Λύσεις θεμάτων προόδου 2016-2017

Θέμα 1° [2.5]
Δίνεται ότι οι τ.μ. $X$ και $Y$ είναι ανεξάρτητες και ακολουθούν την κανονική κατανομή με μέση τιμή $\mu$ και διασπορά $\sigma^2$, δηλαδή $X,Y \sim \mathcal{N} \left( \mu, \sigma^2 \right)$. Χρησιμοποιείστε την από κοινού ροπογεννήτρια των τ.μ. $W = X + Y$ και $Z = X - Y$ για να δείξετε ότι οι τ.μ. $W$ και $Z$ είναι ανεξάρτητες και να βρείτε τις κατανομές τους. [Δίνεται ότι η ροπογεννήτρια της $\mathcal{N} \left( \mu, \sigma^2 \right)$, είναι $\mathcal{M}(t) = e^{\mu t + \sigma^2 t^2/2}$]

Για την από κοινού ροπογεννήτρια των τ.μ. $W$ και $Z$ έχουμε:

$$M_{W,Z}(t,s) = \mathbb{E}\left\{ e^{tW + sZ} \right\} = \mathbb{E}\left\{ e^{(X+Y)+(X-Y)} \right\}$$

$$= \mathbb{E}\left\{ e^{(t+s)X + (t-s)Y} \right\} = \mathbb{E}\left\{ e^{(t+s)X} \right\} \mathbb{E}\left\{ e^{(t-s)Y} \right\}$$

$$= \exp\left\{ (t+s) \mu + \sigma^2 (t+s)^2 / 2 \right\} \exp\left\{ (t-s) \mu + \sigma^2 (t-s)^2 / 2 \right\}$$

$$= \exp\left\{ (2\mu t + (2\sigma^2) t^2 / 2 \right\} \exp\left\{ (2\sigma^2) s^2 / 2 \right\}$$

από όπου $W$ και $Z$ ανεξάρτητες.

Επίσης παρατηρούμε ότι $W \sim \mathcal{N} \left( 2\mu, 2\sigma^2 \right)$ και $W \sim \mathcal{N} \left( 0, 2\sigma^2 \right)$.

Θέμα 2° [0.5,1.0,1.0]
1. Διατυπώστε το κεντρικό οριακό θεώρημα (ΚΟΘ) στην περίπτωση που $\{X_i, X_2, X_3,\ldots\}$ είναι ακολουθία ανεξάρτητων τ.μ. όπου κάθε $X_i$ ακολουθεί την Bernoulli με πιθανότητα επιτυχίας $p$.
2. Ένα ιδεώδες νόμισμα ρίχνεται 2000 φορές. Εφαρμόστε προσεγγιστικά το ΚΟΘ (χωρίς διόρθωση συνέχειας) για να βρείτε την πιθανότητα των ενδεχομένων:
   $A = \{ \text{ήρθε κεφαλή περισσότερες από 1050 φορές} \}$
   $B = \{ \text{ήρθε κεφαλή περισσότερες από 950 φορές, και λιγότερες ή ίσες από(το πολύ) 1050} \}$

[Δίνεται $\Phi\left(\sqrt{5}\right) \approx 0.9875$]

Εάν $X_i \overset{iid}{\sim} \text{Bin}(1,p) = \text{Bernoulli}(p)$ τότε $S_n = \sum_{i=1}^{n} X_i \sim \text{Bin}(n,p)$, και από το ΚΟΘ έχουμε

$$Z_n = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}} = \frac{S_n - np}{\sqrt{np(1-p)}} \xrightarrow{\text{d}} \mathcal{N}(0,1).$$

Εάν $n \geq 30$ προσεγγιστικά $Z_n = \frac{S_n - np}{\sqrt{np(1-p)}} \approx \mathcal{N}(0,1)$ ή ισοδύναμα $S_n \overset{d}{\approx} \mathcal{N}(np, np(1-p))$.

Στην προκειμένη περίπτωση έχουμε $n = 2000$ και $p = 0.5$, οπότε

$$A = \{S_{2000} > 1050\}, \quad B = \{950 < S_{2000} \leq 1050\} \quad \text{και} \quad Z_{2000} = \frac{S_{2000} - 1000}{10\sqrt{5}} \approx \mathcal{N}(0,1),$$

Έτσι

Σ. Ι. ΧΑΤΖΗΣΠΥΡΟΣ - ΛΥΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΙΙ ΠΡΟΟΔΟΣ (2016-17)
\[ P(A) = P\{S_{2000} > 1050\} = P\{Z_{2000} > \sqrt{5}\} = 1 - P\{Z_{2000} \leq \sqrt{5}\} = 1 - \Phi(\sqrt{5}) \approx 0.0125 \]
\[ P(B) = P\{950 < S_{2000} \leq 1050\} = P\{-\sqrt{5} \leq Z_{2000} \leq \sqrt{5}\} = P\{Z_{2000} \leq \sqrt{5}\} - P\{Z_{2000} < -\sqrt{5}\} = 2\Phi(\sqrt{5}) - 1 \approx 0.9750 \]

Γενικά: Για διωνυμικές πιθανότητες έχουμε την προσέγγιση (DeMoivre-Laplace) για \(0 \leq k_1 < k_2 \leq n\)

\[ P\{k_1 < S_n \leq k_2\} = P\left\{ \frac{k_1 - np}{\sqrt{np(1-p)}} < \frac{S_n - np}{\sqrt{np(1-p)}} \leq \frac{k_2 - np}{\sqrt{np(1-p)}} \right\} \]
\[ = P\left\{ Z_n \leq \frac{k_2 - np}{\sqrt{np(1-p)}} \right\} - P\left\{ Z_n \leq \frac{k_1 - np}{\sqrt{np(1-p)}} \right\} \]
\[ = \Phi\left( \frac{k_2 - np}{\sqrt{np(1-p)}} \right) - \Phi\left( \frac{k_1 - np}{\sqrt{np(1-p)}} \right). \]

Θέμα 3° [1.25,1.25]
Οι τ.μ. \(X\) και \(Y\) έχουν από κοινού αθροιστική συνάρτηση κατανομής \(F_{x,y}(x,y)\). Αποδείξτε ότι:

(i) \(\lim_{x \to +\infty} F_{x,y}(x,y) = 1\) και (ii) \(\lim_{y \to -\infty} F_{x,y}(x,y) = 0\).

(i) \(\lim_{x \to +\infty} F_{x,y}(x,y) = \lim_{m \to +\infty} \lim_{y \to +\infty} P(\{X \leq m, Y \leq n\}) = \lim_{m \to +\infty} P(\{X \leq m\} \cap \{Y \leq n\}) = P(\Omega \cap \Omega) = P(\Omega) = 1\)

(ii) \(\lim_{y \to +\infty} F_{x,y}(x,y) = \lim_{m \to +\infty} \lim_{y \to +\infty} P(\{X \leq m, Y \leq n\}) = \lim_{m \to +\infty} P(\Omega) = P(\Omega) \)
\[ \lim_{x \to -\infty} F_{X,Y}(x,y) = P\left( \lim_{m \to \infty} \{X \leq -m, Y \leq y\} \right) = P\left( \bigcap_{m=1}^{\infty} \{X \leq -m\} \cap \{Y \leq y\} \right) \]

\[ = P\{X < -\infty\} \cap \{Y \leq y\} = P(\emptyset \cap \{Y \leq y\}) = P(\emptyset) = 0. \]

**Θέμα 4ο [0.5,0.75, 0.75, 0.5]**

Η από κοινού πυκνότητα των τυχαίων μεταβλητών \(X \) και \(Y\), είναι \(f_{X,Y}(x,y) = \begin{cases} 8xy & 0 < x < y < 1 \\ 0 & \text{άλλο} \end{cases} \).

1. Δείξτε ότι η συνάρτηση \(f_{X,Y} : \mathbb{R}^2 \to \mathbb{R} \) είναι συνάρτηση πυκνότητας πιθανότητας.
2. Υπολογίστε τις περιθώριες πυκνότητες των \(X\) και \(Y\).
3. Υπολογίστε την καμπύλη παλινδρόμησης \(x = \mathbb{E}[X \mid Y = y] \) της \(X\) στην \(Y\).
4. Επαληθεύστε ότι \(\mathbb{E}\{\mathbb{E}(X \mid Y)\} = \mathbb{E}(X) \).

1. \(f_{X,Y}(x,y) \geq 0, \forall (x,y) \in \mathbb{R}^2 \)

\[ \int_{\mathbb{R}^2} f_{X,Y}(x,y) \, dx \, dy = \int_{0}^{1} \int_{0}^{y} 8xy \, dx \, dy = \int_{0}^{1} y \int_{0}^{y} 8x \, dx \, dy = 8 \int_{0}^{1} y \left[ x^2 \right]_{0}^{y} \, dy = 8 \int_{0}^{1} y^2 \, dy = 4 \int_{0}^{1} y^2 \, dy = 1 \] \Rightarrow η συνάρτηση \(f_{X,Y} : \mathbb{R}^2 \to \mathbb{R} \) είναι σ.π.π.

[ Ισοδύναμα και \(\int_{x=0}^{1} \int_{y=x}^{1} 8xy \, dx \, dy = 1\) ]

2. \(f_x(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) \, dy = \int_{0}^{1} 8xy \, dy = 4x\left(1 - x^2\right), 0 < x < 1 \)

\(f_y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) \, dx = \int_{x=0}^{y} 8xy \, dx = 4y^3, 0 < y < 1 \).

3. \(f_{X\mid Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{8xy}{4y^3} = \frac{2x}{y^2}, 0 < x < y \)

\(\mathbb{E}\{X \mid Y = y\} = \int_{\mathbb{R}} x f_{X\mid Y}(x \mid y) \, dx = \int_{x=0}^{y} x \frac{2x}{y^2} \, dx = \frac{2y}{3} \) \(\) οπότε η καμπύλη παλινδρόμησης θα είναι \(x = \frac{2y}{3}\).

4. Επαλήθευση της εξίσωσης \(\mathbb{E}\{\mathbb{E}(X \mid Y)\} = \mathbb{E}(X) \) για την συγκεκριμένη σ.π.π.:
Εξίσωση 1: \[ \mathbb{E}\{\mathbb{E}(X | Y)\} = \frac{2Y}{3} \cdot \mathbb{E}(Y) = \frac{2}{3} \int_{-\infty}^{\infty} y f_Y(y) dy = \frac{2}{3} \int_{-\infty}^{\infty} y \cdot 4y^3 \, dy = \frac{8}{5} \]

Εξίσωση 2: \[ \mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) \, dx = \int_{0}^{1} x \cdot 4x(1-x^2) \, dx = \frac{8}{5} \]

\[ \Rightarrow \mathbb{E}\{\mathbb{E}(X | Y)\} = \mathbb{E}(X). \]

**Θέμα 5ο [2.5]**

Οι τ. μ. \( X_1, X_2 \) και \( X_3 \) είναι ανεξάρτητες με \( \text{Var}(X_i) = 1 \) για \( i = 1, 2, 3 \). Επίσης, δίνεται ότι \( Y_i = X_i \), \( Y_2 = aX_1 + X_2 \) και \( Y_3 = bX_2 + X_3 \). Να βρεθούν οι θετικές σταθερές \( a \) και \( b \) για τις οποίες \( \rho(Y_1, Y_2) = \rho(Y_2, Y_3) = 1/2 \).

\[
\begin{align*}
\text{Cov}(Y_1, Y_2) &= \text{Cov}(X_1, aX_1 + X_2) = a \cdot \text{Cov}(X_1, X_1) + \text{Cov}(X_1, X_2) = a \\
\text{Cov}(Y_2, Y_3) &= \text{Cov}(aX_1 + X_2, bX_2 + X_3) \\
&= ab \cdot \text{Cov}(X_1, X_2) + a \cdot \text{Cov}(X_1, X_3) + b \cdot \text{Cov}(X_2, X_2) + \text{Cov}(X_2, X_3) = b,
\end{align*}
\]

επίσης \( \rho(Y_1, Y_2) = \rho(Y_2, Y_3) = 1/2 \).

\[
\begin{align*}
\text{Var}(Y_1) &= \text{Var}(X_1) = 1 \\
\text{Var}(Y_2) &= \text{Var}(aX_1 + X_2) = a^2 + 1 \\
\text{Var}(Y_3) &= \text{Var}(bX_2 + X_3) = b^2 + 1
\end{align*}
\]

τελικά \( \rho(Y_1, Y_2) = \frac{\text{Cov}(Y_1, Y_2)}{\sqrt{\text{Var}(Y_1) \cdot \text{Var}(Y_2)}} = \frac{a}{\sqrt{a^2 + 1}} = \frac{1}{2} \Rightarrow a = \frac{\sqrt{3}}{3}, \)

\[
\rho(Y_2, Y_3) = \frac{\text{Cov}(Y_2, Y_3)}{\sqrt{\text{Var}(Y_2) \cdot \text{Var}(Y_3)}} = \frac{b}{\sqrt{b^2 + 1} \cdot \sqrt{a^2 + 1}} = \frac{1}{2} \Rightarrow b = \frac{\sqrt{2}}{2}.
\]