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A ~ S ~ C L  The periodic points of a rational mapping a n  rools of a polynomial. If 
the coefficients of the mapping are algebraic numbers, then the periodic orbits are also 
algebraic numbers. A sequence of algebraic number fields is naturally associated with 
rational mappings, namely the fields containing all orbits of a given period. We study the 
corresponding Galois groups. We show that the latter have subgroups that permute the 
points of an orbit in the same way as the dynamics. The subgroup having all orbits as 
invariant sets identifies a field which contains the multipliers of the orbits. We construct 
their minimal polynomial, thereby computing the multiplier of a cycle without computing 
the cycle itself. We show that the periodic orbits of the quadratic family are soluble by 
radicals if their period is less or equal to 4, and we exhibit examples of unsoluble orbits of 
period 5. Dynamics over algebraic number fields is discrete, and all numerical experiments 
are reproducible. 

AMS classification scheme numbers: I IRZI, llR32, 58F22 

1. Introduction 

The arithmetical environment for dynamics is the real number system, but most num- 
bers are random and cannot be defined or manipulated (see [l], for an introduction). 
Numerical experiments can only make use of those numbers that are representable as 
a finite collection of integers. 

Most computer experiments are performed using the floating-point representation 
of the real line. The resulting sets are subsets of the rationals which are not closed 
under any of the four arithmetical operations (see [2], vol 2) and, as such, hardly 
compatible with mathematical rigour. Because the floating-point representation is 
machine-dependent, and because the exponential instability of motion amplifies round- 
off errors, numerical experiments in dynamics have been plagued by the same lack of 
reproducibility that characterizes physical experiments. 

A uniform discretization, whereby each dynamical variable is forced to assume 
values that are equally spaced on the real line, is more amenable to exact computations, 
since the phase space acquires the structure of a linear space over the integers (Z- 
module). While more satisfactory, this type of discretization has been rarely used in 
dynamics, mainly because a nonlinear system does not usually leave these modules 
invariant, making the development of a discrete theory distinctively difficult [3-81. 

Thus while in the past three decades dynamics has flourished thanks to a myriad 
of computer experiments, only a handful of exact numerical results have emerged. 
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The theoretical basis for the use of computers is founded mostly on shadowing 
considerations, which forces statistics upon a deterministic problem (see 19, 101 and 
references therein). 

But this price need not always be paid. There are dynamical systems for which 
discrete structures can be found which not only allow exact computation, but also 
the developement of a discrete dynamical theory. Here we refer to certain classes of 
algebraic mappings, whose phase points can be represented as algebraic numbers. 

can be represented in a computer without approximations [ll]. The set of all algebraic 
numbers is denumerable, and its elements can be regrouped to form infinitely many 
fields, which are 'intermediate' between Q and R or C. Each field contains Q as a 
subfield, and is dense in R or C. Consequently, numerical experiments involving only 
algebraic numbers can be performed exactly (in principle, at least), being limited solely 

Algebraic numbers appear naturally in certain linear dynamical systems 112-141. 
Their discrete phase spaces are the Z-modules alluded to above, but in this case these 
are not only invariant, but also possess a ring structure (a multiplication between phase 
points), which proves to be crucial for the development of an arithmetical theory. 

Discrete structures for nonlinear systems are naturally associated with rational 

rational numbers, these dynamical systems possess an infinite set of discrete dynamical 
invariants, namely all algebraic number fields. Infinite towers of invariant fields will still 
be found when the coefficients are not rational, but are themselves algebraic numbers. 

For instance, let d be a square-free integer. The set of numbers of the form r + s d ,  
with r and s rational form a quadratic j e l d ,  denoted by Q(J4. All its elements are 
roots of quadratic equations with integal coefficients. Consider a rational mapping f 
with coefficients in Q(J4. It is clear that f(Q(J4) c Q(J& that is f can be restricted 
to Q(J4 which becomes a discrete 'phase space' for the mapping. Any number field 
containing Q(& will serve the same purpose. 

In this context the main problem is to select from all possible algebraic number 
fields those that are relevant to a particular dynamical phenomenon. A natural starting 
point is to consider the fields containing periodic orbits, in view of the prominent place 
of the latter in both theoretical and computational problems (for a recent development 
consernine computatioar witb pcriodii orbits, ace 1151). 

The simplest CSJC of rational mappings is that of a single complex variable. We let 
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where f "  denotes the nth iterate of f  (with f = f ' ) ,  and rn and s, are polynomials with 
coefficients in some algebraic number field K. We may assume that rn and s, have no 
common factor. The periodic points of period n off  are roots of the polynomial 

Because the coefficents of Pn belong to  K, the periodic points are numbers lying in 
algebraic extensions of K. 

The purpose of this paper is to study the structure of the equation Pn(x)  = 0. For 
. simplicity of exposition we shall only deal with the case in which f is a polynomial 
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(i.e. sn(x)  = 1 in (1.2)). The extension of the theory to the case of rational functions 
will require only minor adjustments. By constructing the smallest field containing all 
periodic orbits of each minimal period n, we shall single out a family of algebraic 
number fields naturally associated with a dynamical system of the type (1.1). The 
central task will be the study of the Galois groups of these field extensions. We 
shall address the classical question of solubility by radicals, the very motivation of 
Galois's work [16]. (A discussion on radicals in computer algebra will be found in [ l  I], 
section 2.6.) 

In section 2 we introduce the polynomials H,, whose roots are the periodic points 
of minimal period n, and we study the rules governing their factorization. Their Galois 
groups G are studied in section 3. We show that G commutes with the dynamics, that 
is it preserves the orbit structure, and we determine some of its properties. In section 4 
we turn to algebraic number fields, by applying the Galois correspondence. We show 
that the relation between the derivative of a map at a periodic orbit (the multiplier 
of an orbit) and the orbit itself is expressed algebraically by a cyclic field extension, 
which is the signature of dynamics within the Galois group. These multipliers are 
found to be roots of a polynomial, which we construct explicitly (this means that one 
can compute them without computing the orbit itself). We also show that the Galois 
group of the multiplier polynomial acts as a permutation of the orbits, and that its 
solubility coincides with that of G. In sections 5 and 6 we apply this theory to the 
quadratic family, first studying the factorization of H, over the rationals, and then 
considering Galois groups. We show that all periodic orbits of period less than 5 are 
soluble by radicals, and we exhibit unsoluble orbits of period 5. Concluding remarks 
will be found in section 7. 

For background reference on Galois theory, see [16]. For the reader's convenience, 
we have included in appendix 1 a glossary of the most commonly used terms. 

Note added in proql: After this paper was completed, Odoni brought to our attention two recent preprints 
by Morton and Patel [I71 and Morton [IS], which deal with the same problem from a number-theoretical 
angle. The overlap between our work and theirs is considerable in substance, even though their viewpoint. 
motivations and style are quite different from ours. 

Z Fu!totb&m 

Let K be an algebraic number field (a finite extension of the rationals), and let f be 
a polynomial with coefficients in K ,  with degree af > 1. (The simplest example is the 
quadratic mapping with rational coefficients: f ( x )  = x2 + e ,  with c E Q = K.) The 
periodic points of period n of the map f are the roots of the polynomial Pn defined in 
(1.2). The degree of P, is equal to (af)", and i f f  is monic so is P.. The polynomial P, 
has multiple roots if 

d 
dx 
- cf"(x))  = 1 

at some periodic point x = U. This implies that such an a belongs to a marginally 
unstable n-cycle. Thus i f f  depends on a parameter, the occurrence of multiple roots 
is not generic, and will not be considered here. 
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Let H ,  be the polynomial whose roots are the points of minimal period n. To 
construct it, we first note that 

p n = n H d  (2.1) 

H" = ij p;i.iyi 

dln 

where the product is taken over all positive divisors d of n. Then we express H as a 
function of P by means of the Mobius inversion formula for a product 

(2.2) 

where p is the Mobius function ([19], ch 2). The degree of Hn is computed from (2.2) 
as 

dln 

(2.3) 

By construction, aH,  is divisible by n, and it is also divisible by af from (2.3) (for 
numerical examples, see table 1). Let m = m(n) be the number of orbits of minimal 
period n. Clearly, aH,  = mn, whence, asymptotically, m(n) - (af)"/n. 

The number .of different ways a polynomial of degree d can factor is equal to the 
number of ways d can be expressed as a sum of positive integers (called the number 
p ( d )  of unrestricted partitions of d [19], ch 14). In our case however, not all p(mn) 
factorizations are possible, because the roots of Hn are permuted by a polynomial 
mapping. To see this we factor H, over K into irreducibles 

- - A  A p n d p  h., P - - A  P ehn mr-prt;.rm .nl;t+;nn f inlAc 
Yll" "I.I"L* U, I Y.1" II <..U LWY'.,L..., 1Y..LL'..6 .&.,."I. 

Let G be the Galois group of Hn. If g E G ,  then, by definition, g preserves both 
addition and multiplication in Z, and it leaves all coefficients of H, fixed, because they 
belong to the ground field K. Thus, for any root a of H we have glf(a)) = f(g(a)), 
that is the Galois group commutes with the dynamics. 

Let h, have roots a,,&, . . ., and let f(a,) = as. a root of h,. Because h, is irreducible, 
c..!& g...p ppm..!ps its rQo!s trg..i!i?.!y $Q!, =tion 50). The!! there eriar gn 

element g in G such that g(aJ = B,, whence 

h,U(B,)) = h,U(g(a,)) = g(h,U(a,))) = g(h,(a,)) = do)  = 0 
that is f(&) is a root of h,. Thus the roots of h, are mapped into those of h,, and 
by using f"-' in place o f f  in the above argument we see that the converse is also 
true. Then the action off on the roots of Hn induces a permutation of the irreducible 
factors of H,. We express this by writing f ( h , )  = h,, which clearly implies Z, = Z,. 

For illustration, consider the case af = 2 and n = 3. From (2.3) we obtain aH, = 6. 
The possible factorizations of H3 correspond to the following partitions of the number 
6 

6 

3 + 3  

2 + 2 + 2  

3 + l + l + l  

l + l + l + l + l + l  

(2.4) 
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Thus if If, is not irreducible it can either have two cubic factors, three quadratic 
ones, one cubic factor and three linear ones or six linear ones. These five permitted 
factorizations are to be compared with the p ( 6 )  = 11 available to a generic polynomial 
of degree 6. 

We now consider the degree of the field extensions of the h,s. Assume first that 
f ( h , )  = h, (which includes the case in which Ifn is irreducible, with H ,  = h,). Then 
N, = ah, is a multiple of n. Let m, = ah,/n. The splitting field Z r  is obtained from K 
by adjoining successively roots belonging to distinct orbits (m, in all), as all points of 
a single orbit generate the same field extension. Specifically, if a ] ,  . , . , um, are roots of 
h, belonging to distinct orbits, then, in the extension K ( a , ) ,  the polynomial h, splits as 
follows 

h h )  = ( x  - a I )@ - f(al)) '  ' .  ( x  - f"-'(al))g(x) 

[X, :K]IN,(N,-n)(N,-2n)...(N,-(m,-l)n)=nmrm,! . (2.5) 

where g(x) has degree N, - n. By repeating this process m, times, we obtain the hound 

If f (h , )  # h,, then (2.5) is replaced by [Xr : K ]  5 N,!, with N, a proper divisor of mn. 
In either case the bound on the degree of the splitting field is stronger than that or a 
generic polynomial of degree mn, which is [X : K] I ( n m ) ! .  

The problem of determining the pattern of factorization for a mapping depending 
upon parameters appears to be difficult. In section 5 we will consider the quadratic 
family f(x)  = xz  + c with rational c, we will provide evidence that, at least for small 
values of n, the polynomials Ifn are irreducible with probability one, and we will single 
out some cases where factorization takes place. 

The feasibility of a computation depends on the degree of the irreducible factors 
of the polynomial If,, the most difficult case being the irreducible one. To give an idea 
of the scale of magnitudes involved, we display in table 1 the values of a H ,  and m, for 
df and n less than six, as computed from formula (2.3). 

Tible 1. 

J J = 2  a f = 3  J J = 4  aJ = S 

n JH. m aH. m J H .  m J H ,  m 

1 2 2  3 3  4 4 s s  
2 2 1  6 3  12 6 20 10 
3 6 2 24 8 60  20 120 40 
4 12 3 72 18 240 60 Mx) IS0 
5 30 6 240 48 1020 204 3120 624 

One sees that the periodic orbits of period 1 for mappings of degree less than 5, 
and those of period 2 for quadratic mappings are roots of polynomials of degree four 
or less. This means that they can be expressed explicitly in terms of radicals, using 
standard formulae [16]. In section 3 we will show that the solubility of If, coincides 
with that of certain polynomials of the smaller degree m, so that a sufficient condition 
for solubility by radicals is that m I 4. From table 1, it will then follow that solubility 
extends to three additional cases, namely n = 3 and 4 for quadratic maps, and n = 2 
for cubic ones. We will produce insoluble cases for af = 2 and n = 5, showing that 
this condition cannot he improved in general. 
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3. Galois groups 

In this section we consider the case in which the polynomial H ,  is irreducible of degree 
mn. This appears to he the typical situation (see section 5). We exclude from our 
considerations the analysis of fixed points (n = I), as the latter is just the general 
problem of solving polynomial equations of degree Jf. 

Let R be the set of roots of H,,, and let F = {f.f',.. . , f"}  be the collection of the 
U ~ D L  II I L G J ~ L C D  VI LUG ~~rappmg. 1 IKU I. -XIKC LUG UIIUIS g ~ u u p  w-acls UII LZ as a group 
of permutations, with identity f". Because H ,  is irreducible, the group G is transitive 
over R, while F clearly is not (unless m = 1, which corresponds to just one case-see 
table I ) .  The action of F induces a partition of R into blocks 

F Vioaldi and S Hatjispyros 

C-". I: . - . . -I^^ ..C<L" -......:-,. TL^^ 0 3:n.- .I.̂ n e t - : -  ~ r .... .- n ~~ ~ 

R = R, U R, U .. . U R, Ri n R, = 0, if i # j (3.1) 

each block being a dynamical orbit 

with initial condition a,. As observed in the previous section, f commutes with each 
element of G. This implies that each automorphism of G maps blocks into blocks, that 
is, G is imprimitioe ([20], section 49). This fact will simplify the problem considerably, 

The action of G can be viewed as the composition of action within blocks and 
permutation of blocks. We shall demonstrate that the former mimics the dynamics, in 
the sense that for each orbit, the Galois group contains a subgroup which acts in the 
same way as the mapping f .  The permutation of blocks, which maps the orbits into 

Let G ,  be the subgroup of G which fixes the block Rk setwise. The imprimitivity 
of G implies that G, is a non-trivial subgroup of G ,  and that the G,s are conjugate 
subgroups. Let a, E R,. Because G is transitive, there exists a permutation g E G 
carrying at to its image under the mapping f, that is g(a,) = f(a,), and since f 
commutes with g, f and g must have the same action on the entire block Rk. It follows 
thz! g E G,. In other words, the schgrccp G, consists of z!! those e!cments in G which 
act locally-on the kth orbit-in the same way as the mapping f and its iterates. 

The restriction of G, to the kth orhit is a homomorphism of G into the group of 
permutations of the elements of R,. Its kernel L,  is the subgroup of G, fixing R, 
pointwise. Then L, is a proper normal subgroup of G,, and G J L ,  "= C,,, the cyclic 
group of n elements. The L,s are conjugate subgroups, and their intersection is trivial. 

We observe that if g E G fixes a root of H,,  i.e. g(a,) = a,, then g must fix its entire 
orbit under f ,  that is g E L,. In other words, the subgroup of G which fixes ak concides 
with that which fixes R, pointwise, which is L,. Because an irreducible polynomial is 
normal if and only if the stabilizer of one (whence all) of its roots is trivial, it follows 
that the polynomial H ,  is normal precisely when the subgroups L, are trivial. 

Every automorphism g E G naturally induces a permutation of the set of blocks 
{Rl>...>R,J,. and the mapping carrying a root permutation to a block permutation is 
a group homomorphism, which we denote by 0. Its kernel is the normal subgroup D 
of G which fixes simultaneously all blocks, namely 

qnnthnr A ~ ~ . - . ; h ~ o  nu;r+;nn om,.nn ehnm 
Y l L C  Y I I Y L L I I I ,  Y l D l l l V l l  lr,YLl"l,D u'"'a,'L,s L L L U Y L ' s  L L l L l l l .  

K e r @ = D = n G , .  (3.2) 
k 
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Because G is transitive over R, the factor group G / D  "= O(G) permutes the blocks 
transitively. 

We investigate some more specific properties of the various subgroups of G. We 
begin to show that D is Abelian, by representing it additively as a Z-module. This will 
imply that G is soluble precisely when G / D  is ([16], ch 13), and will allow us to shift 
our attention from G to CID. We have seen that on each block R, every element of 
g E D restricts to some power f "  o f f ,  so that we can associate with each such g a 
string of m integers 

+(g) = { l , , 1 2 , . .  . , fm} I ,  E (0, I,.. . , n - I} k = I,.. , , n. (3.3) 

Equation (3.3) defines a mapping q5 of D into the 2-module 0 Zm/nZm. One can 
verify that composition in D corresponds to addition in 0, and that the kemel of q5 is 
trivial, i.e. q5 is a monomorphism. It follows that D is Abelian and its image $(D)  is a 
suhmodule of 0. 

Some relationships between various subgroups of G are expressed by the following 
propositions, which are proven in appendix 2. 

(i) If D 2 F then G, = L,D. 
(ii) If D = F then G ,  = L, ~3 D .  
(iii) If D $ F then G is not Abelian. 
(iv) IG/Dl = m if and only if G, = D .  

Thus the structure of G is considerably simpler if D coincides with, or at least contains, 
the dynamics F .  

4. Fields 

In this section we use the Galois correspondence to translate the results about the 
Galois group of H ,  obtained in section 3 into statements about the structure of the 
subfields of its splitting field X. 

We consider the fixed fields of G, D ,  G,, L,, respectively (see figure 1) 

X = Fix(G) A = Fix(D) r, =.Fix(G,) A, = Fix(L,). (4.1) 

Under the Galois correspondence, conjugacy of subgroups is carried ('belongs') to 
conjugacy of subfields. This implies that the T,s are conjugate subfields, and so are the 
A,s. 

We recall that the intersection of subgroups belongs to the field generated by the 
union of the corresponding fixed fields and, conversely, the intersection of fields belongs 
to (the group generated by the) union of groups. In particular, the intersection of all 
conjugates of a subgroup belongs to the normal closure of its fixed field. 

This implies that the subgroups D L ,  and D n L, belong to the fields A n  A, and 
AA,, respectively. Also, A is the normal closure of T,, from the definition of D (see 
(3.2)), i.e. the extension A : K is normal. Because D is a normal subgroup of G,, all 
relative extensions A : T k  are normal. The extensions A, : rk are also normal (because 
L, 4 G,) as well as cyclic (because their Galois group is G , / L ,  "= CJ. 

Let us consider the extension A, : Tk. Since it is normal, we have 

Ak = r k ( a k ) .  (4.2) 
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K Cmmd field: ayatem p a " t e r s  

Figure 1. The structure of the subfields of the splitting field X of the polynomials H ,  over 
the ground field K .  Segments connecting fields denote field extensions, with the larger field 
above the smaller one. Information about extensions includes arrows (a normal extension), 
circles (a cyclic extension), upper case italics (the Galois group), and lower case italics (the 
degree). 

To construct the minimal polynomial y,(x) of a, over rk it is sufficient to note that its 
roots-the algebraic conjugates of a, over r,-are the points of the kth orbit 

(4.3) 

The coefficients s, of y,, are the elementary symmetric functions of the points of the 
kth orbit, which generate rk over the ground field K ,  since H, is irreducible ([20], 
section 51). 

Because the extension Ak : r, is cyclic, the points of an orbit can always he 
computed as radical expressions of the s,s. This can he done by the classical technique 
of the Lagrange resolvent, which may require the adjunction of the nth roots of unity 
to the field I-,, ([20], section 55).  So an orbit is radical if its symmetric functions are. 

Our main concern is to construct the fields r, explicitly, thereby constructing C I D  
and examining the solubility of C. The general strategy will be that developed in [21], 
which involves two steps. 

First, determine an element in rk which generates T,, over K, and represent 
it explicitly as a polynomial w(ak) in a, over K (any element of Ak admits such 
representation, by definition). We have w(a,,) = wcf ' (ak) )  for all t ,  since w ( a k )  is 
invariant under cyclic permutations of the points of the kth orbit. In other words, 
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the generating element does not depend on the particular choice of a point in the kth 
orbit. On the other hand, if ai belongs to another orbit, w(ar )  generates the conjugate 
field r i ,  because w(ak) is carried into w(ar )  by an element of the Galois group that 
permutes blocks. It follows that if a l , .  . . ,a, are representative points of the m orbits, 
chosen arbitrarily, w(a l ) ,  . . . , w(a,) are conjugate elements, and are therefore roots of 
the same irreducible polynomial. 

Second, construct the irreducible monk polynomial b(x) over K of degree m having 
w(a l )  ,..., w(a,) as root, i.e. 

r k = K ( w ( a k ) )  d(w(a,))=O k = l ,  ..., m. (4.4) 

Then the splitting field of d(x) is the field generated by w(al) , .  ..,w(a,) over K ,  namely 
A, and its Galois group is C I D ,  from the Galois correspondence. Such a group 
permutes the elements w(ak)  in the same ways as it permutes the blocks Q,. 

As a candidate for w(ak) ,  we look for an element of Z that is invariant under 
cyclic permutations of the points of the kth orbit. A prominent symmetric function 
of the points of an orbit is the multiplier of the orbit (the derivative of the composite 
mapping f" at any of its points). This is a polynomial in ak, whose invariance under 
permutations of the points of the orbit derives from the chain rule of differentiation. 
Accordingly, we define (tentatively) w(ak) as 

The polynomials w(ak)  can be computed explicitly by means of expression (4.5). All 
polynomial arithmetic is to he performed modulo H,(x), so that the degrees involved 
in the calculation will never exceed mn (see later). 

It remains to be shown that w(a,) generates the whole of r,, and not one of 
its proper subfields. All we know at this stage is that w(ak)  is a polynomial in the 
elementary symmetric functions si (cf (4.3)). For instance, for the quadratic family 
f(x) = x2 + c, the derivative of the n-cycle C2, is an integral multiple of the product su 
of the roots of yk(x) 

where, for convenience, we have removed from w(ak) the integral coefficient 2". 
The final step is the construction of the minimal polynomial d(x) of w(a,). Its 

degree equals the degree of the extension K(w(a,)) : K, and since K(w(a,)) is a subfield 
of T k ,  we conclude that S(x) generates r, when 86 = m = [rk : K] (this happens when 
all numbers w(a,), k = 1,. . . , m are distinct). If this is not the case, we replace ak with 
ak + r for a suitable integer. r.  It can be shown that for almost any value of r, the 
polynomial w(ak - r )  will have the desired property [21]. 

To construct 6 from w we use a standard technique of linear algebra ([22], p 16). 
We note that for any E Ak the transformation i c w(aa)( is a linear transformation 
M of Ak into itself. The field A,, as a vector space of degree n over rk, decomposes 
into the direct sum 

A k = V , @ . . . @ V n  
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where each module Vi is isomorphic to T k ,  whence invariant under multiplication by 

It follows that the Jordan form of M over K has n identical blocks along the 
diagonal, and its characteristic polynomial A(x) is the nth power of the minimal 
polynomial a(x) of w(ak)  over K (1231, ch 1 1 ;  1241, section 2.6) 

(4.7) 

In actual computations, the field Ak is represented canonically as the residue field 
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W b k ) .  

d(x) = Det(M -XI) = (6(x))", 

of the polynomial ring K [ x ]  modulo the maximal ideal (H,(x)) ([20], section 32) 

(4.8) 

(this representation makes it quite clear that this construction is independent from k). 
Under this isomorphism, the number ak is identified with the residue class of x, and, 
more in general, any polynomial g(a) over K is replaced by the remainder of g(x) after 
dividing by H,,(x),  

The set 1,x,x2, ..., x"'"-' forms a basis for K [ x ] / ( H , ( x ) )  over K, to be used in 
the computation of M.  Specifically, the mn entries in the rth column of M are the 
coefficients of the mn-degree polynomial w ( x )  ' x'-', which must be suitably reduced 
modulo H,(x ) .  

5. The quadratic family: factorization 

A quadratic mapping with coefficients in a field K can be reduced, via a linear 
conjugacy, to the canonical form 

f ( x )  = xz + c c E K .  (5.1) 

The simplest cases are K = Q and c = 0, -2, where the Julia set is smooth 

5.1. The case c = 0 

The Julia set is the unit circle, over which the map f restricts to a binary Bernoulli 
shift: F ( 0 )  = 20 (mod 1) (the 'doubling map'). The periodic points are rational points 
on the circle, which are roots of unity, plus the superstable fixed point x = 0. We have 

n F d b )  2" P J x )  = x - x  = x 
0 - 1  

where F,(x) is the mth order cyclotomic polynomial ([20], section 36) 

p(mld)  F,(x) = n ( x ~  - 1) 
dlm 

(5.3) 

whose roots are the primitive mth roots of unity, namely the numbers e2nik/m with k 
and m coprime integers. Combining (2.2), (5.2) and (5.3) we obtain 
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whence 

(5.4) 

where we have used the fact that the sum & p ( n / d )  vanishes unless n = I, when it is 
equal to 1 ([19], theorem 2.1). 

Formula (5.4) implies that H ,  is irreducible over Z (and consequently over Q) if 
and only if 2" - 1 is a Mersenne prime (whence n = p is prime), in which case the 
splitting field Z is the (2p - l)th cyclotomic field Q(exp(2xi/(2P - 1)). Thus only a finite 
set of prime periods p are known for which H p  is irreducible [25]. 

5.2. The case c = -2 

This is the 'Ulam point' of the quadratic mapping. The Julia set is the interval [-2,2], 
which contains all periodic orbits. This mapping is semi-conjugate to the doubling map 
via the function g ( B )  = 2cos(2nB). 

Let m be a positive integer and 4 the Euler's function ([19], ch 2). We define 

Y,(x + x-I) = F,(x)x-  $im)P, 

Yl(X) = &3 

(5.5) 

We find 

Y,(x) = vGT3 
while for m > 2, 'f" is a monic polynomial in x + x-'. This can he established from 
the fact that 

x""F,(x-') = F,(x) 

and the repeated use of the identity 

xk + x - ~  = (x + x- ' ) (xk- '  + XI-') - (xk-' + x2--lr) k > 0 

([26], p 37). The polynomials 'f':, 'f'?, and 'I',(x) for m > 2 are irreducible and generate 
the largest real subfield of the mth cyclotomic field, namely Q(cos(2x/m)). 

Let f (x) = x2 - 2, and g and F as above. Then 

g) (@) = e2ni2"8 + e-2ni2"8 - - (g 0 F") (8) 

From (1.2) we obtain 

P " O g ( 8 ) = g o F " ( ~ ) - g ( B )  = X2'+X-T-(X+X-' )  

where X = e2'j8. This can be rewritten as 

By substituting 
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into (5.6) .we get 
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pn 0 g) iX) = n Y d ,  ( X  + x-9 n Ydz ( X  + x-9 
dt12"--1 d212"+1 

but X + X-' = g(0) whence 

pn(X) = n ydt(x) n y d ~ ( x )  
d112--I d2l2"+1 

Note that in this expression VI always appears as a square, while Y, never occurs 
Finally, Mobius inversion gives 

P W d )  1 K ( X )  = n ( I7 ybk (X)  n Y d > ( X )  
dln d112d-l dilZ*+l 

One finds that HI = T';Y3, I f 2  = Y, is irreducible, while for n > 2 H ,  is never 
irreducible. 

3.3. Rational values o f c  

We examine the factorization of H,(x) over the rationals, for n I 3. From (2.2) and 
(5.1) we obtain 

,TI (X) = x2 - Ji + i 
H&) = 2 + x + ( c + l )  

H3(x) = X6+X5+ (3e+ 1)x4+ (2c+ l)x3 + ( 3 2 + 3 c +  l)X2+((C2+2C+ l ) x +  (c3+2cZ+c+ 1).  

The quadratic polynomials H , ( x )  and H 2 ( x )  factor over Q when their discriminants 
are squares of rational numbers. (The discriminant d l f )  of a monic polynomial f with 
roots 0, .  . . , Qn is the product d c f )  = 

Letting d ( H , )  = 1 - 4c = (2k - 1)' and d ( H 2 )  = -3 - 4c = (2k + 1 ) 2 ,  with k rational, 
we obtain c = -k2 + k and c = -k2 + k - 1, respectively. For these values of the 
parameter c we have the factorization 

- 0k)2-see [20], section 26.) 

2 H,(x)  = (X - k)(x + k - 1)  

H ~ ( x )  = (X + k) (x  - k + 1)  

c = -(k - k) 

c -(k2 - k + 1)  

In particular, no factorization takes place for c greater than 4 and -:, respectively. 
For n = 3 we consider the factorization of H3 into two cubic factors (which 

covers all but one possibility, see (2.4)). Letting H3(x) = h(x)[(x), we obtain for the 
discriminant 

d ( H , )  = d(h)d(l)  Res(h, 1)' (5.7) 

where Res(h,I) is the resultant of h and I ([20], section 27; [27], section 7.4). The 
poiynomials h and i are normai, since f ( h j  = h and f i i j  = i (with the noiaiion OF 
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” 
- 
I 
2 
3 
4 
5 

X ’ - - x + C  

x- (e + 1) 
x’ - ( e  + 2)x + (e’ + 2 2  + c + I )  
x’ + ( ~ ’ - 3 ) x ~ + ( - & c ’ + e ~  + 3 ) x - ( c 6 + 3 c ’  + 3 c 4 + 3 c 3 + 2 c 2 + 1 )  
x6+k*x5+k4X4+k’x ’+kzXz + k l x + b  
k* = c2 - - c  -6; 
!q = 3e* + 3c4-6c’ -2c’ +5c  + IS; 
k3 = 2c’ +9c6 + 17c5 +21c4 + 1 3 2  -2c’ - 1Oc-20; 
k2 = 3 ~ ‘ ~ + 1 1 ~ ~ + 6 ~ ~ - 2 O c ~ - 4 2 ~ ~  -53c*-37c4-33c’+8e2++10c+15; 
kl = clz + lc“ + 2 0 P  + 33c9 +me8 + 37c’ + 21e6 + 7c’ - c‘ - 9c’ - 7c2 - 5c 
b = ~ ~ ~ + n c ~ 4 + 2 8 ~ 1 1 + 6 o ~ 1 2 + 9 4 ~ 1 ~ + ~ ~ 6 ~ 1 0 i ~ l 4 c 9 + 9 4 ~ 8 + 6 9 c 7 + ~ ~ 6  

+ 2 6 ~ + 1 4 c 4 + 5 c ’ + 2 c 2 + c + 1 .  

-6 ;  

section 2). This means that their Galois group is either C,, which contains only even 
permutations, or it is trivial if their roots are rational. In either case both d(h) and d ( / )  
must be squares of rational numbers, and so must d(H,) ,  from (5.7). The discriminant 
of H3 is 

d(H,) = -(16c2 + 4c + 7)2(4c + 7)’ 

which is the square of a rational number provided that -(4c + 7 )  is, from unique 
factorization. Letting 4c + 7 = -(2k - 1)2, k rational, we obtain c = -k2 + k - 2 (i.e. 
c 5 -a )  and the factorization 

H3(x)  = h,(x)h,-,(x) c = -k2 + k - 2 (5.8) 

where 

h,(x) = x3 + kx2 - (k2  - 2k + 3)x - (k’ - 2k2 + 3k - 1) 

All factorizations considered here are exceptional in that in the intervals where they 
take place they have the density of the squares. In other words, H ,  is irreducible with 
probability one. 

For n > 3 the conditions for factorization become more stringent. Apart from the 
already known cases (c = 0 and c = -2), we have only found numerically seemingly 
isolated cases, such as c = -5 for n = 4. 

6. The quadratic family: periodic orbits 

In this section we apply the theory developed in the previous sections to the study of 
the periodic orbits of the quadratic family (5.1). Because the quadratic map depends 
on a single parameter, we may regard f ( x )  as a map over the polynomial ring Z [ c ] .  
When no value is specified, c should be regarded as an arbitrary complex number. 

From table 1 and the results of section 3 we see that for periods less than 5 the 
equation H,(x) = 0 is soluble by radicals. We compute the polynomial w ( a k )  = so, 
as defined in (4.6), and from it we calculate the multiplier polynomials 6 ( x )  as the 
minimal polynomial of M (cf (4.7)). (Note that for computational purposes, exploiting 
the block structure of M is essential.) The results are reported in table 2. 
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The degree of 6 is m, in agreement with the first column of table 1. 
The 6-polynomial for n = 5 will be used at the end of this section. We first consider 

the case n = 3 in some detail. There are two orbits of period 3, whence 6(x) has degree 
2. The discriminant of 6(x) is given by 

d = -c2(4c + 7). (6.1) 

For rational c, the multiplier of a periodic orbit of period 3 generates a quadratic 
extension e(&) unless the parameter c is such that d is the square of a rational number. 
The determinant vanishes for c = 0 (the Bernoulli shift), and c = -a. In both cases H ,  
factors. From the previous section we also know that H, factors when c = -k2+k-2, k 
rational, and indeed for these values of c we have d = d(k)  = (2k  - 1)’(k2 - k + 2)2. 
Thus 6(x) is irreducible over Q when H,  is, that is with probability one. 

Besides the polynomial S(x) for so, we compute those for s1 and s2 (cf (4.3)). By 
considering all possible triples of roots, we construct six distinct cubic polynomials y(x) 
from (4.3). Two of these have the periodic orbits of period three as roots. Once one 
of them is found (by trial an error, say), the other one is obtained applying the group 
CID to the the si. 

To give an idea of the expressions involved, we consider the parameter value c = 1. 
The polynomial H ,  reads 

H’(X) = x6 + x5 + 4x4 + 3x3 + 7x2 + 4x + 5 (6.2) 

and the discriminant of 6(x) is d = -11. From (6.2) we see that the product of the 
points of the 3-cycles is the prime 5. The latter splits in Z ( m )  (a principal ideal 
domain) into the product of two primes 

(6.3) 

By construction, n1n2 = w(al )w(a2)  is the product of the roots of 6. From unique 
factorization and the fact that the units in Z ( m )  are just *I, we conclude that 
the roots of S(x) coincide with the prime factors of 5, with a possible sign difference. 
Verification shows that the sign agrees. Thus the primes ni are the derivatives of the 
mapping f(x) = x2 + 1 at  the 3-cycles, divided by 2’. 

After computing the analogous solutions for s, and s2, we construct the minimal 
polynomials for a, and ct2 over A, as in (4.3) 

whose solution gives an expression for a representative point for each orbit of period 3 

(6.5) 6 
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The three points in an orbit correspond to the three choices of the cubic roots. The 
action of G / D  interchanges the orbits, and it amounts to interchanging all signs 
(which is just complex conjugation). 

We have seen that the splitting of the constant term of H ,  in the ring Z[Jd, with 
d given by (6.1), is closely related to the value of the multipliers. It must be pointed 
out, however, that this value is known only within a unit factor. Thus in the case of 
real fields (i.e. c < -2), where non-trivial units exist with absolute value different from 
1, factorizations of the type (6 .3)  do not suffice to compute multipliers. 

We now demonstrate that already for n = 3, the polynomial H,,(x) may not give 
rise to normal extensions. From (2.5) we find that for n = 3, af = 2 and H ,  irreducible, 
IGI cannot exceed 18. On the other hand /GI is a multiple s of 6, the degree of H,, and 
s must divide 3, the period. Thus IGI = 6 or 18. Because G / D  "= C,, G, = C, = D, 
necessarily, so ID1 is either equal to 3 or to 9. In the former case D = F Z C, and 
G = C, or S,. In the latter case we have D "= C, c3 C,, which means that D $ F .  
We conclude that G is not Abelian, from proposition (iii) of section 3, and that i t  
has a non-trivial centre, because the latter contains F .  This suffices to establish that 
G "= C, c3 S, [28]. 

To decide among the possible Galois groups for c = 1, we factor H , ( x )  modulo a 
few primes p which are not discriminant divisors ([29], p 129). The discriminant of H ,  
is equal to -36113. For p = 2, H ,  is irreducible, so we gain no information. For p = 5 
we obtain 

H , ( x )  E x ( x  + 3 ) ( x  + 4 ) ( x 3  + 4 x 2  + 4 x  + 2) (mod 5) (6.6) 

and the appearance of irreducible factors of different degree indicates that the extension 
is not normal ([22], p 71), whence IGI = 18. The factorization (6.6) identifies the 
conjugacy class in G which fixes three roots of H ,  (the three linear factors), while 
permuting cyclically the other three (the cubic factor). It consists of the four generators 
of the subgroups L ,  and L,, which we know to he non-trivial, since H ,  is not normal. 
Incidentally, this result implies that for n = 3 the estimate (2.5) cannot he strengthened. 

We finally turn to the question of the solubility of the Galois group G ,  which was 
shown to coincide with that of the factor group CID. When n = 4 we have ni = 3 
whence C / D  "= C, or S,, which are soluble. When n = 5 we resort to computation. 
Using the expression for S ( x )  displayed in table 2, we have computed G / D  for all 
integral values of the parameter c less or equal to 100 in absolute value, using a 
procedure implemented in the algebraic manipulator MAPLE. In all cases (excluding 
c = 0, -2) the group G / D  was found to be the symmetric group S, which is non-soluble, 
thereby establishing that the periodic orbits of period 5 of these systems cannot be 
expressed in terms of radicals. 

I. Concluding remarks 

We have studied the arithmetical properties of the periodic orbits of rational mappings, 
which lie in algebraic extensions of the field containing the parameters of the mapping. 
We have investigated the structure of these extensions by means of Galois theory, and 
addressed the classical question of solubility by radicals. 

We have shown that the solubility of a periodic orbit in terms of radicals is 
(essentially) equivalent to that of its multiplier. We have developed an algorithm to 
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compute the multipliers' minimal polynomials, which we have applied to the quadratic 
mapping. By determining the corresponding Galois groups, we have provided examples 
of orbits that cannot be expressed in term of radicals. These were periodic orbits of 
period 5 for some integral value of the parameter. This result does not preclude the 
possibility that particular parameter values may yield mappings with radical periodic 
orbits of large period. However, it seems unlikely that radical expressions will be a 
commonplace for orbits of large period. 

In some cases solubility by radicals can be extended beyond periodic orbits. If the 
inverses f-' of a rational mapping f can be expressed in terms of radicals (for instance 
when the degree o f f  is less or equal to four), the pre-images of periodic points lie in 
radical extensions of the field containing the periodic orbits. In this way a large family 
of points of Julia sets can be computed symbolically. 

The computation of the &polynomials involves finding the determinant of a matrix 
M of size mn (cf (4.7)). Even if one exploits the block structure of M ,  the calculations 
become rapidly very substantial. A precise assessment of the computational complexity 
of this problem is not straightforward (there are also other types of algorithms), 
but it seems unlikely that this approach could replace the direct one in asymptotic 
computations, given the present developement of the theory. This question is currently 
being investigated. 

Methods for computing statistical quantities from periodic orbits have been recently 
developed, based on the zeta function formalism [IS]. Some zeta functions involve 
only information about multipliers of an orbit rather than the orbit itself, for instance 
in the stability of Julia sets. The use of &type polynomials seems appropriate for an 
algebraic development of this subject, 
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Appendix 1. Glossary of Galois theory 

A feld is a set equipped with two binary operations, called sum and multiplication, 
satisfying the commutative, associative and distributive properties of the corresponding 
operations among rationals. Let K be a field and K [ x ]  the set of polynomials with 
coefficients in K .  The polynomial f is monic if it has unit leading coefficient and 
irreducible i f f  = hg implies that g or h is constant. 

Let f be irreducible and let f ( a )  = 0. The set of all rational epressions in a with 
coefficients in K form a field, denoted by K(a) .  Clearly K c K ( a ) .  I f f  has degree n, 
K ( a )  consists of all linear combinations 

and every 5 E K admits a unique representation of this type. Thus K ( a )  is an 
n-dimensional linear space over K ,  called an algebraic extension of K .  If L is an 
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extension of K one writes L : K .  The minimal polynomial for a E L over K is the monic 
polynomial f E K[x] of smallest degree having a as a root. 

Two algebraic numbers aI and a2 are conjugate if they are roots of the same 
irreducible polynomial over K .  The corresponding extensions K(a , )  and K ( a J  are also 
called conjugate. 

A polynomial f splits in L, if L contains all its roots. The smallest field where f 
splits is called the splittingfield of f .  An extension L : K is normal if any irreducible 
polynomial over K with a root in L splits in L. An extension is separable if for each 
c( E 4 the minimal polynomial for a over K has no multiple roots. A normal and 
separable extension is called a Galois extension. 

An automorphism U of a field K is a bijection of K into itself preserving both 
addition and multiplication: u(a+P) = .(a) +U@) and U(@) = u(a)u(B), for all a and 
f l  in K .  

If L : K is a Galois extension, the Galois group G is the set of automorphisms of 
L leaving each element of K fixed. The order (number of elements) IGI of G is equal 
to the degree of the extension. An extension if cyclic if its Galois group is cyclic. 

To each subgroup D of G we associate itsfixed field Fix(D), which is the collection 
of the points of L that are invariant under all automorphisms of D. Thus K is the fixed 
field of G and L that of the identity. Conversely, to each subfield F of L we associate 
the largest subgroup F' of G which leaves all its points invariant. The main theorem 
of Galois theory asserts that 

D = (Fix(D))' F = Fix(F'). 

In addition, D is a normal subgroup of G if and only if Fix(D) is a normal extension 
of K ,  in which case the Galois group of Fix(D) over K is isomorphic to the quotient 
group CID.  

Appendix 2. 

We prove the propositions (i)-(iv) of section 3 

P r o o f o f ( i ) .  
have gf-" E L, and fl, E D, by assumption, i.e. L,D = G,. 

Proof of ( i i ) .  We note that if D = F then L, n D = 1, because the only element of F 
fixing the kth orbit is the identity, since all orbits have the same period. The assertion 
now follows from (i) and the fact that both L, and D are normal subgroups of G,. 

Proof of ( i i i ) .  The group F is represented in 0 as the submodule 0, generated by 
the vector ( I , ] , ,  . . , 1). Assume that d(D) is not contained in 0,. Then D contains 
an element d with b ( d )  = ( I , , .  ... f,), such that at least two indices I ,  and I,? are not 
congruent modulo n. Choose any a E R, and E R,, and g E G such that g ( a )  = f l .  
We have 

Let g E G,. Then g restricts to f I k  over R,, so that g = (gf-'k)f'h. We 

g d ( 4  = g f ' W  = f ' W 4  = f 'W 
&(a) = d ( P )  = f ' W  

and our assertion is proved 
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Proofof  (iu). From (3.2) it follows that G ,  = D if and only if all G ,  coincide and are 
normal subgroups of G. But then G ,  fixes a block if and only if it fixes all of them, that 
is C I D  is a regular permutation of the blocks, and because it is transitive, its order 
is equal to the number m of blocks. Conversely, if G / D  = m then it is regular, which 
means that the only block stabilizer is the identity. 
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