] and F ∈ D . Hence, there

exists some positive constant C2, such that for sufficiently large x and all t ∈ ΛT ,∫ t

0−
P(X1 e−Rs > x)λ(ds) ≥ C2 F (x)λ(t) . (3.1)

For any integer m ≥ 1, t ∈ ΛT and x > 0,

P(D(t) > x) =

(
m∑
n=1

+

∞∑
n=m+1

)
P

(
n∑
k=1

Xk e−Rτk > x , N(t) = n

)
=: I1 + I2 . (3.2)

For I2, by Rs ≥ 0 a.s. for all s ≥ 0, Lemma 2.1, Markov’s inequality and Lemma 2.2,

it holds uniformly for all t ∈ ΛT that

I2 ≤

 ∑
m<n≤x/D1

+
∑

n>x/D1

 P

(
n∑
k=1

Xk > x

)
P(N(t) = n)

≤
∑

m<n≤x/D1

nF
(x
n

)
P(N(t) = n) + P

(
N(t) >

x

D1

)

≤ C1 F (x)
∑

m<n≤x/D1

np+1 P(N(t) = n) +

(
x

D1

)−(p+1)

E[Np+1(t)1{N(t)>x/D1}]

. C1 F (x)E[Np+1(t)1{N(t)>m}] , (3.3)

for some p > J+
F . Hence, from (3.1), (3.3) and Lemma 3.1, we obtain

lim
m→∞

lim sup
x→∞

sup
t∈ΛT

I2∫ t
0− P(X1 e−Rs > x)λ(ds)

≤ C1

C2
lim
m→∞

sup
t∈ΛT

λ−1(t)E[Np+1(t)1{N(t)>m}] = 0 . (3.4)

We mainly deal with I1. Let H(y1, . . . , yn+1) be the joint distribution of the random

vector (τ1, . . . , τn+1) , n ≥ 1. Clearly, for 1 ≤ n ≤ m and t ∈ ΛT , x > 0,

P

(
n∑
k=1

Xk e−Rτk > x , N(t) = n

)

=

∫
{0≤s1≤...≤sn≤t, sn+1>t}

P

(
n∑
k=1

Xk e−Rsk > x

)
H(ds1, . . . ,dsn+1) . (3.5)

Similarly to (3.1), there exist some 0 < C3 < 1 and large x1 > 0, both depending only

on F , such that for all 1 ≤ k ≤ n , 0 ≤ sk ≤ t ≤ T , when x ≥ x1, it holds that

P(Xk e−Rsk > x) ≥ C3 F (x) . (3.6)
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Next, we aim to show, that for some ∆ > 0, which can be arbitrarily small, there exists

some x̃, depending only on F, , ∆ and n, such that for all x ≥ x̃ and 0 ≤ s1 ≤ . . . ≤

sn ≤ t ≤ T , 1 ≤ n ≤ m,

(1−∆)

n∑
k=1

P(Xk e−Rsk > x) ≤ P

(
n∑
k=1

Xk e−Rsk > x

)

≤ (1 + ∆)

n∑
k=1

P(Xk e−Rsk > x) . (3.7)

For any ε ∈ (0, 1
2 ), by P(sups∈[0, T ]Rs = ∞) = 0, there exists a δ = δ(ε) ∈ (0, 1) such

that

P

(
sup

s∈[0, T ]

Rs < − log δ

)
≥ 1− ε , (3.8)

which implies, that for all 1 ≤ k ≤ n , 0 ≤ sk ≤ t ≤ T and x > 0,

P(Xk e−Rsk > x) ≥
∫ 1

δ

F
(x
u

)
P(e−Rsk ∈ du)

≥ F
(x
δ

)
P

(
sup

s∈[0, T ]

Rs < − log δ

)
≥ (1− ε)F

(x
δ

)
. (3.9)

By F ∈ L , there exists some positive, increasing and slowly varying function l(x) ↑ ∞

such that l(x)/x→ 0 and for any fixed constant K,

F (x−K l(x)) ∼ F (x) , (3.10)

which implies, that for the above ε > 0, there exists some x2 ≥ x1, depending only on

F and ε, such that for all x ≥ x2,

F (x− l(x)) ≤ F
(
x− l(x)

δ

)
≤ (1 + ε)F (x) . (3.11)

Since X1, . . . , Xn are UTAI, and by F ∈ D , there exists some x3 ≥ x2, depending

only on F , ε and n, such that for all x ≥ x3 and all 1 ≤ i 6= j ≤ n (1 ≤ n ≤ m),

P(Xi > x , Xj > x) ≤ P
(
Xi >

l(x)

n− 1
, Xj >

x

n

)
≤ ε

n
C3 F (x) . (3.12)

Let choose x̃ = max{x3 , D1/(1 − δ)}, which also depends only on F , ε and n, then

for x ≥ x̃, it holds that x− l(x) ≥ (1− δ)x and for some p > J+
F ,

F ((1− δ)x)

F (x)
≤ C1 (1− δ)−p , (3.13)



10 Y. YANG, K. WANG AND D.G. KONSTANTINIDES

together with equations (3.11), (3.12). For the lower bound of (3.7), by Bonferroni

inequality, (3.12) and (3.6) we have, that for all x ≥ x̃ and 0 ≤ sk ≤ t ≤ T , 1 ≤ k ≤ n,

P

(
n∑
k=1

Xk e−Rsk > x

)
≥

n∑
k=1

P(Xk e−Rsk > x)−
∑

1≤i<j≤n

P(Xi > x , Xj > x)

≥ (1− ε)
n∑
k=1

P(Xk e−Rsk > x) . (3.14)

For the upper bound of (3.7),

P

(
n∑
k=1

Xk e−Rsk > x

)
≤

n∑
k=1

P(Xk e−Rsk > x− l(x))

+
∑

1≤i 6=j≤n

P
(
Xi >

l(x)

n− 1
, Xj >

x

n

)
, (3.15)

where l(x) is defined in (3.10). Since l(x) is infinitely increasing, and by (3.11), (3.13),

(3.8) and (3.9), we have, that for all x ≥ x̃ , 0 ≤ sk ≤ t ≤ T and 1 ≤ k ≤ n,

P(Xk e−Rsk > x− l(x)) =

(∫ 1

δ

+

∫ δ

0

)
F

(
x− l(x)

u

)
P(e−Rsk ∈ du)

≤
∫ 1

δ

F

(
x

u
− l(x/u)

δ

)
P(e−Rsk ∈ du) +

∫ δ

0

F

(
(1− δ)x

u

)
P(e−Rsk ∈ du)

≤ (1 + ε)

∫ 1

δ

F
(x
u

)
P(e−Rsk ∈ du) + C1 (1− δ)−p

∫ δ

0

F
(x
u

)
P(e−Rsk ∈ du)

≤ (1 + ε)P(Xke−Rsk > x) + C1 (1− δ)−p F
(x
δ

)
P

(
sup

s∈[0, T ]

Rs > − log δ

)

≤
(

1 + ε+
εC1 (1− δ)−p

1− ε

)
P(Xk e−Rsk > x) . (3.16)

By (3.12) and (3.6), the second sum on the right-hand side of (3.15) can be bounded

from above by

ε

n∑
k=1

P(Xk e−Rsk > x) . (3.17)

Combining (3.15)–(3.17), we obtain, that for all x ≥ x̃ and 0 ≤ sk ≤ t ≤ T , 1 ≤ k ≤ n,

P

(
n∑
k=1

Xk e−Rsk > x

)
≤
(

1 + ε

(
2 +

C1 (1− δ)−p

1− ε

)) n∑
k=1

P(Xk e−Rsk > x) . (3.18)

Let ∆ = ε (2 + C1 (1 − δ)−p (1 − ε)−1) > 0, which can be arbitrarily small because of

the arbitrariness of ε. Therefore, (3.7) follows from (3.14) and (3.18).
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By (3.5) and (3.7), we have, that for all x ≥ x̃ (depending only on F , ∆ and n),

1 ≤ n ≤ m and t ∈ ΛT ,

(1−∆)

n∑
k=1

P(Xke−Rτk > x , N(t) = n)

≤ P

(
n∑
k=1

Xk e−Rτk > x , N(t) = n

)

≤ (1 + ∆)

n∑
k=1

P(Xk e−Rτk > x , N(t) = n) .

This means, that it holds uniformly for all t ∈ ΛT and 1 ≤ n ≤ m

P

(
n∑
k=1

Xk e−Rτk > x , N(t) = n

)
∼

n∑
k=1

P(Xk e−Rτk > x , N(t) = n) .

Thus, it holds uniformly for all t ∈ ΛT that

I1 ∼
m∑
n=1

n∑
k=1

P(Xk e−Rτk > x , N(t) = n)

=

( ∞∑
n=1

−
∞∑

n=m+1

)
n∑
k=1

P(Xk e−Rτk > x , N(t) = n) =: I3 − I4 , (3.19)

where

I3 =

∞∑
k=1

P(Xk e−Rτk > x , N(t) ≥ k) =

∫ t

0−
P(X1 e−Rs > x)λ(ds) . (3.20)

Since

I4 ≤ F (x)

∞∑
n=m+1

nP(N(t) = n) = F (x)E[N(t)1{N(t)>m}] ,

similarly to the proof of (3.4), and by (3.1), Lemma 3.1, we obtain

lim
m→∞

lim sup
x→∞

sup
t∈ΛT

I4∫ t
0− P(X1 e−Rs > x)λ(ds)

≤ 1

C2
lim
m→∞

sup
t∈ΛT

λ−1(t)E[N(t)1{N(t)>m}] = 0 . (3.21)

Therefore, by (3.4) and (3.19)–(3.21) the desired (2.1) holds uniformly for all t ∈ ΛT

and thus we conclude the proof.

Proof of Corollary 2.1. The upper bound of ψ(x, t) is trivial. Indeed, by Theorem

2.1 it holds uniformly for all t ∈ ΛT

ψ(x, t) ≤ P(D(t) > x) ∼
∫ t

0−
P(X1 e−Rs > x)λ(ds) . (3.22)
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We next turn to the asymptotic lower bound of ψ(x, t). For any 0 < ε < 1, since

the positive Lévy process {Rt , t ≥ 0} has non-decreasing paths, and according to

0 ≤ c(u) ≤M , (2.1), we have, that for all t ∈ ΛT and sufficiently large x,

ψ(x, t) ≥ P(D(t) > x+MT ) ≥ P(D(t) > (1 + ε)x)

∼
∫ t

0−

∫ 1

0

F

(
(1 + ε)x

u

)
P(e−Rs ∈ du)λ(ds)

≥ inf
u∈(0, 1]

F
(

(1+ε) x
u

)
F
(
x
u

) ∫ t

0−

∫ 1

0

F
(x
u

)
P(e−Rs ∈ du)λ(ds)

& F ∗(1 + ε)

∫ t

0−
P(X1 e−Rs > x)λ(ds) . (3.23)

Noting F ∗(1 + ε)→ 1 as ε ↓ 0 because of F ∈ C , the desired lower bound follows from

(3.23). This completes the proof of Corollary 2.1.

4. Proof of Theorem 2.2

We start this section by a series of lemmas. The first two lemmas are special cases

of Lemmas 3.2 and 3.3 in [15] under the independence structure between {Xn , n ≥ 1}

and {θn , n ≥ 1}.

Lemma 4.1. Under the conditions of Theorem 2.2, for each k ≥ 1, it holds uniformly

for all t ∈ Λ

F (x)P(τk ≤ t) = O(1)P(Xk e−Rτk 1{τk≤t} > x) .

Lemma 4.2. Under the conditions of Theorem 2.2, for any positive function a(x) =

x/l(x) → ∞, with the slowly varying function l(x) → ∞, and each k ≥ 1, it holds

uniformly for all t ∈ Λ

P(e−Rτk 1{τk≤t} > a(x)) = o(1)P(Xk e−Rτk 1{τk≤t} > x) .

The next lemma plays an important role in the proof of Theorem 2.2.

Lemma 4.3. Under the conditions of Theorem 2.2, for any fixed 0 < y < 1 and each

k ≥ 1, it holds uniformly for all t ∈ Λε

P(Xk e−Rτk 1{τk≤t} > xy) . y−β P(Xk e−Rτk 1{τk≤t} > x) .
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Proof. We firstly show that there exists some ∆ > 0, not depending on t, such that

P(e−Rτk 1{τk≤t} > ∆) > 0 (4.1)

holds for all t ∈ Λε. Indeed, if P(θ1 = 0) > 0, then for any ∆ ∈ (0, 1) and all t ∈ Λ,

P(e−Rτk 1{τk≤t} > ∆) ≥ P(e−Rτk 1{τk=0} > ∆) = (P(θ1 = 0))k > 0 .

If P(θ1 = 0) = 0, then ε/k ∈ Λ. Hence,

P(τk ≤ ε) ≥
(
P
(
θ1 ≤

ε

k

))k
> 0 . (4.2)

For all t ∈ Λε and x ≥ 0,

P(e−Rτk 1{τk≤t} > x) ≥
∫ ε

0−
P(e−Rs > x)P(τk ∈ ds)

≥
∫ ε

0−
P

(
sup
s∈[0,ε]

Rs < − log x

)
P(τk ∈ ds) . (4.3)

Noting P(sup[0, ε]Rs =∞) = 0, there exists some ∆ > 0, not depending on t, such that

C4 := P

(
sup
s∈[0,ε]

Rs < − log ∆

)
> 0 .

Plugging this into (4.3), and by (4.2), we have that for all t ∈ Λε,

P(e−Rτk 1{τk≤t} > ∆) ≥ C4 P(τk ≤ ε) ≥ C4

(
P
(
θ1 ≤

ε

k

))k
> 0 .

We secondly prove that

P(e−Rτk 1{τk≤t} > x) = o(F (x)) , (4.4)

holds uniformly for all t ∈ Λ. Indeed, for all t ∈ Λ, by Markov’s inequality, φ(r) < 0

and Lemma 2.2, we have

P(e−Rτk 1{τk≤t} > x) ≤
∫ ∞

0−
P(e−Rs > x)P(τk ∈ ds)

≤ x−r
∫ ∞

0−
es φ(r)P(τk ∈ ds) = o(F (x)) .

The claim (4.4) implies, that there exists some increasing function l(x) ↑ ∞, not

depending on t, such that x/l(x)→∞ and

P(e−Rτk 1{τk≤t} > x/l(x)) = o(F (x)) , (4.5)
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holds uniformly for all t ∈ Λ. Then, we have that for all x > ∆, any fixed y ∈ (0, 1)

and all t ∈ Λε,

P(Xk e−Rτk 1{τk≤t} > xy)

P(Xk e−Rτk 1{τk≤t} > x)
≤

∫ x/l(x)

0− F (x y/u)P(e−Rτk 1{τk≤t} ∈ du)∫ x/l(x)

0− F (x/u)P(e−Rτk 1{τk≤t} ∈ du)

+

∫∞
x/l(x)

F (x y/u)P(e−Rτk 1{τk≤t} ∈ du)∫∞
∆
F (x/u)P(e−Rτk 1{τk≤t} ∈ du)

≤ sup
z≥l(x)

F (y z)

F (z)
+

P(e−Rτk 1{τk≤t} > x/l(x))

F (x/∆)P(e−Rτk 1{τk≤t} > ∆)
,

which, combined with (4.1), (4.5), leads to the desired result.

Lemma 4.4. Under the conditions of Theorem 2.2, for each j > i ≥ 1, it holds

uniformly for all t ∈ Λ

P(Xi e−Rτi 1{τi≤t} > x , Xj e−Rτj 1{τj≤t} > x) = o(1)
∑
k=i,j

P(Xk e−Rτk 1{τk≤t} > x) .

Proof. By Lemma 4.2, we have that uniformly for all t ∈ Λ,

P(Xi e−Rτi 1{τi≤t} > x , Xj e−Rτj 1{τj≤t} > x)

≤ P(Xi e−Rτi > x , Xj e−Rτj > x , τi ≤ t , e−Rτj ≤ a(x))

+ P(e−Rτj 1{τj≤t} > a(x)) =: J1 + o(1)P(Xj e−Rτj 1{τj≤t} > x) , (4.6)

where a(x) is the function defined in Lemma 4.2. For J1, since {Xn , n ≥ 1} are

pairwise NQD, it holds uniformly for all t ∈ Λ

J1 ≤ P
(
Xi e−Rτi > x , τi ≤ t , Xj >

x

a(x)

)
=

∫ t

0−

∫ ∞
0

P
(
Xi >

x

u
, Xj >

x

a(x)

)
P(e−Rs ∈ du)P(τi ∈ ds)

≤
∫ t

0−

∫ ∞
0

F
(x
u

)
F

(
x

a(x)

)
P(e−Rs ∈ du)P(τi ∈ ds)

= F

(
x

a(x)

)
P(Xi e−Rτi 1{τi≤t} > x) = o(1)P(Xi e−Rτi 1{τi≤t} > x) .

Plugging this estimate into (4.6), we finish the proof of the lemma.

Lemma 4.5. Under the conditions of Theorem 2.2, for each n ≥ 1, it holds uniformly

for all t ∈ Λε

P

(
n∑
k=1

Xk e−Rτk 1{τk≤t} > x

)
∼

n∑
k=1

P(Xk e−Rτk 1{τk≤t} > x) .
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Proof. For any 0 < ε < 1, we have

P

(
n∑
k=1

Xk e−Rτk 1{τk≤t} > x

)
≤

n∑
k=1

P(Xk e−Rτk 1{τk≤t} > (1− ε)x) (4.7)

+P

(
n∑
k=1

Xk e−Rτk 1{τk≤t} > x , max
1≤k≤n

Xk e−Rτk 1{τk≤t} ≤ (1− ε)x

)
=: J2 + J3 .

We firstly deal with J2. By Lemma 4.3 we have

J2 . (1− ε)−β
n∑
k=1

P(Xk e−Rτk 1{τk≤t} > x) , (4.8)

holds uniformly for all t ∈ Λε. For J3, by Lemmas 4.4 and 4.3, we have

J3 ≤ P

 n⋃
i=1

{
Xi e−Rτi 1{τi≤t} >

x

n
,

∑
1≤j≤n, j 6=i

Xj e−Rτj 1{τj≤t} > εx
}

≤
n∑
i=1

∑
1≤j≤n, j 6=i

P
(
Xi e−Rτi 1{τi≤t} >

εx

n
, Xj e−Rτj 1{τj≤t} >

εx

n

)
= o(1)

n∑
i=1

P(Xi e−Rτi 1{τi≤t} > x) , (4.9)

holds uniformly for all t ∈ Λε. From (4.8)–(4.9), it holds uniformly for all t ∈ Λε

P

(
n∑
k=1

Xk e−Rτk 1{τk≤t} > x

)
. (1− ε)−β

n∑
k=1

P(Xk e−Rτk 1{τk≤t} > x) . (4.10)

Then, the upper bound follows from (4.10) and the arbitrariness of ε.

For the lower bound, according to Bonferroni inequality,

P

(
n∑
k=1

Xk e−Rτk 1{τk≤t} > x

)
≥ P

(
n⋃
k=1

{
Xk e−Rτk 1{τk≤t} > x

})

≥
n∑
k=1

P(Xk e−Rτk 1{τk≤t} > x)

−
∑

1≤i<j≤n

P(Xi e−Rτi 1{τi≤t} > x , Xj e−Rτj 1{τj≤t} > x)

∼
n∑
k=1

P(Xk e−Rτk 1{τk≤t} > x) ,

holds uniformly for all t ∈ Λ, where we used Lemma 4.4 in the last step.

The last lemma can be found in [15].
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Lemma 4.6. Under the conditions of Theorem 2.2, it holds

lim
n→∞

lim sup
x→∞

sup
t∈Λ

P
(∑∞

k=n+1Xk e−Rτk 1{τk≤t} > x
)

P(X1 e−Rτ1 1{τ1≤t} > x)

= lim
n→∞

lim sup
x→∞

sup
t∈Λ

∑∞
k=n+1 P(Xk e−Rτk 1{τk≤t} > x)

P(X1 e−Rτ1 1{τ1≤t} > x)
= 0 .

Proof of Theorem 2.2. For any ε > 0, according to Lemma 4.6, there exists some

sufficiently large integer n0 such that uniformly for all t ∈ Λ,

max

{
P

( ∞∑
k=n0+1

Xk e−Rτk 1{τk≤t} > x

)
,

∞∑
k=n0+1

P(Xk e−Rτk 1{τk≤t} > x)

}
. εP(X1 e−Rτ1 1{τ1≤t} > x) . (4.11)

For the upper bound, by Lemma 4.5, (4.11) and Lemma 4.3, we have that for any

0 < δ < 1,

P(D(t) > x) ≤ P

(
n0∑
k=1

Xk e−Rτk 1{τk≤t} > (1− δ)x

)

+ P

( ∞∑
k=n0+1

Xk e−Rτk 1{τk≤t} > δ x

)

.
n0∑
k=1

P(Xk e−Rτk 1{τk≤t} > (1− δ)x) + εP(X1 e−Rτ1 1{τ1≤t} > δ x)

. (1− δ)−β
n0∑
k=1

P(Xk e−Rτk 1{τk≤t} > x) + ε δ−β P(X1 e−Rτ1 1{τ1≤t} > x)

≤
(
(1− δ)−β + ε δ−β

) ∫ t

0−
P(X1 e−Rs > x)λ(ds) , (4.12)

holds uniformly for all t ∈ Λε. Thus, the upper bound of (2.1) follows from (4.12) by

letting firstly ε ↓ 0, then δ ↓ 0.

For the lower bound, we obtain from Lemma 4.5 and (4.11)

P(D(t) > x) ≥ P

(
n0∑
k=1

Xk e−Rτk 1{τk≤t} > x

)

∼

( ∞∑
k=1

−
∞∑

k=n0+1

)
P(Xk e−Rτk 1{τk≤t} > x)

≥ (1− ε)
∫ t

0−
P(X1 e−Rs > x)λ(ds) , (4.13)

holds uniformly for all t ∈ Λε. It ends the proof of the theorem.
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Proof of Corollary 2.2. Clearly, Theorem 2.2 implies, that the upper bound (3.22)

holds uniformly for all t ∈ Λε.

We estimate the lower bound for the ruin probability. For any ε > 0 and the integer

n0 defined in the proof of Theorem 2.2, we have

ψ(x, t) ≥ P(D(t)−M Z > x) (4.14)

≥ P

(
n0∑
k=1

Xk e−Rτk 1{τk≤t} > (1 + ε)x

)
− P

(
Z >

εx

M

)
=: J4 − J5 ,

where Z =
∫∞

0− e−Rs ds and M > 0 is the upper bound of the intensity of premium

payments. As done in (4.13), by Lemmas 4.5, 4.3 and (4.11), we get that

J4 &
n0∑
k=1

P(Xk e−Rτk 1{τk≤t} > (1 + ε)x)

& (1 + ε)−β
n0∑
k=1

P(Xk e−Rτk 1{τk≤t} > x)

≥ (1 + ε)−β (1− ε)
∫ t

0−
P(X1 e−Rs > x)λ(ds) , (4.15)

holds uniformly for all t ∈ Λε. For J5, by Markov’s inequality and Lemmas 3.2, 2.2,

we have

J5 ≤
(
M

ε

)r
E[Zr] x−r = o(F (x)) . (4.16)

If P(θ1 = 0) > 0, then by Lemma 4.1, it holds that uniformly for all t ∈ Λ

F (x) ≤ (P(θ1 = 0))−1F (x)P(θ1 ≤ t) = O(1)P(X1 e−Rτ1 1{τ1≤t} > x) ,

which, together with (4.16), yields that uniformly for all t ∈ Λ,

J5 = o(1)P(X1 e−Rτ1 1{τ1≤t} > x) = o(1)

∫ t

0−
P(X1 e−Rs > x)λ(ds) . (4.17)

Similarly, if P(θ1 = 0) = 0, also by Lemma 4.1, it holds uniformly for all t ∈ Λε

F (x) ≤ (P(θ1 ≤ ε))−1F (x)P(θ1 ≤ t) = O(1)P(X1 e−Rτ1 1{τ1≤t} > x) ,

which implies, that (4.17) holds uniformly for all t ∈ Λε. Combining (4.15)-(4.17) and

noticing the arbitrariness of ε, we can derive the lower bound.
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