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Abstract: Gnedenko type limit theorems on extremes for the cyclostationary χ2-processes are
proved.
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1. INTRODUCTION AND MAIN RESULTS

During last decades the study of probabilities of large extremes of Gaussian random
processes has been intensively progressed. Several powerful methods were developed to
get both asymptotic behaviors of the probabilities and uniform boundaries for them,
see for details and further references [1], [7], [2], [10], [3]. It turned out that a part of the
methods, in particular, the double sum method could be applied to Gaussian random
fields too, so that asymptotic methods for Gaussian random fields were developed in
parallel with the methods for Gaussian processes, see [2], [10]. But, in spite of increasing
interest to behaviors of large deviations of Gaussian vector processes, see [8], [2], [12]
one can see some backlog in developments of corresponding asymptotic methods for the
vector case. The present paper is in abreast of works on generalizations of the double
sum method to Gaussian vector processes, see [9], [4], [10]. In line with [5] we consider
the norm of a Gaussian vector cyclostationary processes with independent identically
distributed components. We call this process a χ-process, which is also cyclostationary.
The random process X(t), t ∈ R is called cyclostationary with period τ if for every
v ∈ R its mean EX(t) and covariance function rt(v) = r(t, t+v) are periodic functions
in t with period τ.

Results and references relating to spectral properties of this class of random pro-
cesses can be found in [13], see also [5]. A spectral representation and conditions for
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the harmonizability of the process are also provided there. The evolutionary spectral
density can be estimated by means of the periodogram. Similar problems where con-
sidered in [11] for stationary χ-processes. Here we extend methods and approaches
from [9], [4], [10], [11], to get results for cyclostationary processes.

Let X1(t), ..., Xn(t), t ∈ R, be independent copies of a Gaussian zero mean
cyclostationary processes X(t), denote X(t) := (X1(t), X2(t), ..., Xn(t)) and χ2(t) :=
‖X(t)‖2 , t ∈ R, the cyclostationary χ2-process. We also write χ(t) := ‖X(t)‖ . Here-
inafter we assume smoothness and non-degeneracy of X(t) :

Assumption 1 The process X(t) is square mean differentiable, a.s. continuous and
centered.

Assumption 2 The correlation function of X(t) equals one only at coincided points.

We use the following notations for maximum distributions,

PX(u,W ) = P

(
max
t∈W

X(t) ≤ u

)
and QX(u,W ) = 1− PX(u, W ),

where X(t), t ∈W, is a random process or field.
First we formulate results concerning behaviors of the maximum distributions of the

norm of a cyclostaionary χ-process on its period. These results constitute the base of
our main considerations. The corresponding proofs are known or simple, we postpone
them to the section 3.

Proposition 1 [9] Suppose that there exists a unique t0 ∈ (0, τ) such that

sup
t∈[0,T ]

σ2(t) = σ2(t0) = 1,

where the variance σ2(t) = var X(t) is twice continuously differentiable at the point t0
with σ′(t0) = 0, σ′′(t0) < 0, EX

′
(t0)

2 > 0. Then

Qχ(u, [0, τ ]) = C un−1e−
u2

2 (1 + o(1))

as u →∞, where

C =
21−n

2

Γ(n/2)

√
1− EX ′(t0)2

σ′′(t0)

and Γ is the Gamma function.
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Proposition 2 Suppose that at some set T0 ⊂ [0, τ ] with a positive measure, the fol-
lowing conditions hold,

σ2(t) = 1, t ∈ T0, σ2(t) < 1, t ∈ [0, τ ]\T0, EX ′(t)2 > 0, ∀t ∈ T0.

Then
Qχ(u, [0, τ ]) = D un−1e−u2/2(1 + o(1))

as u →∞, where

D =

∫
T0

√
EX ′(t)2dt

√
πΓ(n/2)

.

Proposition 3 Suppose that function σ2(t), t ∈ [0, τ ], attains maximum at interior
points ti, i = 1, 2, ..., k, of [0, τ ], and

σ2(ti) = 1, σ
′
(ti) = 0, σ′′(ti) < 0, EX

′
(ti)

2 > 0.

Suppose that function σ2(t) is twice continuously differentiable at the points ti, i =
1, 2, ..., k. Then

Qχ(u, [0, T ]) =
k∑

i=1

21−n
2

Γ(n
2
)
αiu

n−1e−
u2

2 (1 + o(1)),

where u →∞ and αi =
√

1− EX ′(ti)2/σ′′(ti).

Now formulate main results of the paper.

Theorem 1 Let Assumptions 1 and 2 for the component X1(t) of the Gaussian vector
cyclostationary process with period τ, τ > 0, be fulfilled. Let the assumption of Propo-
sition 1 be fulfilled on the interval [0, τ ]. Suppose that the covariance function r(t1, t2)
of the process X(t) satisfies

max
t>0

r(t, t + s) log s → 0, s →∞. (1)

Then, for all x ∈ R,

lim
T→∞

P

(
max
t∈[0,T ]

χ(t) <
x

aT

+ bT

)
= e−e−x

,

where

aT =

√
2 ln

T

τ
, bT =

√
2 ln

T

τ
+

ln C + n−1
2

ln
(
2 ln T

τ

)
√

2 ln T
τ

.
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Theorem 2 Let Assumptions 1 and 2 for the component X1(t) of the Gaussian vector
cyclostationary process with period τ, τ > 0, be fulfilled. Let the assumption of Propo-
sition 2 be fulfilled on the interval [0, τ ]. Suppose that (1) is fulfilled. Then, for all
x ∈ R

lim
T→∞

P

(
max
t∈[0,T ]

χ(t) <
x

aT

+ bT

)
= e−e−x

,

where

aT =

√
2 ln

T

τ
, bT =

√
2 ln

T

τ
+

lnD + n−1
2

ln(2 ln T
τ
)√

2 ln T
τ

.

Theorem 3 Let Assumptions 1 and 2 for the component X1(t) of the Gaussian vector
cyclostationary process with period τ, τ > 0, be fulfilled. Let the assumption of Propo-
sition 3 be fulfilled on the interval [0, τ ]. Suppose that (1) is fulfilled. Then, for all
x ∈ R

lim
T→∞

P

(
max
t∈[0,T ]

χ(t) <
x

aT

+ bT

)
= e−e−x

,

where

aT =

√
2 ln

T

τ
, bT =

√
2 ln

T

τ
+

ln E + n−1
2

ln(2 ln T
τ
)√

2 ln T
τ

,

and E =
k∑

i=1

21−n
2

Γ(n
2 )

αi.

2. PROOF OF MAIN RESULTS.

We prove Theorem 1. The proofs of the followed theorems are similar and based
on the Propositions 2 and 3, respectively, instead of the Proposition 1. Introduce the
Gaussian field

Y (t,v) = X1(t)v1 + X2(t)v2 + ... + Xn(t)vn, t ∈ [0, T ], v =(v1, ..., vn).

Note that for any S ⊂ [0, T ],

sup
t∈S

χ(t) = sup
(t,v)∈S×Sn−1

Y (t,v),

4



where Sn−1 := {(v1, v2, ..., vn) : v2
1 + v2

2 + ... + v2
n = 1}. The covariance function of

Y (t,v) equals
r((t1,v1), (t2,v2) = r(t1, t2)(v1,v2),

where (v1,v2) is the scalar product. Under the assumptions of Theorem 1, for the
correlation function of the field Y (t,v) we have, ([9], Lemma 9),

ρY ((t1,v1), (t2,v2)) = 1−
(

D(t0)|t1 − t2|2 +
1

2
||v1 − v2||2

)
(1 + o(1)), (2)

as t1, t2 → t0, where D(t0) = 1
2
EX ′(t0)2 > 0. For the variance of the field Y (t,v) we

have, √
var Y (t,v) = σ(t) = 1− 1

2
σ′′(t0)(t− t0)

2(1 + o(1)), (3)

as t → t0. We partition the interval [0, T ] with long intervals of length L intermitted
short intervals and show that short intervals play negligible role in the limit distribution.
To show this we will use Berman’s inequality for a time discretization of the process χ,
making sure that the discrete time approximation is precise enough. These ideas are
discussed in the following lemmata.

Lemma 1 Denote Lu = Lu1−neu2/2, L is a constant. For any L > 0 and any ε > 0
one can find b > 0, u0 > 0, C = C(L) > 0 and a grid Rb = Rb,u,ε (a finite set of
points) on the cylinder [0, Lu]× Sn−1, such that for all u ≥ u0,

PY (u, ([0, Lu]× Sn−1) ∩Rb)− PY (u, ([0, Lu]× Sn−1)) ≤ Bε.

Proof: We partition the sphere Sn−1 onto N(ε) parts A1, ..., AN(ε) in the following
way. Consider the polar coordinates on the sphere Sn−1,

(x1, x2, ..., xn) = S(ϕ1, ϕ2, ...ϕn−1),

ϕ1, ϕ2, ...ϕn−2 ∈ [0, π), ϕn−1 ∈ [0, 2π) and divide the intervals [0, π] and [0, 2π] on
intervals of length ε (or less for the last interval). This partition of the parallelepiped
[0, π]n−2 × [0, 2π] generates the partition A1, ..., AN(ε) of the sphere. Now we construct
the grid Rb,u,ε. Choose in any Aj an inner point and consider the tangent plane to
the cylinder [0, Lu] × Sn−1 at this point. Introduce in the tangent plane rectangular
coordinates, with origin at the tangent point, where the first coordinate is held by t,
so that the plane becomes n-dimensional Euclidean space and consider on it the grids

Rj(b) := Rj,P
b,u,ε := (bk1u

−1, bk2u
−1, ..., bknu

−1), j = 1, 2, ..., N(ε),
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where (k1, k2, ..., kn) ∈ Zn. Suppose that ε is so small that the orthogonal projections
of all Aj onto corresponding tangent planes are one-to-one. We denote by AP

j the

projection of Aj at the tangent plane, and by Rj
b,u,ε, the prototype of Rj,P

b,u,ε under this
projection. We show that the grid

Rb :=

N(ε)⋃
j=1

Rj
b,u,ε,

with an appropriate choice of its parameters, satisfies the assertion of the lemma. Let
us denote by w1, w2, ..., the projections of points v1,v2, ... from Aj at the corresponding
tangent plane. From the geometry of sphere it follows that for all sufficiently small ε,

sup
v1,v2∈Aj , j=1,2,...,N(ε)

‖w1 −w2‖
‖v1 − v2‖ ≤ 1 + 2ε,

inf
v1,v2∈Aj , j=1,2,...,N(ε)

‖w1 −w2‖
‖v1 − v2‖ > 1− 2ε.

Therefore from (2) it follows that for all sufficiently small ε there exist δ(ε) > 0 such
that for every j = 1, 2, ..., N(ε), for the covariance function rj((t,w1), (s,w2)) of the
Gaussian field Zj(t,w) =Y (t,v), v ∈ Aj the following inequalities hold,

(1− 2ε)

(
D(t0)(t− s)2 +

1

2
||w1 −w2||2

)
≤ 1− rj((t,w1), (s,w2))

≤ (1 + 2ε)

(
D(t0)(t− s)2 +

1

2
||w1 −w2||2

)
,

where t, s ∈ (t0−δ/2, t0 +δ/2), w1,w2 ∈ AP
j . Since the process X(t) is cyclostationary

we have

PY (u, ([0, Lu]× Sn−1) ∩Rb)− PY (u, [0, Lu]× Sn−1)

= P




N(ε)⋂
j=1

(
max

([0,Lu]×Aj)∩Rb

Y (t,v) ≤ u

)
∩

N(ε)⋃
j=1

(
max

[0,Lu]×Aj

Y (t,v) > u

)


≤
([

Lu

τ

]
+ 1

) N(ε)∑
j=1

P

(
max

([0,τ ]×Aj)∩Rb

Y (t,v) ≤ u, max
[0,τ ]×Aj

Y (t,v) > u

)
≤
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≤
([

Lu

τ

]
+ 1

)[
QY

(
u,

(
[0, τ ]\(t0 − δ

2
, t0 +

δ

2
)

)
× Sn−1

)

+

N(ε)∑
j=1

P

(
max

((t0−δ/2,t0+δ/2)×AP
j )∩Rj(b)

Zj(t,w) ≤ u, max
(t0−δ/2,t0+δ/2)×AP

j

Zj(t,w) > u

)
 . (4)

Using Fernique-Landau-Shepp inequality, we get
([

Lu

τ

]
+ 1

)
QY

(
u, ([0, τ ]\(t0 − δ

2
, t0 +

δ

2
))× Sn−1

)
= O

([
Lu

τ

]
e
− u2

2σ2
1

)
= o(1),

as u →∞, where σ2
1 < σ2(t0) = 1.

To estimate the sum in the right-hand part of (4), we need to prove the following

Lemma 2 Let all assumptions of the Proposition 1 be fulfilled. Then

QY (u,
(
(t0 − δ/2, t0 + δ/2)× AP

j

) ∩Rj(b)) = Cb un−1e−
u2

2 (1 + o(1))

as u →∞, with Cb → C as b → 0.

To prove this Lemma, one has to repeat some parts of the proof of Theorem 1, [9],
changing the parametric set in continuous time with discrete one, Rj(b). We give more
detailed explanations in the Appendix how to modify the proof of Theorem 1, [9].

Now we have for some C > 0 and all sufficiently small b > 0,

P

(
max

((t0−δ/2,t0+δ/2)×AP
j )∩Rj(b)

Zj(t,w) ≤ u, max
(t0−δ/2,t0+δ/2)×AP

j

Zj(t,w) > u

)

= QY (u,
(
(t0 − δ/2, t0 + δ/2)× AP

j

)−QY (u,
(
(t0 − δ/2, t0 + δ/2)× AP

j

) ∩Rj(b))

= (C − Cb)u
n−1e−

u2

2 (1 + o(1)) ≤ Cεun−1e−
u2

2 .

Thus for sufficiently large u and sufficiently small b, the sum in the right-hand part of
(4) can be bounded by ε, so Lemma follows.

Denote by Kj, j = 1, 2, ..., the intervals
(

δ
2
, τ − δ

2

)
,

(
τ + δ

2
, 2τ − δ

2

)
, .... We need a

partition of the interval [0, Lu] on subintervals which are issued by shifting the interval
( δ

2
, τ − δ

2
) with a step τ. Let us denote the union of these subintervals by t(u, L, δ).

Lemma 3 For every L > 0, any ε > 0 and any δ > 0 such that t0 ∈
(

δ
2
, τ − δ

2

)
, and

all sufficiently large u

PY (u, t(u, L, δ)× Sn−1 ∩Rb)− PY (u, ([0, Lu]× Sn−1) ∩Rb) ≤ ε.
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Proof: Since
sup

(0,τ)\( δ
2
,τ− δ

2
)

σ2(t) = b < 1,

one can see that

PY (u, t(u, L, δ)× Sn−1 ∩Rb)− PY (u, ([0, Lu]× Sn−1) ∩Rb) ≤
≤ Q (u, ([0, Lu]\t(u, L, δ))× Sn−1) ≤ 2

τ
Luu

n−1e−u2/2b = o(1),

as u →∞.
Consider a sequence of independent copies Yj(t,v) of the Gaussian field Y (t,v), (t,v) ∈

Kj ×Sn−1, j = 1, 2, ..., and introduce the Gaussian random field Y0(t,v) = Yj(t,v), for
(t,v) ∈ Kj × Sn−1, j = 1, 2, ...

Lemma 4 For any L > 0

PY0 (u, [t(u, L, δ)× Sn−1] ∩Rb)− PY (u, [t(u, L, δ)× Sn−1] ∩Rb) → 0,

as u →∞.

Proof: By Berman’s inequality, we have

|PY (u, [t(u, L, δ)× Sn−1] ∩Rb)− PY0(u, [t(u, L, δ)× Sn−1] ∩Rb)| =∣∣∣∣P
(
∃(t,v) ∈ [t(u, L, δ)× Sn−1] ∩Rb :

Y (t,v)

σ(t,v)
≤ u

σ(t,v)

)

− P

(
∃(t,v) ∈ [t(u, L, δ)× Sn−1] ∩Rb :

Y0(t,v)

σ(t,v)
≤ u

σ(t,v)

)∣∣∣∣
≤

∑

(t,v1),(s,v2)∈[t(u,L,δ)×Sn−1]∩Rb

(t,v1)6=(s,v2)

|rY ((t,v1), (s,v2))− rY0((t,v1), (s,v2))|

×
∫ 1

0

gh

(
u

σ (t,v1)
,

u

σ (t,v2)

)
dh

where σ2(t,v) = VarY (t,v) is the variance of Y , gh (x, y) is the probability density of
two-dimensional Gaussian vector

(√
h
Y (t,v1)

σ(t,v1)
+
√

1− h
Y0(t,v1)

σ(t,v1)
,
√

h
Y (s,v2)

σ(s,v2)
+
√

1− h
Y0(s,v2)

σ(s,v2)

)
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at the point (x, y) , rY ((t,v1), (s,v2)) is the covariance function of the field Y (t,v)
σ(t,v)

and

rY0((t,v1), (s,v2)) is the covariance function of the field Y0(t,v)
σ(t,v)

.
Taking into account the expression for the covariance function of Y we get that the

last expression is bounded by

1

π

∑

i6=j
t∈Ki,s∈Kj

∑

K(i,j)

|ρ (t, s)|
[
1− 1

2
‖v1 − v2‖2

]
×

∫ 1

0

(
1− h2ρ2(t, s)

[
1− 1

2
‖v1 − v2‖2

])− 1
2

× exp

{
−

[
2

(
1− h2ρ2(t, s)

[
1− 1

2
‖v1 − v2‖2

])]−1

×
(

u2

σ2(t)
− 2hρ(t, s)

[
1− 1

2
‖v1 − v2‖2

]
u2

σ(t)σ(s)
+

u2

σ2(t)

)}
dh

≤ 1

π

∑

K(i,j)

|ρ(t, s)| exp

(
− u2

1 + |ρ(t, s)|
)

where ρ(t, s) is the correlation function of the process X(t) and we have denoted to
shorten the formulas

K(i, j) := {(t,v1) ∈ (Ki × Sn−1) ∩Rb (s,v2) ∈ (Kj × Sn−1) ∩Rb}.
From (2) it follows that for any ∆ > 0, sup

|t−s|>∆

|ρ(t, s)| < 1. Hence there exists γ2, 0 <

γ2 < 1, such that sup
|t−s|>∆

|ρ(t, s)| < 1− γ2.

Consider first ”not too outstanding” t and s, that is, t ∈ Ki, s ∈ Kj, and d(Ki, Kj) :=

sup{|t− s| : t ∈ Ki, s ∈ Kj} ≤ Lγ1
u , where γ1 ∈

(
0, γ2

2−γ2

)
. Denoting by Σ1 the part of

the sum over such t, s,v1,v2 we get,

Σ1 ≤ C1

∑

K(i,j)

exp

(
− u2

1 + |ρ(t, s)|
)

≤ C2

∑

i 6=j
d(Ki,Kj)≤L

γ1
u

∑

K(i,j)

exp

(
− u2

2− γ2

)

= O

(
L1+γ1

u εn(n−1)/2u2nεn(n−1)/2e
− u2

2−γ2

)
= o(1),
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as u → ∞ where C1 and C2 are constants. We have used above that the volume of
every Aj has order εn(n−1)/2, for small enough ε.

Turn now to those t,s,v1,v2 for which d(Ki, Kj) > Lγ1
u , t ∈ Ki, s ∈ Kj. Denote the

corresponding part of the sum by Σ2. From (1) we get in this case,

κ(u) := sup
|t−s|≥L

γ1
u

|ρ(t, s)| = o(u−2)

as u →∞, hence

Σ2 ≤ C3κ(u)
∑

K(i,j)

exp

(
− u2

1 + |ρ(t, s)|
)

≤ C4κ(u)e−u2
∑

i6=j
d(Ki,Kj)>L

γ1
u

∑

K(i,j)

exp

( |ρ(t, s)|u2

1 + |ρ(t, s)|
)

= O
((

Luε
n(n−1)/2un

)2
κ(u)e−u2

)
= O(u2κ(u)) = o(1), u →∞,

where C3 and C4 are constants. Thus Lemma is proven.
Proof of Theorem 4: We denote by u = u(x, T ) = x

aT
+ bT . It is easy to check

that

lim
T→∞

T
C
τ
un−1e−u2/2ex = 1.

Note that Lemma 1 holds true also for the field Y0, with the same grid (we consider
the field Y0 at the set t(u, L, δ)×Sn−1). Combining Lemma 1, Lemma 3, Lemma 4, we
get

P

(
max
t∈[0,T ]

χ(t) <
x

aT

+ bT

)

= (1 + o(1))

(
1− P

(
max

( δ
2
,τ− δ

2)×Sn−1

Y0(t,v) >
x

aT

+ bT

))T/τ

= (1 + o(1)) exp

(
−T

τ
Cun−1e−u2/2

)
= (1 + o(1)) exp

(−e−x
)
, T →∞.

3. PROOF OF AUXILIARY RESULTS.
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Proposition 1 is proved in [9].
Outline of proof of Proposition 2: Denote by U a union of finite numbers

of intervals such that T0 ⊂ U and ε > dist([ 0, T ] \ U, T0) > 0. By Landau-Shepp
inequality, for some δ > 0, C > 0,

QY (u, ([ 0, T ]\U)× Sn−1) ≤ Ce−
u2

2(1−δ) ,

Assuming that T0 = [t0, t1], 0 < t0 < t1 < T, one can use Corollary 7.4, [10], to get

QY (u, T0 × Sn−1) = Dun−1e−
u2

2 (1 + o(1)), u →∞. (5)

Limit relation (5) for unions of finite numbers of intervals can be easily proved by
standard Double Sum Method. It also follows from Theorem 7.1, [10], by repetition
arguments used in the proof of Corollary 7.4.

For general T0 we take in account that due to differentiability σ, for any ε, one can
find two finite unions of non-intersecting intervals, U− and U+, such that U− ⊂ T0 ⊂ U+

with ν(U+ \ U−) ≤ ε, ν is Lebesgue measure. It can be seen that

QY (u, U− × Sn−1) ≤ QY (u, T0 × Sn−1) ≤ QY+(u, U+ × Sn−1),

where Y+(t,v) generated by

X+(t) = σ(t)−1X(t), t ∈ U+.

From here and (5) we have for general T0,

QY (u, T0 × Sn−1) ≥ (D−ε)un−1e−
u2

2 (1 + o(1)), u →∞.

Further, we have,

QY (u, [ 0, T ]× Sn−1) ≤ QY+(u, U × Sn−1) + QY (([ 0, T ] \ U)× Sn−1)

≤ QY+(u, U × Sn−1) + Ce−
u2

2(1−δ) ,

Using the above arguments with a Gaussian field generated Gaussian process Xε(t) =
σ(t)−1X(t), t ∈ U we get that for any positive ε and all sufficiently large u,

QY (u, [ 0, T ]× Sn−1) ≤ (D + ε)un−1e−
u2

2 + Ce−
u2

2(1−δ(ε)) .

The above inequalities follow The Proposition.
Proposition 3 can be easily derived from Proposition 1 by standard double sum

method.
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APPENDIX: OUTLINE OF THE PROOF OF LEMMA 2.

First, Lemma 3 from [9] must be changed to prove the Lemma 2. Let ξ(t),
t =(t1, ..., tn), be a Gaussian homogeneous centered field with covariance function r(t)
such that

r(t) =1− |t|2 + o(|t|2)
as t → 0. Consider the standard field,

η(t) =
ξ(t)

1 + βt21
.

Lemma 5 (Lemma 3 [9]) For any λi ≤ 0, µi ≥ 0, i = 1, ..., n, and any finite collection
of points R ⊂ ⊗n

i=1[λi, µi],

P

(
max
ut∈R

ξ(t)

1 + βt21
> u

)
= Ψ(u)Hβ

2 (λ, µ,R)(1 + o(1))

as u →∞, where

Hβ
2 (λ, µ,R) = E exp

[
max
t∈R

(√
2

n∑
i=1

ξiti − βt21 − |t|2
)]

and ξi are independent standard Gaussian variables.

The proof of this Lemma repeats the proof of Lemma 3 from [9].

Lemma 6 Let RN be a sequence of grids on
⊗n

i=1[λi, µi] (finite collections of points
from

⊗n
i=1[λi, µi]) such that

⋃
N RN is dense in

⊗n
i=1[λi, µi]. Then

lim
N→∞

Hβ
2 (λ, µ,RN) = Hβ

2 (λ1, µ1)
n∏

i=2

H0
2 (λi, µi),

where

Hβ
2 (λ, µ) = E exp

[
max
t∈[λ,µ]

(√
2ξt− (β + 1)t2

)]
.

Proof of this Lemma can be easily obtained from the Dominance Convergence
Theorem.

Now the proof of Lemma 2 immediately follows from proof of Theorem 1, [9].
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