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Abstract
Let us consider a discrete-time insurance risk model with insurance and financial risks, where

the net insurance loss within period i and the stochastic discount factor from time i to time i−1
follow some certain dependence structure for each fixed i ≥ 1. Under the assumption that the
distribution of net insurance loss within one time period is consistently-varying-tailed, precise
estimates for finite and infinite time ruin probabilities are derived. Furthermore, these estimates
are uniform with respect to the time horizon.
Keywords: Asymptotics; consistent variation; financial and insurance risks; finite and infinite
time ruin probabilities; dependence
2000 Mathematics Subject Classification: 62P05; 62E10; 91B30

1 Introduction

In this paper, we consider a discrete-time insurance risk model with financial and insurance
risks in a stochastic economic environment, which was proposed by Nyrhinen (1999, 2001). In
this environment, within period i, i ≥ 1, the insurer’s net insurance loss (i.e. the total claim
amount minus the total premium income) is denoted by a real-valued random variable (r.v.) Xi.
Suppose that the insurer invests his/her surplus into both risk-free and risky assets, which lead
to an overall positive stochastic discount factor Yi from time i to time i− 1. In the terminology
of Norberg (1999), r.v.s {Xi, i ≥ 1} and {Yi, i ≥ 1} are called insurance risks and financial
risks, respectively. For each positive integer n, the sum

Sn =

n∑
i=1

Xi

i∏
j=1

Yj , (1.1)

represents the stochastic discounted value of aggregate net losses up to time n. In this paper we
are interested in the finite time ruin probability by time n and the infinite time ruin probability,
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which are defined, respectively, by

ψ(x, n) = P
(

max
1≤k≤n

Sk > x

)
, (1.2)

ψ(x) = lim
n→∞

ψ(x, n) = P
(

sup
n≥1

Sn > x

)
, (1.3)

where x ≥ 0 is interpreted as the initial wealth of the insurer.
Many works have been devoted to the investigation of the asymptotic behavior of ruin

probabilities in the above discrete-time insurance risk model, assuming that both {Xi, i ≥ 1}
and {Yi, i ≥ 1} are sequences of independent and identically distributed (i.i.d.) r.v.s and they
are independent of each other as well. One can be referred to Tang and Tsitsiashvili (2003a,
2004), Hashorva et al. (2010) among others. Clearly, if we denote the product

∏i
j=1 Yj in (1.1)

by a weight r.v. θi, then the investigation on ruin probabilities ψ(x, n) and ψ(x) boils down to
the study of the asymptotics for the tail probabilities of the maximum of randomly weighted
sums. Following the work of Tang and Tsitsiashvili (2003b), there has been a vast amount
of literature in this aspect, such as Goovaerts et al. (2005), Wang et al. (2005), Wang and
Tang (2006). We remark that the assumption of complete independence is for the mathematical
convenience, but appears unrealistic in most practical situations. A recent new trend of the
study is to introduce various dependence structures to the risk model. One direction is to allow
some dependent {Xi, i ≥ 1} and arbitrarily dependent {θi, i ≥ 1}, but keep the independence
between {Xi, i ≥ 1} and {θi, i ≥ 1}, see Zhang et al. (2009), Chen and Yuen (2009), Shen et
al. (2009), Weng et al. (2009), Gao and Wang (2010), Yi et al. (2011) among others. In the
presence of heavy-tailed insurance risks, they established the asymptotic formula

ψ(x, n) ∼
n∑
i=1

P(Xi θi > x) =
n∑
i=1

P
(
Xi

i∏
j=1

Yj > x
)
, x→∞ , (1.4)

holds for each fixed n, or

ψ(x) ∼
∞∑
i=1

P(Xi θi > x) , x→∞ . (1.5)

In such a type of dependent risk model, Shen et al. (2009) obtained the asymptotics for the
finite time ruin probability is uniform with respect to the time horizon (i.e. relation (1.4) holds
uniformly for all n ≥ 1), hence apply for the case of infinite time ruin (i.e. relation (1.5) holds).

Recently, Chen (2011) considered another type of the discrete-time risk model by allowing
the dependence between insurance and financial risks. Precisely speaking, she assumed that
{(Xi, Yi), i ≥ 1} form a sequence of i.i.d. random vectors with generic random vector (X, Y )
following a bivariate Farlie-Gumbel-Morgenstern distribution. Under the condition that the net
loss (insurance risk) distribution is subexponential, she derived the asymptotic formula (1.4) for
the finite time ruin probability. Some related results can be found in Yang et al. (2012a) and
Yang and Hashorva (2013).

Motivated by Chen (2011), in the present paper we aim to allow the generic random vector
(X, Y ) following a more general dependence structure. We firstly derive two general asymptotic
formulas for the ruin probabilities in (1.2) and (1.3) under the condition that the loss distribution
is consistently-varying-tailed (see the definition in Section 2). In doing so, each pair of the net
loss (insurance risk) and stochastic discount factor (financial risk) follows Assumptions A1–A3

in Section 2. Then we investigate the uniformly asymptotic behavior of the ruin probabilities
with respect to n ≥ 1. Finally, we pursue some refinements of the general formulas by restricting
the loss distribution to be regularly-varying-tailed. The obtained formulas are further refined
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to be completely transparent. All estimates obtained for ruin probabilities successfully capture
the impact of the underlying dependence structure of (X, Y ).

The rest of this paper is organized as follows. Section 2 prepares some preliminaries of
heavy-tailed distributions and dependence structures, Section 3 presents the main results of the
present paper and Section 4 gives their proofs.

2 Preliminaries

Throughout the paper, all limit relationships hold for x tending to ∞ unless stated otherwise.
For two positive functions a(x) and b(x), we write a(x) ∼ b(x) if lim a(x)/b(x) = 1; write
a(x) = O[b(x)] if lim sup a(x)/b(x) <∞; write a(x) � b(x) if a(x) = O[b(x)] and b(x) = O[a(x)];
and a(x) = o[b(x)] if lim a(x)/b(x) = 0. Furthermore, for two positive bivariate functions a(x, t)
and b(x, t), we write a(x, t) ∼ b(x, t) uniformly for all t in a nonempty set A, if

lim
x→∞

sup
t∈A

∣∣∣∣a(x, t)

b(x, t)
− 1

∣∣∣∣ = 0 .

The indicator function of an event A is denoted by 1IA. For real x and y, denote by x ∨ y =
max{x, y}, x ∧ y = min{x, y} and x+ = x ∨ 0. C represents a positive constant, whose value
may vary from place to place.

We shall restrict the net loss (insurance risk) distribution to some classes of heavy-tailed
distributions. An important class of heavy-tailed distributions is D , which consists of all dis-
tributions with dominated variation. A distribution F = 1− F on R belongs to the class D , if
lim supF (x y)/F (x) <∞ for any 0 < y < 1. A slightly smaller class is C of consistently-varying-
tailed distributions. A distribution F on R belongs to the class C , if limy↓1 lim inf F (x y)/F (x) =
1. Closely related distribution class is the class L of long-tailed distributions. A distribution F
on R belongs to the class L , if F (x + y) ∼ F (x) for any y > 0. A useful subclass of the class
C is the class of regularly varying tailed distributions, denoted by R. A distribution F on R
belongs to the class R−α, if limF (x y)/F (x) = y−α for some α ≥ 0 and all y > 0. It is well
known that the following inclusion relationships hold:

R−α ⊂ C ⊂ L ∩D ⊂ L

(see, e.g., Cline and Samorodnitsky (1994)). Furthermore, for a distribution F on R, denote its
upper and lower Matuszewska indices, respectively, by

J+
F = − lim

y→∞

logF ∗(y)

log y
with F ∗(y) := lim inf

F (x y)

F (x)
for y > 1 ,

J−F = − lim
y→∞

logF
∗
(y)

log y
with F

∗
(y) := lim sup

F (x y)

F (x)
for y > 1 .

Clearly, F ∈ D is equivalent to J+
F < ∞. For more details, see Bingham et al. (1987, Chapter

2.1). The following property of the class D is due to Lemma 3.5 of Tang and Tsitsiashvili
(2003a).

Lemma 2.1. For a distribution F ∈ D on R, x−p = o[F (x)] holds for any p > J+
F .

We next introduce the dependence structure between the net loss and the stochastic discount
factor via some restriction on their copula function. Let (X, Y ) be a random vector with
continuous marginal distributions F (x) and G(y), then the dependence structure of X and Y
is characterized in terms of a bivariate copula function C(u, v) by the Sklar representation
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(see Nelsen (1998) or Joe (1997)), and the joint distribution of X and Y can be given by
C[F (x), G(y)]. Define the corresponding survival copula function by

Ĉ(u, v) = u+ v − 1 + C(u, v) , (u, v) ∈ [0, 1]2 .

Assume that the copula function C(u, v) is absolutely continuous. Denote by C1(u, v) =
∂
∂uC(u, v), C2(u, v) = ∂

∂vC(u, v), C12(u, v) = ∂2

∂u ∂v C(u, v), Ĉ2(u, v) = ∂
∂v Ĉ(u, v) = 1−C2(1−

u, 1− v) and Ĉ12(u, v) = ∂2

∂u ∂v Ĉ(u, v) = C12(1− u, 1− v).
Recently, in the study of the closure and tail behavior of the product of two dependent r.v.s,

Yang and Sun (2013) utilized the following two assumptions on the absolutely continuous copula
function C(u, v). We remark that Assumption A1 can be attributed to Albrecher et al. (2006)
and A2 to Asimit and Badescu (2010).

Assumption A1. There exists a positive constant M such that

lim sup
v↑1

lim sup
u↑1

C12(u, v) < M .

Assumption A2. The relation

Ĉ2(u, v) ∼ u Ĉ12(0+, v) , u ↓ 0 ,

holds uniformly for all v ∈ (0, 1].

Remark 2.1. Clearly, Assumption A2 is equivalent to

1− C2(u, v) ∼ (1− u)C12(u, v) , u ↑ 1 ,

holds uniformly for all v ∈ [0, 1). Thus, if the copula C(u, v) of random vector (X, Y ) satisfies
Assumptions A1 and A2, then the copula of (X+, Y ), denoted by C+(u, v), satisfies these two
assumptions as well.

Similar assumptions related to Assumption A1 can be found in Ko and Tang (2008). Pointed
out by Yang and Sun (2013), some commonly used copula functions satisfy Assumptions A1 and
A2 such as the Ali-Mikhail-Haq copula of the form

C(u, v) =
u v

1− r (1− u) (1− v)
, r ∈ (−1, 1) ,

the Farlie-Gumbel-Morgenstern copula

C(u, v) = u v + r u v (1− u) (1− v) , r ∈ (−1, 1) ,

and the Frank copula

C(u, v) = −1

r
log
(

1 +
(eru − 1) (erv − 1)

e−r − 1

)
, r 6= 0 .

In order to derive our main results, we further need the third assumption below.

Assumption A3. The relation
C2(u, v)→ 0, u ↓ 0 ,

holds uniformly for all v ∈ [0, 1].

It is easy to verify that Assumption A3 is satisfied by the above three copula functions. We
remark that such an assumption is equivalent to the fact that

P(X ≤ x | Y = y) = C2[F (x), G(y)]→ 0 , x→ −∞ , (2.1)

holds uniformly for all y ∈ R.
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3 Main results

Recall the discrete-time insurance risk model described in Section 1. In the sequel, denote by
F on R, G on R+ and H on R the distributions of the net loss X, the stochastic discount
factor Y and their product X Y , respectively. For each i ≥ 1, denote by Hi the distribution of
Xi
∏i
j=1 Yj , j ≥ 1. Clearly, H1 = H.

Now we state the main results of the paper. The first two theorems derive some asymptotics
for the finite and infinite time ruin probabilities, respectively.

Theorem 3.1. In the discrete-time risk model described in Section 1, assume that {(Xi, Yi), i ≥
1} are i.i.d. random vectors with generic random vector (X, Y ) satisfying Assumptions A1–A3.
If F ∈ C and EY p <∞ for some p > J+

F , then, for each fixed n ≥ 1, it holds that

ψ(x, n) ∼
n∑
i=1

H i(x) . (3.1)

Theorem 3.2. Under the conditions of Theorem 3.1, if J−F > 0 and EY p < 1 for some p > J+
F ,

then it holds that

ψ(x) ∼
∞∑
i=1

H i(x) . (3.2)

The third result below shows that the asymptotic relation (3.1) for the finite time probability
is uniform with respect to n ≥ 1.

Theorem 3.3. Under the conditions of Theorem 3.2, (3.1) holds uniformly for all n ≥ 1.

We now return to an important special case of the above three theorems in which we assume
that F ∈ R−α for some α ≥ 0. By using the well-known Breiman theorem (see Breiman (1965)
and Cline and Samorodnitsky (1994)), we focus on improving the asymptotic formulas given
in (3.1) and (3.2) to be completely transparent. Define a nonnegative r.v. Yc, independent of
{X, Xi, i ≥ 1} and {Y, Yi, i ≥ 1}, with the distribution Gc, given by

Gc(dy) = C1[1−, G(dy)] = C12[1−, G(y)]G(dy) . (3.3)

Since Y is a positive r.v., by Assumption A2 we know that Yc is not degenerate at zero.

Corollary 3.1. (1) Under the conditions of Theorem 3.1, if F ∈ R−α for some α ≥ 0, then,
for each fixed n ≥ 1, it holds that

ψ(x, n) ∼ EY α
c

1− (EY α)n

1− EY α
F (x) , (3.4)

by convention, (1− (EY α)n)/(1− EY α) = n if EY α = 1.
(2) Under the conditions of Theorem 3.2, if F ∈ R−α for some α > 0, then

ψ(x) ∼ EY α
c

1− EY α
F (x) . (3.5)

Moreover, (3.4) holds uniformly for all n ≥ 1.
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4 Proofs

We start with some lemmas. The first one presents a property of the distribution with dominated
variation, which is due to Zhou et al. (2012) (see Prop. 3.1).

Lemma 4.1. A distribution F ∈ D if and only if for any distribution G on R+ satisfying
G(x) = o[F (x)], there exists a positive function g(·) such that

g(x) ↓ 0, x g(x) ↑ ∞ and G[x g(x)] = o[F (x)] .

The next two lemmas are related to the product of two r.v.s.

Lemma 4.2. Let X be a real-valued r.v. with distribution F , and Y be a nonnegative and
nondegenerate at zero r.v., independent of X, with distribution G. If F ∈ C and G(x) = o[F (x)],
then the distribution H of the product X Y belongs to the class C as well.

Proof. By Lemma 3.3 (iii) of Yang et al. (2012b), we have that for any fixed y ∈ (0, 1]

1 ≤ lim sup
H(x y)

H(x)
≤ lim sup

F (x y)

F (x)
,

which, combined with F ∈ C , implies H ∈ C . 2

Lemma 4.3. Let X be a real-valued r.v. with distribution F , and Y be a positive r.v. with
distribution G. Assume that X and Y are dependent according to the copula function C(u, v)
satisfying Assumptions A1 and A2. (1) If there exists a positive function g(·) such that

g(x) ↓ 0 , x g(x) ↑ ∞ and G[x g(x)] = o[H(x)] , (4.1)

then
H(x) ∼ P(X Yc > x) , (4.2)

where Yc is a nonnegative and non-degenerate at zero r.v., independent of X, with distribution
defined in (3.3).

(2) If F ∈ D and G(x) = o[F (x)], then (4.2) holds.

Proof. (1) The proof of this part of the lemma can be found in Yang and Sun (2013), see
Lemma 4.2 of that paper.

(2) Note that Yc is a nonnegative and non-degenerate at zero r.v., then there exists a positive
constant a such that P(Yc > a) > 0. By Assumption A2 we have that

H(x) ≥ P(X Y > x, Y > a) ≥
∫ ∞
a

P
(
X >

x

a

∣∣∣ Y = u
)
G(du)

=

∫ ∞
a

Ĉ2

[
F
(x
a

)
, G(u)

]
G(du)

∼ F
(x
a

) ∫ ∞
a

C12[1−, G(u)]G(du) = P(Yc > a)F
(x
a

)
,

which, combined with F ∈ D , implies F (x) = O[H(x)]. According to Lemma 4.1, there exists
a positive function g(·) such that (4.1) is satisfied. Therefore, the desired (4.2) follows from
statement (1). 2

In the following lemma from Pakes (2007), we find a sufficient condition on the equivalence
of two differences.
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Lemma 4.4. Let fi(·), i = 1, 2, 3, 4, be four positive functions. If f1(x) = O[f3(x)], f2(x) =
O[f4(x)], f4(x) = O[f3(x)] and f1(x) + f2(x) ∼ f3(x) + f4(x), then it holds that f1(x) ∼ f3(x).

Proof of Theorem 3.1. Clearly, for each n ≥ 1

P
( n∑
i=1

Xi

i∏
j=1

Yj > x
)
≤ ψ(x, n) ≤ P

( n∑
i=1

X+
i

i∏
j=1

Yj > x
)
,

which indicates that the desired (3.1) holds if we can establish

P
( n∑
i=1

Xi

i∏
j=1

Yj > x
)
∼

n∑
i=1

H i(x) , (4.3)

and

P
( n∑
i=1

X+
i

i∏
j=1

Yj > x
)
∼

n∑
i=1

H i(x) . (4.4)

We deal with relation (4.3). Since {(Xi, Yi), i ≥ 1} are i.i.d. random vectors, it holds that

n∑
i=1

Xi

i∏
j=1

Yj
d
=

n∑
i=1

Xi

n∏
j=i

Yj =: Tn , n ≥ 1 ,

where
d
= stands for equality in distribution. Thus, for (4.3), it is sufficient to prove

P(Tn > x) ∼
n∑
i=1

H i(x) . (4.5)

We will prove FTn ∈ C and (4.5) by induction on n. Since EY p <∞ for some p > J+
F , then

by Markov inequality and Lemma 2.1 we know

G(x) ≤ x−p EY p = o[F (x)], (4.6)

which, according to Lemma 4.3, implies that (4.2) holds. Recall that Yc is a nonnegative and
non-degenerate at zero r.v., independent of {X, Xi, i ≥ 1} and {Y, Yi, i ≥ 1}, with distribution
defined in (3.3). As done in the proof of Theorem 3.1 of Yang and Sun (2013), by Assumption
A1,

lim sup
Gc(x)

G(x)
= lim sup

1− C1[1−, 1−G(x)]

G(x)
= lim sup

u↑1
lim sup
v↑1

C12(u, v) < M , (4.7)

which, combined with (4.6), implies Gc(x) = o[F (x)]. Thus, by (4.2), F ∈ C and Lemma
4.2, T1 = X1 Y1 has the distribution H ∈ C and (4.5) trivially holds for n = 1. We aim to
prove FTn+1 ∈ C and (4.5) holds for n + 1, by assuming that FTn ∈ C and (4.5) holds for n.

For each i ≥ 2, since Xi Yi is independent of Y1, . . . , Yi−1, by E(
∏i−1
j=1 Yj)

p = (EY p)i−1 < ∞
for some p > J+

F and H ∈ C , as done in (4.6), we can get that Hi ∈ C . In addition, by
(4.2), F ∈ C ⊂ D and EY p < ∞ (hence, EY p

c < ∞ by (4.7)) for some p > J+
F , according to

Theorem 3.3 (iv) of Cline and Samorodnitsky (1994), we have H(x) � F (x). This, together
with (4.6) and Lemma 4.1, yields that there exists a positive function g(·) such that (4.1) holds.
By Hi ∈ C ⊂ L , i = 1, . . . , n, there exists a positive function h(x) ↑ ∞ such that

g−1(x)− h(x)→∞ and H i[g
−1(x)− u] ∼ H i[g

−1(x)] (4.8)
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holds uniformly for all |u| ≤ h(x). For each n ≥ 1, since (Xn+1, Yn+1) is independent of Tn, we
divide the tail probability P(Tn+1 > x) into four parts:

P(Tn+1 > x) = P((Tn +Xn+1)Yn+1 > x)

=

(∫ h(x)

−h(x)

∫ xg(x)

0
+

∫ ∞
h(x)

∫ xg(x)

0
+

∫ ∞
−∞

∫ ∞
xg(x)

+

∫ −h(x)

−∞

∫ xg(x)

0

)
P
(
Tn >

x

v
− u
)
P(Xn+1 ∈ du, Yn+1 ∈ dv) =: I1 + I2 + I3 + I4. (4.9)

Clearly, by (4.1),
I3 ≤ G[x g(x)] = o[H(x)] . (4.10)

By the inductive assumption (4.5), (4.8) and (4.1), we have

I1 ∼
n∑
i=1

∫ h(x)

−h(x)

∫ xg(x)

0
H i

(x
v
− u
)
P(Xn+1 ∈ du, Yn+1 ∈ dv)

∼
n∑
i=1

∫ h(x)

−h(x)

∫ xg(x)

0
H i

(x
v

)
P(Xn+1 ∈ du, Yn+1 ∈ dv)

=
n∑
i=1

P
(
Xi

i∏
j=1

Yj · Yi+1 > x, −h(x) < Xi+1 ≤ h(x), Yi+1 ≤ x g(x)
)

=

n+1∑
i=2

H i(x)−
n∑
i=1

P
(
Xi

i∏
j=1

Yj · Yi+1 > x, Xi+1 > h(x), Yi+1 ≤ xg(x)
)

−
n∑
i=1

P
(
Xi

i∏
j=1

Yj · Yi+1 > x, Xi+1 ≤ −h(x), Yi+1 ≤ x g(x)
)

+ o[H(x)]

=: I11 − I12 − I13 + o[H(x)] . (4.11)

By Assumption A3 (i.e. (2.1)), we have

I13 =

n∑
i=1

∫ xg(x)

0
P
(
Xi

i∏
j=1

Yj >
x

u

)
P(Xi+1 ≤ −h(x) | Yi+1 = u)G(du)

= o(1)
n∑
i=1

∫ x g(x)

0
P
(
Xi

i∏
j=1

Yj >
x

u

)
G(du) = o

[
n+1∑
i=2

H i(x)

]
. (4.12)
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As for I2, Since h(x) ↑ ∞, by Assumptions A2, A1 and (4.1), we obtain

I2 = P((Tn +Xn+1)Yn+1 > x, Xn+1 > h(x), Yn+1 ≤ xg(x))

=

∫ ∞
0

∫ xg(x)

0
P
(
Xn+1 > h(x) ∨

(x
v
− u
) ∣∣∣ Yn+1 = v

)
G(dv)P(Tn ∈ du)

=

∫ ∞
0

∫ xg(x)

0
Ĉ2

[
F
(
h(x) ∨

(x
v
− u
))
, G(v)

]
G(dv)P(Tn ∈ du)

∼
∫ ∞

0

∫ xg(x)

0
F
(
h(x) ∨

(x
v
− u
))
C12[1−, G(v)]G(dv)P(Tn ∈ du)

=

∫ ∞
0

∫ ∞
0

F
(
h(x) ∨

(x
v
− u
))
C12[1−, G(v)]G(dv)P(Tn ∈ du) + o[H(x)]

= P((Xn+1 + Tn)Yc > x, Xn+1 > h(x)) + o[H(x)]

= P((Xn+1 + Tn)Yc > x)− P((Xn+1 + Tn)Yc > x, −h(x) < Xn+1 ≤ h(x)) (4.13)

−P((Xn+1 + Tn)Yc > x, Xn+1 ≤ −h(x)) + o[H(x)] =: I21 − I22 − I23 + o[H(x)] .

For each i ≥ 2, since Xi Yi is independent of Y1, . . . , Yi−1, by Lemma 3.3 (iii) of Yang et al.
(2012b), it holds that for any y > 1,

[H i]∗(y) = lim inf
H i(x y)

H i(x)
≥ lim inf

H(x y)

H(x)
= lim inf

P(X Yc > xy)

P(X Yc > x)
≥ lim inf

F (x y)

F (x)
= F ∗(y) ,

which implies that for each i ≥ 1, J+
Hi
≤ J+

F . For each i ≥ 1, this, together with Hi ∈ C and

EY p
c <∞ (by EY p <∞ and (4.7)) for some p > J+

F ≥ J
+
Hi

, yields that

P
(
Xi

i∏
j=1

Yj · Yc > x
)
� H i(x) , (4.14)

according to Theorem 3.3 (iv) of Cline and Samorodnitsky (1994). By Assumption A1 and (4.1)
we have

Gc(x g(x)) =

∫ ∞
xg(x)

C12[1−, G(u)]G(du) = o[H(x)] . (4.15)

Since Xn+1, Tn and Yc are mutually independent, then, by the inductive assumption (4.5),
(4.15), (4.8) and (4.14), we can get

I23 =

∫ −h(x)

−∞

∫ xg(x)

0
P
(
Tn >

x

v
− u
)
Gc(dv)F (du) +O[Gc(x g(x))]

∼
n∑
i=1

∫ −h(x)

−∞

∫ xg(x)

0
Hi

(x
v
− u
)
Gc(dv)F (du) + o[H(x)]

≤
n∑
i=1

∫ xg(x)

0
H i

(x
v

+ h(x)
)
Gc(dv)F (−h(x)) + o[H(x)]

∼
n∑
i=1

∫ xg(x)

0
H i

(x
v

)
Gc(dv)F (−h(x)) + o[H(x)]

= o(1)
n∑
i=1

P
(
Xi

i∏
j=1

Yj · Yc > x
)

+ o[H(x)] = o

[
n+1∑
i=1

H i(x)

]
. (4.16)
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We next deal with I4. Similarly to (4.12), by Assumption A3, the inductive assumption (4.5)
and (4.8), we have

I4 = P((Tn +Xn+1)Yn+1 > x, Xn+1 ≤ −h(x), Yn+1 ≤ xg(x))

≤ P((Tn − h(x))Yn+1 > x, Xn+1 ≤ −h(x), Yn+1 ≤ x g(x))

=

∫ xg(x)

0
P
(
Tn >

x

u
+ h(x)

)
P(Xn+1 ≤ −h(x) | Yn+1 = u)G(du)

= o(1)

n∑
i=1

∫ xg(x)

0
H i

(x
u

)
G(du) = o

[
n+1∑
i=2

H i(x)

]
. (4.17)

Plugging (4.10)–(4.14), (4.16) and (4.17) into (4.9), we obtain

P(Tn+1 > x) ∼ (I11 + I21)− (I12 + I22) + o

[
n+1∑
i=1

H i(x)

]
=: J1 − J2 + o

[
n+1∑
i=1

H i(x)

]
.(4.18)

Since Xn+1 and Tn are independent, by using Theorem 2.2 of Cai and Tang (2004), together
with F ∈ C , the inductive assumptions FTn ∈ C and (4.5), (4.2) and (4.15), we obtain

J1 =
n+1∑
i=2

H i(x) +

(∫ xg(x)

0
+

∫ ∞
xg(x)

)
P
(
Xn+1 + Tn >

x

u

)
Gc(du)

∼
n+1∑
i=2

H i(x) +

∫ xg(x)

0

(
P
(
Xn+1 >

x

u

)
+

n∑
i=1

Hi

(x
u

))
Gc(du) + o[H(x)]

∼
n+1∑
i=1

H i(x) +
n∑
i=1

P
(
Xi

i∏
j=1

Yj · Yc > x
)
. (4.19)

To estimate J2, as done in (4.14), by (4.15), Assumption A2, the inductive assumption (4.5),
(4.8) and (4.14), we derive

J2 =

n∑
i=1

∫ ∞
0

P
(
Xi

i∏
j=1

Yj >
x

u

)
P(Xi+1 > h(x) | Yi+1 = u)G(du)

+

∫ h(x)

−h(x)

∫ xg(x)

0
P
(
Tn >

x

v
− u
)
Gc(dv)F (du) + o[H(x)]

∼
n∑
i=1

∫ ∞
0

P
(
Xi

i∏
j=1

Yj >
x

u

)
F [h(x)]C12[1−, G(u)]G(du)

+
n∑
i=1

∫ h(x)

−h(x)

∫ xg(x)

0
H i

(x
v

)
Gc(dv)F (du) + o[H(x)] (4.20)

= F [−h(x)]
n∑
i=1

P
(
Xi

i∏
j=1

Yj · Yc > x
)

+ o[H(x)] ∼
n∑
i=1

P
(
Xi

i∏
j=1

Yj · Yc > x
)
.

In Lemma 4.4, let consider f1(x) = J1 − J2, f2(x) = J2, f3(x) =
∑n+1

i=1 H i(x) and f4(x) =∑n
i=1 P(Xi

∏i
j=1 Yj · Yc > x). Then, by (4.19) and (4.21), clearly, f1(x) + f2(x) = J1 ∼ f3(x) +
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f4(x) and f2(x) ∼ f4(x); and by (4.14),

lim sup
f4(x)

f3(x)
≤ lim sup

∑n
i=1 P(Xi

∏i
j=1 Yj · Yc > x)∑n

i=1H i(x)

≤ lim sup
n∨
i=1

P(Xi
∏i
j=1 Yj · Yc > x)

H i(x)
<∞ , (4.21)

which implies f4(x) = O(f3(x)). Next, we find that f1(x) = O(f3(x)). Indeed, by (4.19) and
(4.21), we have

lim sup
f1(x)

f3(x)
≤ lim sup

J1

f3(x)
= 1 + lim sup

f4(x)

f3(x)
<∞ .

Thus, all conditions in Lemma 4.4 are satisfied, hence, combined with (4.18), it holds that

P(Tn+1 > x) ∼ J1 − J2 + o

[
n+1∑
i=1

H i(x)

]
∼

n+1∑
i=1

H i(x) .

This shows that the desired (4.5) holds for n + 1. And by Hi ∈ C , i ≥ 1, it is easy to see
FTn+1 ∈ C . It ends the proof of (4.3).

Finally, we turn to relation (4.4). Denote by T+
n =

∑n
i=1X

+
i

∏n
j=i Yj . The proof is same to

that of (4.3) by noting Remark 2.1, and replacing (4.9), (4.11), (4.14), respectively, by

P(T+
n+1 > x) =

(∫ h(x)

0

∫ xg(x)

0
+

∫ ∞
h(x)

∫ xg(x)

0
+

∫ ∞
0

∫ ∞
xg(x)

)
P
(
T+
n >

x

v
− u
)
P(X+

n+1 ∈ du, Yn+1 ∈ dv) =: I1 + I2 + I3 ,

where

I1 ∼
n+1∑
i=2

H i(x)−
n∑
i=1

P
(
X+
i

i∏
j=1

Yj · Yi+1 > x, X+
i+1 > h(x), Yi+1 ≤ x g(x)

)
+ o[H(x)]

=: I11 − I12 + o[H(x)] ,

I2 ∼ P((X+
n+1 + T+

n )Yc > x)− P((X+
n+1 + T+

n )Yc > x ,X+
n+1 ≤ h(x)) + o[H(x)]

=: I21 − I22 + o[H(x)] ,

dropping the redundant (4.12), (4.16), (4.17); and substitutingXi, Ti withX+
i , T

+
i , respectively,

i ≥ 1, in all relations in the above proof. 2

The next two lemmas will be needed in the proof of Theorem 3.2, and they are found in Yi
et al. (2011).

Lemma 4.5. Let X be a real-valued r.v. with distribution F ∈ D and J−F > 0, and Y be a
nonnegative and non-degenerate at zero r.v., independent of X. Then, for any fixed constants
0 < p1 < J−F ≤ J

+
F < p2 <∞, there exist two positive constants C and x0, which are irrespective

of Y , such that for all x ≥ x0,

P(X Y > x) ≤ C F (x) (EY p1 ∨ EY p2) .

Lemma 4.6. Let X and Y be two independent nonnegative r.v.s. If F ∈ D , the distribution of
X, and Y is not degenerate at zero, then, for any fixed p > J+

F , there exists a positive constant
C, which is irrespective of Y , such that for all x ≥ 0,

E(X Y )p1I{X Y≤x} ≤ C xp P(X Y > x) .
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Proof of Theorem 3.2. For any 0 < p′ < J−F ≤ J
+
F < p <∞, denote by µp = EY p′∨EY p.

Then, by Jensen inequality, EY p < 1 implies that µp < 1.
We will prove relation (3.2) by using the method of the tail asymptotics for randomly

weighted sums. Let Zi = Xi Yi, i ≥ 1, Θ1 = 1 and Θi =
∏i−1
j=1 Yj , i ≥ 2. Clearly, for

each i ≥ 1, Zi is independent of Θi. By Lemma 4.5, there exist two positive constants C and
x0, irrespective of Θi, i ≥ 1, such that for each i ≥ 1 and all x ≥ x0,

H i(x) = P(Zi Θi > x) ≤ C H(x)
(
EΘp′

i ∨ EΘp
i

)
= C µi−1

p H(x) . (4.22)

For the lower bound of (3.2), by Theorem 3.1 and (4.22), we have that for any fixed n ≥ 1,

lim inf
ψ(x)∑∞
i=1H i(x)

≥ lim inf
ψ(x, n)∑n
i=1H i(x)

(
1− lim sup

∞∑
i=n+1

H i(x)

H(x)

)

≥ 1− C
∞∑

i=n+1

µi−1
p → 1 as n→∞ . (4.23)

Now we deal with the upper bound of (3.2). For any 0 < δ < 1 and any n ≥ 1, we have

ψ(x) ≤ P
( ∞∑
i=1

X+
i

i∏
j=1

Yj > x
)

≤ P
( n∑
i=1

X+
i

i∏
j=1

Yj > (1− δ)x
)

+ P
( ∞∑
i=n+1

X+
i

i∏
j=1

Yj > δ x
)

=: K1(x) +K2(δ x) . (4.24)

From (4.4) and Hi ∈ C , i ≥ 1, we obtain that for any n ≥ 1

lim sup
K1(x)∑∞
i=1H i(x)

≤ lim sup

∑n
i=1H i((1− δ)x)∑n

i=1H i(x)

≤ lim sup
n∨
i=1

H i((1− δ)x)

H i(x)
→ 1 as δ ↓ 0 . (4.25)

For each i ≥ 2, define two independent r.v.s Z+
i = X+

i Yi and Θi =
∏i−1
j=1 Yj . Then, by Markov

inequality we have

K2(x) ≤
∞∑

i=n+1

P(Z+
i Θi > x) + P

( ∞∑
i=n+1

Z+
i Θi 1I{Z+

i Θi≤x} > x
)

(4.26)

≤
∞∑

i=n+1

H i(x) + x−p E
( ∞∑
i=n+1

Z+
i Θi 1I{Z+

i Θi≤x}

)p
=: K21(x) +K22(x) .

If p ≤ 1, then, by using the inequality
∑∞

j=1 xj ≤ (
∑∞

j=1 x
q
j)

1/q with xj ≥ 0, j ≥ 1 and 0 < q ≤ 1,
and according to Lemma 4.6, there exists a positive constant C, irrespective of Θi, i ≥ 1, such
that for all x > 0

K22(x) ≤ x−p
∞∑

i=n+1

E(Z+
i Θi)

p 1I{Z+
i Θi≤x} ≤ C

∞∑
i=n+1

P(Z+
i Θi > x)

= C K21(x) . (4.27)
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If p > 1, then by Minkowski inequality and Lemma 4.6, we have

K22(x) ≤ x−p

( ∞∑
i=n+1

(
E(Z+

i Θi)
p 1I{Z+

i Θi≤x}

) 1
p

)p

≤ C

( ∞∑
i=n+1

(H i(x))
1
p

)p
. (4.28)

Combining (4.27)–(4.28) and by (4.22), µp < 1, we obtain

lim sup
K2(x)

H(x)
≤ C

( ∞∑
i=n+1

µi−1
p +

( ∞∑
i=n+1

µ
i−1
p
p

)p)
→ 0 as n→∞ ,

which, together with H ∈ C ⊂ D , implies

lim sup
K2(δ x)∑∞
i=1H i(x)

≤ lim sup
K2(δ x)

H(δ x)
· lim sup

H(δ x)

H(x)
= 0 . (4.29)

Plugging (4.25) and (4.29) into (4.24), we can derive

lim sup
ψ(x)∑∞
i=1H i(x)

≤ 1 . (4.30)

Therefore, the desired (3.2) follows from (4.23) and (4.30). 2

Proof of Theorem 3.3. We firstly estimate the upper bound. For any positive x and any
N ≥ 2

sup
n≥1

ψ(x, n)∑n
i=1H i(x)

≤ max

{
N∨
n=1

ψ(x, n)∑n
i=1H i(x)

,

∞∨
n=N+1

ψ(x)∑n
i=1H i(x)

}
. (4.31)

By Theorem 3.1 we have

lim
N∨
n=1

ψ(x, n)∑n
i=1H i(x)

= 1 . (4.32)

By Theorem 3.2, (4.22) and µp < 1 we have

lim sup
∞∨

n=N+1

ψ(x)∑n
i=1H i(x)

≤ lim
ψ(x)∑∞
i=1H i(x)

· lim sup
1 +

∑∞
i=N+2

Hi(x)

H(x)

1−
(∑∞

i=N+2
Hi(x)

H(x)

)2

≤
1 + C

∑∞
i=N+2 µ

i−1
p

1− C2
(∑∞

i=N+2 µ
i−1
p

)2 → 1 as N →∞ . (4.33)

Then, the upper bound follows from (4.31)–(4.33).
For the lower bound, similarly, for any positive x and any N ≥ 2,

inf
n≥1

ψ(x, n)∑n
i=1H i(x)

≥ min

{
N∧
n=1

ψ(x, n)∑n
i=1H i(x)

,
∞∧

n=N+1

ψ(x, N)∑n
i=1H i(x)

}
. (4.34)

By Theorem 3.1 we have

lim

N∧
n=1

ψ(x, n)∑n
i=1H i(x)

= 1 . (4.35)
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By Theorem 3.2, (4.22) and µp < 1 we have

lim inf
∞∧

n=N+1

ψ(x, N)∑n
i=1H i(x)

≥ lim
ψ(x, N)∑N
i=1H i(x)

lim inf

(
1−

∞∑
i=N+1

H i(x)

H(x)

)

≥ 1− C
∞∑

i=N+1

µi−1
p → 1 as N →∞ . (4.36)

Therefore, the lower bound is obtained from (4.34)–(4.36). 2

Proof of Corollary 3.1. We firstly prove part (1). If F ∈ R−α and EY p < ∞ (hence,
by (4.7) holds EY p

c < ∞) for some p > J+
F = α, then, by (4.2) in Lemma 4.3 and Breiman

theorem, we have
H(x) ∼ P(X Yc > x) ∼ EY α

c F (x) ,

which implies H ∈ R−α. Again by Breiman theorem, we obtain that for each i ≥ 1

H i(x) ∼ EY α
c (EY α)i−1 F (x) . (4.37)

Therefore, the desired (3.4) follows from (3.1) and (4.37).
The proof of part (2) is similar to that of part (1). The claims follow from (4.37) and by

using Theorems 3.2 and 3.3, respectively. 2
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