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Rational zeta functions for the Chebyshev family of maps
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Abstract. We provide explicit expressions for a family of rational zeta functions originating
from periodic orbits of the Chebyshev family of maps, that weigh each periodic orbit with
integral powers of its derivative. Our method is algebraic.
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1. Introduction

This paper is devoted to the study of a family of dynamical zeta functions introduced in
[1]. The rationality of these functions for the quadratic family was conjectured in [1], and
recently proved in [2, ch 17] using transfer-operator techniques. A purely algebraic proof
has been also given in [3], where rationality is established in the more general context
of polynomial mappings over fields of characteristic zero, and for a larger class of zeta
functions. Here we provide a constructive method for the zeta functions of the Chebyshev
family of maps (to which the result in [3] also applies) defined recursively as

f2(z) = z2− 2 f3(z) = z3− 3z

fτ (z) = zfτ−1(z)− fτ−2(z) τ > 4.
(1.1)

This family is known to besemi-conjugateto the full shift in τ symbols, and to have as a
Julia set the interval [−2, 2] [4, ch 1].

We define the sequence of dynamical zeta functions

ζ(τ,k)(z) = exp

( ∞∑
n=1

zn

n
Zn(τ, k)

)
(1.2)

with

Zn(τ, k) =
∑

zi∈Fix(f nτ )

(tτ,n,k)
k tτ,n,k = (f nτ )′(zi) k > 0 (1.3)

where Fix(f nτ ) is the set of fixed points off nτ having cardinalityτn. Because the weights
t are multiplicative [10, 11] the zeta function takes the form of an Eulerian product

ζ(τ,k)(z) =
∏
p

(1− tkτ,pznp )−1 τ > 2, k > 1 (1.4)

where p runs through all admissible periodic strings of minimal length|p| = np and
tτ,p = tτ,np,p. Let z1, . . . , zmτ , be representative points of themτ = mτ(n) orbits of fτ of
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minimal periodn. From an algebraic viewpoint, it is convenient to write the zeta function
(1.4) as follows

ζ(τ,k)(z)
−1 =

∞∏
n=1

znmτ (n)δ(k)τ,n(z
−n) (1.5)

where themultiplier polynomialsδ(k)τ,n are defined by the product (see [1, p 322, 5, p 973])

δ(k)τ,n(z) =
mτ (n)∏
i=1

(z − (tτ,n,i)k). (1.6)

We shall prove the following.

Theorem 1. Let fτ be defined by (1.1). Then for the dynamical zeta functions defined by
(1.2) and (1.3) we have that

(i) τ even ζ(τ,k) =


(

1− τ 2kz

1− τ kz
)
(1− τ k+1) k even

1− τ 2kz

1− τ kz k odd

(ii) τ odd ζ(τ,k) =


(

1− τ 2kz

1− τ kz
)2

(1− τ k+1) k even

(1− τ 2kz)2

1− τ kz k odd.

(1.7)

In the next section we express periodic points as roots of certain polynomials whose
irreducible factors are investigated. In section 3 we study in detail a family of periodic orbits
which play a central role in the proof of theorem 1. The latter is completed in section 4.

2. Factorization of the primitive orbit polynomial

The fixed points off nτ (also calledn cycles) are roots of the polynomial

Pτ,n(z) = f nτ (z)− z n = 1, 2, . . . (2.1)

wheref nτ denotes thenth iterate offτ (with fτ = f 1
τ ). Let Hτ,n(z) be the polynomial

whose roots are the points of minimal periodn. Then its degree degHτ,n will be nmτ (n).
We first note that [5, 7, 8]

Pτ,n(z) =
∏
d|n
Hτ,d(z) τ n =

∑
d|n
dmτ (d) (2.2)

where the product is taken over all the positive divisorsd of n. Then the primitive orbit
polynomialHτ,n(z) and its degree are extracted from (2.2) via Möbius inversion, yielding

Hτ,n(z) =
∏
d|n
Pτ,d(z)

µ(n/d) nmτ (n) =
∑
d|n
τ dµ

(n
d

)
n = 1, 2, . . . (2.3)

whereµ is the Möbius function [9, ch 2]. Becausefτ is monic so arePτ,n(z) andHτ,n(z),
and the periodic points offτ are algebraic integers. Moreover

Hτ,n(z) =
∏
d|n

( ∏
d1|τ d−1

9d1(z)
∏

d2|τ d+1

9d2(z)

)µ(n/d)
(2.4)
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where

9n(z + z−1) = z−φ(n)/2Fn(z) =
bn/2c∏
k=1

(k,n)=1

(
z + z−1− 2 cos

(
2πk

n

))
n > 1 (2.5)

Fn(z) is the nth cyclotomicpolynomial (its roots are the primitiventh roots of unity),φ
is the Euler totient function [12, ch 3], andbn/2c is the largest integer smaller than or
equal ton/2. In [1, pp 971–2] relation (2.4) is only proved forτ = 2, the case of general
τ , however, being unproblematic. It can be shown [6] that forn > 3, 9n(z) is a monic
irreducible polynomial over the integers of degreeφ(n)/2. For n = 1, 2 one calculates
using definition (2.5)

91(z)
2 = z − 2 92(z)

2 = z + 2.

Nevertheless, only the squares of91(z) and92(z) appear in equation (2.4). IndeedHτ,1 has
the factor92

1 for evenτ and92
19

2
2 for odd τ . Expanding the products on the right-hand

side of relation (2.4),Hτ,n becomes

Hτ,n = 8τ,n (9d−1 . . . 9d
−
in
)︸ ︷︷ ︸

H−τ,n

(9d+1 . . . 9d
+
jn
)︸ ︷︷ ︸

H+τ,n

. (2.6)

The subscriptsd−i andd+j in the latter relation are divisors ofτn−1 andτn+1 respectively,
that have a special property. Namely they are not factors of anyτ d − 1 andτ d + 1 with
d|n and d < n (as if they wereHτ,n would have as roots non-minimaln cycles). The
polynomial8τ,1 is equal to92

1 and92
19

2
2 for even and oddτ respectively, while8τ,n = 1,

for all n > 1.

3. Self-conjugate orbits and then degrees in the factorization

The semi-conjugacy between the Chebyshev polynomials and the Bernoulli shifts is given
by the functionh(z) = z + z−1. Let b be the symbolic representation of ann cycle of the
full shift map in τ symbols

b = {b1, . . . , bn, b1, . . .} = b1 . . . bn bi ∈ {0, 1, . . . , τ − 1}
which is theτ -ary expansion of the associated periodic point of the mapz 7→ τz (mod 1)
of the interval [0, 1] to itself. Then the periodic point of the correspondingn cycle offτ is
given by

h(b) = 2 cos

(
2πλ(b)

τn − 1

)
λ(b) =

n∑
r=1

τn−rbr . (3.1)

Let σ denote the shift map(σ (b))i = bi+1. Then the points of then cycle with initial
conditionh(b) are given byh(σ t (b)), for t = 0, . . . , n− 1.

We defineC(bi) = τ − 1− bi andC(b1 . . . bn) = C(b1) . . . C(bn). Thenλ(C(b)) =
τn − 1− λ(b) andh(C(b)) = h(b). The latter means that the two complementary cyclesb

andC(b) of the full shift in τ symbols are mapped underh to the samen cycle of fτ . Of
interest are the periodic strings of period 2n satisfying the relation

b′ = b1 . . . bnC(b1) . . . C(bn). (3.2)

Then becauseσn(b′) = C(b′) we haveh(σn(b′)) = h(b′). Thusb′ halves its period under
h. These are fixed points off nτ with λ(b′) = (τ n − 1)(1+ λ(b)) so that

h(b′) = 2 cos

(
2π(1+ λ(b))
τ n + 1

)
. (3.3)
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The quantitiesh(b) andh(b′), defined by equations (3.1) and (3.3), are respectively roots
of the polynomialsH−τ,n(z) andH+τ,n(z). More specifically the ratiosλ(b)/(τn − 1) and
(1+ λ(b))/(τ n + 1) can be written in lower terms ask−/d−i and k+/d+j , respectively, so
that 9d−i (h(b)) = 9d+j (h(b

′)) = 0. From now on we shall refer to periodic strings of
the form (3.2) asself-conjugate. Let m′τ (n) be the number of self-conjugate primeτ -ary
strings of lengthn, and letm̄τ (n) and m̄′τ (n) be the number of prime and self-conjugate
prime cycles, respectively, of the Bernoulli shift. Whenτ is even andn > 1 we have
m̄′τ (n) prime n cycles halving their period underh(m̄′τ (n) = 0 for oddn). The remaining
m̄τ (n) − m̄′τ (n) n cycles of the shift map will contribute to(m̄τ (n) − m̄′τ (n))/2 prime n
cycles offτ as complementary cycles of the shift map are mapped underh to the samen
cycles offτ . The latter number of cycles should be increased bym̄′τ (2n)—not bym̄′τ (2n)/2
becauseb′ and its complementC(b′) belong to the same cyclic permutation class (see [10,
p 329]). Then one obtains

mτ(n) =
{
(m̄τ (n)− m̄′τ (n))/2+ m̄′τ (2n) n even

m̄τ (n)/2+ m̄′τ (2n) n odd
n > 1, evenτ.

Because both maps have complete symbolic dynamics over a real phase space, thenm̄τ = mτ
andm̄′τ = m′τ , from which we obtain

m′τ (2n) =
{
(mτ (n)+m′τ (n))/2 n even

mτ(n)/2 n odd
n > 1, evenτ. (3.4)

For oddτ let b denote the 1 cycle(τ − 1)/2. ThenC(b) = b, and only(τ − 1)/2 cycles
of minimal length 2 halve their period underh. Thus the recurrence relation definingm′τ is
given by

m′τ (2n) =
{
(mτ (n)+m′τ (n))/2 n even

mτ(n)/2 n odd
n > 1, m′τ (2) = (τ − 1)/2, odd τ.

(3.5)

From our previous discussion and for allτ > 2 andn > 1 we have degH+τ,n = nm′τ (2n)
and degH+τ,n = n(mτ (n)−m′τ (2n)) so that

degH±τ,n =
{
n(mτ (n)±m′τ (n))/2 n even

nmτ (n)/2 n odd
τ > 2, n > 1. (3.6)

For n = 1 we have

degH+τ,1 =
{
τ/2 τ even

(τ − 1)/2 τ odd
degH−τ,1 =

{
(τ − 2)/2 τ even

(τ − 3)/2 τ odd.
(3.7)

Proposition 1. The derivatives along cycles of minimal lengthn are τn or −τn exactly when
the initial conditions are roots of the polynomialsH−τ,n andH+τ,n, respectively.

Proof. From the fact that

fτ (2 cos(2πθ)) = 2 cos(2πτθ) τ > 2 (3.8)

one obtains—using induction—that

f nτ (z + z−1) = zτn + z−τn

so that

(f nτ )
′(z + z−1) = τn(zτ

n+1− z−(τ n−1))

z2− 1
z ∈ S1 \ {±1}. (3.9)
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Let α be a periodic point of minimal lengthn with H+τ,n(α) = 0. Then there exist relatively
prime integersd+j and k+j with d+j dividing τn + 1 (sayd+j ρj = τn + 1), 9d+j (α) = 0,

with α = ω + ω−1 andω = exp(2πk+/d+j ). The situation is similar forH−τ,n(α) = 0 then
9d−i (α) = 0, andd−i ρi = τn − 1 with ω = exp(2πk−/d−i ). Then one obtains from relation
(3.9)

τ−n(ω2− 1)(f nτ )
′(α) =

{
(ωd

+
j )ρj − ω2(ωd

+
j )−ρj H+τ,n(α) = 0

ω2(ωd
−
i )ρi − (ωd−i )−ρi H−τ,n(α) = 0

which gives the desired result. �
From relation (2.6) it follows that forn = 1 we have the period-1 pointz̄ = 2 for even

τ (8τ,1 = 92
1) and the period-1 points̄z = ±2 for odd τ (8τ,1 = 92

19
2
2). The latter 1-

cycles give rise to the exceptional eigenvalueτ 2 (does not follow the rule of proposition 1)
calculated via (3.9) atz = ±1:

f ′τ (2) = τ 2 τ > 2

f ′τ (−2) = τ 2 τ > 2 andτ odd.

Then from definition (1.6) we have

δ
(k)

τ,1(z) =
{
(z − τ 2k)(z − τ k)(τ−2)/2(z − (−τ)k)τ/2 τ even

(z − τ 2k)2(z − τ k)(τ−3)/2(z − (−τ)k)(τ−1)/2 τ odd
n = 1. (3.10)

Whenn > 1 one obtains

δ(k)τ,n(z) =
{
(z − τnk)(mτ (n)−m′τ (n))/2(z − (−τn)k)(mτ (n)+m′τ (n))/2 n even

(z − τnk)mτ (n)/2(z − (−τn)k)mτ (n)/2 n odd
n > 1.

(3.11)

4. Proof of theorem 1

Theorem 1 follows from three lemmas.

Lemma 1. Let n be a positive odd integer. Then∑
d|n
dmτ (2

ld) = 2−l(τ 2ln − τ 2l−1n) l > 1. (4.1)

Proof. We prove (4.1) by induction onl. Using the second equation of relation (2.3)
together with the fact thatn is odd yields

τ 2n =
∑
d|2n

dmτ (d) =
∑
d|n
dmτ (d)+

∑
d|n

2dmτ (2d) = τn + 2
∑
d|n
dmτ (2d)

which establishes relation (4.1) forl = 1. We observe that

τ 2ln =
∑
d|2ln

dmτ (d) =
∑

06r6l

∑
d|n

2rdmτ (2
rd)

= τ 2n +
∑

1<r<l

2r
(∑

d|n
dmτ (2

rd)

)
+ 2l

∑
d|n
dmτ (2

ld) (4.2)

where we have used our result forl = 1 and the second equation of relation (2.3). Assuming
now (4.1) to hold up tol − 1, equation (4.2) yields

τ 2ln = τ 2n +
∑

1<r<l

(τ 2r n − τ 2r−1n)+ 2l
∑
d|n
dmτ (2

ld) = τ 2l−1n + 2l
∑
d|n
dmτ (2

ld)

which gives the desired result. �
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Lemma 2. Let

Sτ (n) =
∑
d|n
d odd

1

d
m′τ

(
2n

d

)
(4.3)

then, for all positive integersn we have

Sτ (n) =
{
τn/2n τ even

(τ n − 1)/2n τ odd.
(4.4)

Proof. We write n = 2ln′ where n′ is an odd integer andl > 0, and we proceed by
induction onl. Let l = 0. Then for evenτ we obtain from (3.4) and the second equation
of (2.3) that

n′Sτ (n′) =
∑
d|n′

n′

d
m′τ

(
2n′

d

)
=
∑
d|n′

dm′τ (2d) =
1

2

∑
d|n′

dmτ (d) = τn
′

2
.

For oddτ we obtain from (3.5)

n′Sτ (n′) =
∑
d|n′
d<n′

n′

d
m′τ

(
2n′

d

)
+m′τ (2)

=
∑
d|n′
d>1

dm′τ (2d)+m′τ (2) =
1

2

∑
d|n′
d>1

dmτ (d)+m′τ (2)

= 1

2
(τ n

′ − τ)+ 1

2
(τ − 1) = τn

′ − 1

2
.

For all τ we obtain using relations (3.4), (3.5) and lemma 1 that

Sτ (2
ln′) =

∑
d|n′

1

d
m′τ

(
2

(
2ln′

d

))
= 1

2

∑
d|n′

1

d
mτ

(
2ln′

d

)
+ 1

2

∑
d|n′

1

d
m′τ

(
2(2l−1n′)

d

)

= 1

2n′
∑
d|n′

dmτ (2
ld)+ 1

2

∑
d|2l−1n′
d odd

1

d
m′τ

(
2(2l−1n′)

d

)

so that

Sτ (2
ln′) = 1

2

(
τ 2ln′ − τ 2l−1n′

2ln′
+ Sτ (2l−1n′)

)
.

Assuming that relation (4.4) holds true up tol − 1 the above equation gives

Sτ (2
ln′) = 1

2


τ 2ln′ − τ 2l−1n′

2ln′
+ τ

2l−1n′

n′2l
τ even

τ 2ln′ − τ 2l−1n′

2ln′
+ τ

2l−1n′ − 1

2ln′
τ odd

which completes the proof. �

Lemma 3. Let

Qτ(z) =
∞∏
n=1

(
1+ zn
1− zn

)m′τ (2n)
τ > 2 (4.5)
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then, for|z| < τ−1 the product converges to

Qτ(z) =
{

1/(1− τz) τ even

(1− z)/(1− τz) τ odd.
(4.6)

Proof. By taking the logarithms and expanding ln(1± zn), (4.5) becomes

lnQτ(z) = 2
∞∑
n=1

m′τ (2n)
∞∑
r=0

zn(2r+1)

2r + 1
= 2

∞∑
n=1

∞∑
r=1

m′τ (2n)2rr
−1zrn (4.7)

where2r is zero for evenr and one otherwise. Using the fact that
∞∑
i=1

∞∑
j=1

c(i, j)zij =
∞∑
n=1

zn
∑
d|n
c
(n
d
, d
)

relation (4.7), lettingc(i, j) = m′τ (2i)2jj−1 and definition (4.3) we obtain

lnQτ(z) = 2
∞∑
n=1

zn
∑
d|r

1

d
m′τ

(
2n

d

)
2d = 2

∞∑
n=1

Sτ (n)z
n.

Our result now follows from lemma 2. �
We now prove theorem 1. Letτ be odd. Then from (1.5), (3.10) and (3.11) we have

ζ(τ,k)(zτ
−k)−2 = (1− τ kz)4(1− z)τ−3(1− (−1)kz)τ−1

∏
n>3
n odd

(1− zn)mτ (n)(1− (−1)kzn)mτ (n)

×
∏
n>2
n even

(1− zn)mτ (n)−m′τ (n)(1− (−1)kzn)mτ (n)+m
′
τ (n). (4.8)

Letting

G1(z; τ, k) = (1− τ kz)4
(1− z)3(1− (−1)kz)

F (z; τ, k) =
∞∏
n=1

(1− zn)mτ (n)
∞∏
n=1

(1− (−1)kzn)mτ (n)
∞∏
n=1

(
1− (−1)kz2n

1− z2n

)m′τ (2n) (4.9)

one verifies that

ζ(τ,k)(zτ
−k)−2 = G1(z; τ, k)F (z; τ, k). (4.10)

Let us define

Aτ (z) =
∞∏
n=1

(1− zn)mτ (n).

Then (4.9) can be written as

F(z; τ, k) =
{
Aτ (z)

2 k even

Aτ (z
2)Qτ (z

2) k odd.

Because

Aτ (z) =
∞∏
n=1

∏
|p|=n

(1− zn) =
∏
p

(1− znp ) = exp

(
−
∞∑
n=1

(τz)n

n

)
= 1− τz (4.11)

the former relation together with lemma 3 gives

F(z; τ, k) =
{
(1− τz)2 k even

1− z2 k odd
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from which our theorem follows for oddτ .
For evenτ we define

G2(z; τ, k) =
(

1− τ kz
1− z

)2

.

Then it can be verified that

ζ(τ,k)(zτ
−k)−2 = G2(z; τ, k)F (z; τ, k)

with

F(z; τ, k) =
{
(1− τz)2 k even

1 k odd

which finally establishes formula (1.7) for evenτ .

Acknowledgments

The author is grateful to F Vivaldi for his valuable remarks. This research was supported
by a European Commission HCM contract ERBXCT 940460.

References

[1] Hatjispyros S and Vivaldi F 1995 A family of rational zeta functions for the quadratic mapNonlinearity 8
321–32

[2] Cvitanovíc P, Hansen K and Vattay G Periodic orbit theory http:\\alf.nbi.dk\∼predrag\QCcource\
[3] Anderson G 1995 Notes on dynamical zeta functions, private communication
[4] Beardon A F 1991Iteration of Rational Functions(New York: Springer)
[5] Vivaldi F and Hatjispyros S 1992 Galois theory of periodic orbits of polynomial mapsNonlinearity 5 961–78
[6] Hatjispyros S J 1993 Arithmetical properties of rational iterationsPhD ThesisUniversity of London
[7] Morton P and Patel P 1994 The Galois theory of periodic points of polynomial mapsProc. London Math.

Soc.68 225–63
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[11] Artuso R, Aurell E and Cvitanović P 1990 Recycling strange sets: II. ApplicationsNonlinearity 3 361–86
[12] Niven I 1956Irrational Numbers(Washington, DC: Mathematical Association of America)




