On the strong convergence for discontinuous SDEs

December 15, 2014

We consider the following stochastic differential equation.

$$X_{t} = X_{0} + \int_{0}^{t} f(X_{s})ds + AW_{t}.$$
(1)

We do not assume that f is continuous but is monotonically increasing. We would like to give some remarks on [1].

Assumption A Suppose that there exists an upper solution U and a lower solution L such that

$$\mathbb{E}U_t^2 < A, \quad \mathbb{E}L_t^2 < A$$

for some A > 0 with $L_0 = X_0 = U_0$.

We construct the following discrete stochastic processes.

$$L_{n+1} = \min\{L_{t_{n+1}}, L_n + f(L_n)\Delta + A\Delta W_n\}, U_{n+1} = \max\{U_{t_{n+1}}, U_n + f(U_n)\Delta + A\Delta W_n\}.$$

It is clear that $L_n \leq L_{t_n}$ and $U_n \geq U_{t_n}$ and we have proved in [1] that $L_n \leq X_n^{\Delta} \leq U_n$. However, it is not true (under these assumptions) that the Euler scheme converges (even in probability). We have to impose further conditions.

Assumption B Suppose that there exists square integrable adapted processes \tilde{L}_t, \tilde{U}_t such that $\tilde{L}_{t_n} \leq L_n$ and $\tilde{U}_{t_n} \geq U_n$. Suppose further that $X^{\Delta} \to X$ in probability where X is a solution to our problem.

Corollary 1 Under Assumptions A,B we have that $X^{\Delta} \to X$ in L^2 .

1 Example

We will apply our ideas to the following example,

$$X_t = X_0 + \int_0^t H(X_s - 1)ds + AW_t,$$
(2)

where H(x) is the Heaviside function.

We have shown in [1] that the upper and lower solutions are

$$L_t = X_0 + AW_t$$
$$U_t = X_0 + t + AW_t$$

Therefore, we will show by induction, that $L_n = L_{t_n}, U_n = U_{t_n}$ thus $\tilde{L} = L, \tilde{U} = U$. For n = 1 we have and using the fact that $H(x) \ge 0$,

$$L_1 = \min\{X_0 + W_{t_1}, X_0 + H(X_0 - 1)\Delta + AW_{t_1}\} = L_t$$

Suppose now that $L_n = L_{t_n}$ for n = 1, 2, ..., k and will show that $L_{k+1} = L_{t_{k+1}}$.

$$L_{k+1} = \min\{X_0 + W_{t_{k+1}}, L_{t_k} + H(L_{t_k} - 1)\Delta + AW_{t_{k+1}} - AW_{t_k}\}$$

= min{X₀ + W_{t_{k+1}}, X₀ + AW_{t_k} + H(L_{t_k} - 1)\Delta + AW_{t_{k+1}} - AW_{t_k}\} = L_{t_{k+1}}.

The same arguments holds for the equality $U_n = U_{t_n}$.

In order to prove now that the Euler scheme converges in probability we will use Corollary 2.6 of [2]. Set $D = (1, +\infty)$, $D_k = (1, k)$, V(t, x) = x and $X_0 > 1$ a.s. Then we have that the Euler scheme converges in probability to the unique solution of problem (2). Therefore, the convergence is also in L^2 .

References

- N. Halidias and P. Kloeden A note on the EulerMaruyama scheme for stochastic differential equations with a discontinuous monotone drift coefficient, BIT Numerical Mathematics (2008) 48: 5159
- [2] I. Gyongy and N. Krylov Existence of strong solutions for Ito's stochastic equations via approximations, Probab. Theory Relat. Fields 105, 143-158 (1996)