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Abstract. We provide explicit expressions for a family of rational zeta functions originating
from periodic orbits of the Chebyshev family of maps, that weigh each periodic orbit with
integral powers of its derivative. Our method is algebraic.
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1. Introduction

This paper is devoted to the study of a family of dynamical zeta functions introduced in
[1]. The rationality of these functions for the quadratic family was conjectured in [1], and
recently proved in [2, ch 17] using transfer-operator techniques. A purely algebraic proof
has been also given in [3], where rationality is established in the more general context
of polynomial mappings over fields of characteristic zero, and for a larger class of zeta
functions. Here we provide a constructive method for the zeta functions of the Chebyshev
family of maps (to which the result in [3] also applies) defined recursively as

fa)=22-2 f3(z) =2° — 3
fi (@) =z2fi21(2) — fi2(2) T >4

This family is known to besemi-conjugatdo the full shift in ¢ symbols, and to have as a
Julia set the interval§2, 2] [4, ch 1].
We define the sequence of dynamical zeta functions

(1.1)

L (2) = exp( > %zm k)) (1.2)
n=1
with
Zuo, =Y (ta)  ha=UND'G) k=0 (1.3)
zi €FiX(f1)

where Fix f!") is the set of fixed points of having cardinalityr”. Because the weights
¢t are multiplicative [10, 11] the zeta function takes the form of an Eulerian product

ten@=]]A-t," 22 k=1 (1.4)
P

where p runs through all admissible periodic strings of minimal lengph = », and
tep = tem,p- L€ Z1, ..., 20, DE representative points of the, = m.(n) orbits of f; of
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minimal periodn. From an algebraic viewpoint, it is convenient to write the zeta function
(1.4) as follows

00
C(‘[,k)(z)71 — nznmr(n)(gglz(zfn) (15)
n=1

where themultiplier polynomialss) are defined by the product (see [1, p 322, 5, p 973])
mq(n)
88 @) =[] ¢ = ). (1.6)
i=1
We shall prove the following.

Theorem 1. Let f, be defined by (1.1). Then for the dynamical zeta functions defined by
(1.2) and (1.3) we have that

1— 2k
<1tkz) (1—7h k even
(i) T even  lop = -T2
' 1— 1%z
—_— k odd
1—1kz
) a.7)
1-1%2 k+1
1 4k aA—-1") k even
(ll) 7 odd ;(r,k) = Tz
1 - t%z)?
k odd
1—t#z

In the next section we express periodic points as roots of certain polynomials whose
irreducible factors are investigated. In section 3 we study in detail a family of periodic orbits
which play a central role in the proof of theorem 1. The latter is completed in section 4.

2. Factorization of the primitive orbit polynomial

The fixed points off] (also called: cycles) are roots of the polynomial
P.,(2) = fl'(x) —z n=12... (2.1)

where f7' denotes the:th iterate of f; (with f; = frl). Let H;,(z) be the polynomial
whose roots are the points of minimal peried Then its degree defyf, , will be nm(n).
We first note that [5, 7, 8]

Pop@ =[]Healr) =) dm.(d) (2.2)

din dln

where the product is taken over all the positive diviséref n. Then the primitive orbit
polynomial H, ,(z) and its degree are extracted from (2.2) vié@ius inversion, yielding

n
Hen(@ =[] Pea@™™®  nmey =Y v (g) n=12 .. (2.3)
din dln

where . is the Mdbius function [9, ch 2]. Becausg is monic so areP; ,(z) and H- ,(z),
and the periodic points of, are algebraic integers. Moreover

u(n/d)
Hf,n<z>:1"[( [ va@ ] wd2<z)> (2.4)

din Ndyjri—1 dolTd+1
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where
/2] 2k
U, (z+2H=z?"2F,(z) = 1‘[ (z +z71— 2003()) n>1 (2.5)
n
k=1
(k,n)=1

F,(z) is the nth cyclotomicpolynomial (its roots are the primitiveth roots of unity),¢

is the Euler totient function [12, ch 3], anidh/2] is the largest integer smaller than or
equal ton/2. In [1, pp 971-2] relation (2.4) is only proved for= 2, the case of general
7, however, being unproblematic. It can be shown [6] thatior 3, ¥,(z) is a monic
irreducible polynomial over the integers of degrgé:)/2. Forn = 1,2 one calculates
using definition (2.5)

Wi(z)2=7-2 U(z)2 =z +2

Nevertheless, only the squareswf(z) andW,(z) appear in equation (2.4). Indeéf} ; has
the factorw? for event and Ww2W? for odd r. Expanding the products on the right-hand
side of relation (2.4)H;, becomes

Hr,n = q)-[_n (\deI e \del;) (\dezr e \dej:) . (26)

- +
Hey Hzy

The subscriptd;” anddj+ in the latter relation are divisors of —1 andt” + 1 respectively,
that have a special property. Namely they are not factors ofrdny 1 andt¢ + 1 with

dln andd < n (as if they wereH,, would have as roots non-minimal cycles). The
polynomial @, ; is equal tow? and w2W2 for even and odd respectively, whiled, , = 1,

foralln > 1.

3. Self-conjugate orbits and then degrees in the factorization

The semi-conjugacy between the Chebyshev polynomials and the Bernoulli shifts is given
by the functioni(z) = z + z 1. Let b be the symbolic representation of arcycle of the
full shift map int symbols

b=1{by,... by, b1,...} =b1...b, bie{0,1,...,t—1)

which is thet-ary expansion of the associated periodic point of the map rz (mod 1)
of the interval [Q 1] to itself. Then the periodic point of the correspondingycle of f; is
given by

h(b) =2 cos( an(bl) >

-EH —_

Ab) = _"t""b,. (3.1)
r=1

Let o denote the shift mago (b)); = b;+1. Then the points of the cycle with initial
conditionh(b) are given bya(c' (b)), fort =0,...,n — 1.

We defineC(b;)) =t —1—b, andC(b1...b,) = C(by)...C(b,). Theni(C(b)) =
" —1— A(b) andh(C (b)) = h(b). The latter means that the two complementary cybles
and C(b) of the full shift in ¢ symbols are mapped underto the same: cycle of f,. Of
interest are the periodic strings of period gatisfying the relation

b =b1...5,Ch1)...Clby). (3.2)

Then because” (b') = C(b') we haveh(c"(b')) = h(b’'). Thusd’ halves its period under
h. These are fixed points of” with A(b') = (z" — 1)(1+ A(b)) so that

2n(1+ x(b)))

(3.3)

h(b') = 2cos
b)) ( —



944 S J Hatjispyros

The quantitiesi(b) and h(b’'), defined by equations (3.1) and (3.3), are respectively roots
of the polynomialsH;, (z) and H},(z). More specifically the ratios.(b)/(r" — 1) and
(14 1))/ (" 4+ 1) can be written in lower terms ds /d;” and k*/di*, respectively, so
that V- (h(b)) = \I-’d]f(l’l(b/)) = 0. From now on we shall refer to periodic strings of
the form (3.2) asself-conjugate Let m’ (n) be the number of self-conjugate primeary
strings of lengthn, and letrm,(n) andm (n) be the number of prime and self-conjugate
prime cycles, respectively, of the Bernoulli shift. Whenis even and: > 1 we have
m’.(n) primen cycles halving their period undeér(m’ (n) = 0 for oddn). The remaining
m.(n) —m’.(n) n cycles of the shift map will contribute t¢n,(n) — m’ (n))/2 primen
cycles of f; as complementary cycles of the shift map are mapped underthe same:
cycles of ;. The latter number of cycles should be increasediby2n)—not by m’ (2n)/2
becausé’ and its complemen€' (b') belong to the same cyclic permutation class (see [10,
p 329]). Then one obtains

| Gie(n) — i (n) /2 + i (2n) n even
) =N 2+ 2n) 2 odd

Because both maps have complete symbolic dynamics over a real phase spage,then
andm/ = m/, from which we obtain

n>1 evenrt.

«(n) + m, 2 even
m’.(2n) = (e (1) (1) " n>1 event. (3.4)
m(n)/2 n odd
For oddz let b denote the 1 cyclér — 1)/2. ThenC(b) = b, and only(r — 1)/2 cycles
of minimal length 2 halve their period undér Thus the recurrence relation defining is
given by

(mo(n) +m’.(n))/2 n even

1, m (2 =(—-1)/2, oddr.
m.(n)/2 n odd n>1 m@=E-b/ ¢

m(2n) = {

(3.5)
From our previous discussion and for all> 2 andn > 1 we have dedd;, = nm/ (2n)
and degH ", = n(m,(n) —m’.(2n)) so that

T,n

(n) £m 2 even
degHZ, = (e (n) £ m. (n))/ " =22, n>1 (3.6
’ nm;(n)/2 n odd
Forn = 1 we have
2 even —-2)/2 even
degH | = i i degH ; = (v =2/ ‘ (3.7)
: (r—-1)/2 7 odd ’ (t —3)/2 T odd.

Proposition 1. The derivatives along cycles of minimal lengtare " or —t" exactly when
the initial conditions are roots of the polynomiatg_, and H;,, respectively.

Proof. From the fact that

f.(2cog270)) = 2 cog2r 1) T>2 (3.8)
one obtains—using induction—that

fle+zhH=z"+z"

so that
n(zr"+1 _ Z*(r"fl))

72-1

(fH@+zhH= z e S\ (&1}, (3.9)
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Let o be a periodic point of minimal length with 5, («) = 0. Then there exist relatively
prime integersd;” and k" with d" dividing t* + 1 (sayd;'p; = " + 1), Wyt (@) = 0,
with e = w + 0t andw = exp(anJf/dj*). The situation is similar forr/_, (o) = 0 then
V(@) = 0, andd; p; = t" — 1 with w = exp(2rk~/d;"). Then one obtains from relation
(3.9)

(wdj*)p; _ a)z(a)df)_pf HrTn (@) =0

(% )P — (% ) H,(@)=0

which gives the desired result. O

T (0? — (M (@) =

From relation (2.6) it follows that fon = 1 we have the period-1 poiat= 2 for even
T (d,1 = ¥?) and the period-1 points = +2 for oddt (®,1 = W2W3). The latter 1-
cycles give rise to the exceptional eigenvatfgdoes not follow the rule of proposition 1)
calculated via (3.9) at = +1:

fl(2) =? =2
fl(=2) =12 7 > 2 andr odd
Then from definition (1.6) we have

‘Siki(z) _ (z — %) (7 — 2727 — (—1)})T/? T even — (3.10)
, (z — .L.Zk)Z(Z _ .L.k)(r—3)/2(z . (__L_)k)(r—l)/Z 7 odd
Whenn > 1 one obtains
502 (z — "y mem=m)/2( 7 (_pnykyOme)tm, (w)/2 1 even 1
(z — T"*ym /27 (—gykym:(m/2 n odd
(3.11)
4. Proof of theorem 1
Theorem 1 follows from three lemmas.
Lemma 1. Letn be a positive odd integer. Then
Y dm.2d)=27"(x?" — ") 1> 1 4.1)

d|n
Proof. We prove (4.1) by induction oth. Using the second equation of relation (2.3)
together with the fact that is odd yields
= "dm.(d) =Y dm.(d)+ Y 2dm.(2d) =1"+2) dm.(2d)
d|2n din din din
which establishes relation (4.1) for= 1. We observe that

2= dmd)= Y Y 2dm.(2'd)

d|2'n 0<r<!i din
=7+ ) 2’(def(2’d)) +2) dm.(2d) (4.2)
1<r<l dln din

where we have used our result foe= 1 and the second equation of relation (2.3). Assuming
now (4.1) to hold up td — 1, equation (4.2) yields
= Y @ P 42 dm @A) = "+ 2 dm.(2d)
1<r<l d|n d|n
which gives the desired result. d

[
7',2
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Lemma 2. Let

1 2n

S:(n) = E —m, (> (4.3)

e d d
d odd

then, for all positive integers we have

" /2n T even
Sr( ) = :

(t" —1)/2n 7 odd (4.4)

Proof. We write n = 2'n’ wherer’ is an odd integer and > 0, and we proceed by
induction onl. Let!/ = 0. Then for everr we obtain from (3.4) and the second equation
of (2.3) that

!’

n/ST(n/)zan < ) > dm(2d) = de d) =

d\n’ d|n’ d|”
For oddt we obtain from (3.5)
/ Zn/
nwmw=§:Zw<d)+mxa

dn’

d<n’

=Y dm,2d)+m,(2) = Z dm.(d) +m’.(2)

din’ d\n
d>1 d>1
oo leon =Tt

Tt TUTYE T YE T

For all t we obtain using relations (3.4), (3.5) and lemma 1 that

o) ()12 )

din’
1 ; 1 } /(2(21 ln/)>
de (2d)+2 > i

d|n’ |2t
d odd
so that
1 .L.Zln’ _ .CZ”ln'
[N [—1_ /
Assuming that relation (4.4) holds true upite- 1 the above equation gives
.L.Zln’ _ TZ”ln’ .L.Zl’ln/
+ T even
S-[ (zln/) — } ] zln/ . nizf
2 .L.Zn’ _ 7'.2 n 1.2’ n _ 1 dd
T0
2ln’ + 2w
which completes the proof. O

Lemma 3. Let

[o%e] n m'f(2n)
Qf(z)=]_[<1+Z ) r>2 (4.5)

— N
n=1 1 2
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then, for|z| < ! the product converges to

0.(2) = 1/(1—1tz2) T even (4.6)
Tl a-2/A-t2)  todd '
Proof. By taking the logarithms and expandingint z"), (4.5) becomes
n(2r+1)
71 rn
In Q. (Z)—ZZm (Zn)Z i1 ZX;Zm (2n)0©,r 4.7)
where®, is zero for everr and one otherW|se Using the fact that
>3 et i =Y Ve (.d)
i=1 j= n=1 dln
relation (4.7), lettinge(i, j) = m’.(2i)®; j~* and definition (4.3) we obtain
> 1 2n
INn0,(z) =2 " — O =2 S:
0:(2) ;z;d (d) = Z (n)z".
Our result now follows from lemma 2. O

We now prove theorem 1. Let be odd. Then from (1.5), (3.10) and (3.11) we have
len(@T )P =A=' A=) A= D) [ A - PA - =Dy

n>3
n odd
% 1_[ 1-— Zn)m,(n)—m/r(n)(:l_ _ (_1)kzn)m,(n)+m’r(n). (48)
n>2
n even
Letting
1-—1kg)4
Gi(z; 1, k) = ( )

(1-23%1 - (=Dkz)

00 — (- 1)k 21\ M (21)
Fzir,b=]]a-z" “”1‘[(1 (—D*z ")'"*"’]"[( )
n=1

one verifies that
Lot @T ™2 =Gz T, K F(z; T, k). (4.10)
Let us define

Ar(z) — l_[(l _ Zn)mr(n)'
n=1

(4.9)

Then (4.9) can be written as

it — A, (2)? k even
PP A0,k odd.
Because
Ac(z) = ]_[ [Ja-= ﬂ(l— ") = exp( Z (’;) > =1-1z (4.12)
n=1pl=n ]

the former relation together with lemma 3 gives
(1—12)? k even

F(z;t,k) =
G {1—z2 k odd
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from which our theorem follows for odd.
For event we define

1— kg 2
Gz, k)= —") .
11—z
Then it can be verified that
L@t ™™= Galz; T, K F (25 T, k)
with
(1—12)? k even

F(z;t,k) =
@k =1, k odd

which finally establishes formula (1.7) for even
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