
Nonlineariry 8 (1995) 321-332. Printed in the UK 

A family of rational zeta functions for the quadratic map 

Spyros Hatjispyros and Franco Vivaldi 
School of Mathematical Sciences, Queen Mary and Wesffield'Coilege, University of London, 
Mile h d  Road, London El 4NS, UK 

Received 23 December 1993 
Recommended by R S MacKay 

Abstract. A family of dynamical zeta functions is inuoduced, that weigh each periodic orbit 
with integral powers of its multiplier. For the quadratic map, we prove that some of these 
functions are rational, and conjecture their general form. 
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1. Introduction 

This paper is devoted to the theoretical and numerical study of a new family of dynamical 
zeta-functions. Our main result-the rationality of these functions-concerns the quadratic 
family fc(z) = z2 + c,  with complex c (and in one instance the larger family fC,= = z' + c,  
where U is an integer greater than 1). The main constructs are applicable to any polynomial 
mapping f over a field K of characteristic zero. 

The periodic points of period n of f (also called n-cycles) are the roots of the polynomial 

n = 1,2,. . . (1.1) 

Mobius inversion yields the 

Pn(z) = f " ( z )  - z 

where f" denotes the nth iterate of f (with f = f'). 
polynomials H.(z) [l, 21 

H.(z) = n P , ( Z ) " ( ~ / ~ )  n = 1,2 , .  . . (1.2) 
dln 

where j~ is the,Mobius function (131, chapter 2). (The inversion (1.2) is valid even if K has 
non-zero characteristic [Z]). The roots of H,(x)  are the periodic points of essential period 
n 141. They include the orbits of minimal period n, and, possibly, bifurcational orbits of 
lower period. The degree of H,(z) is a multiple of n, and m = aHJn is the number of 
orbits of essential period n, including multiplicities. One has aH,  N (af)". I f f  is monic 
(unit leading coefficient) so are Pn(z) and H,(z).  For f = fc,a, P, and H, are monic 
polynomials over Z[c], 'and the periodic orbits of fC," are integers in algebraic extensions 
of Z[C]. 

Let t be a periodic point of minimal period n. Its multiplier is the derivative of f" at 
t ,  which is a prominent symmetric function of the points of the orbit. For the family fC,=, 
we have f&(z) = azo-', and we shall replace the multiplier by the product of the points 
in the orbit (which we still call multiplier) 

w m  = f ' f C , & 9  " '  f:,'(c) a"w&)'-' = (f:N). (1.3) 
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There are m such multipliers, and they are roots of a monic polynomial over Z [ c ] ,  which 
we call the nth multiplier polynomial of f. denoted by S,,(z). Multiplier polynomials can 
be computed by means of Galois theory [l]. 

This construction can be generalized. For any integer k > 0, we define @(z) to be 
the monic polynomial whose roots are the kth power of the roots of & ( z ) .  Specifically, if 
(1, . . . , (,,, are representative points of the m orbits of f of essential period n, we define 
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Thus & ( z )  = S:(z), and all polynomials 8," have the same degree m. 

to multiplier polynomials 
We now define a sequence of dynamical zeta functions which are naturally associated 

m 

Ck(Z)-' = ~Zn'""'8,k(1/z") k =  1,2, .... (1.5) 
F 1 

The aim of this paper is to provide evidence that for f = fc,. these products converge for 
all k > 0 to rational functions of z and c.  More precisely, we have 

Proposition 1.1. Let fCJz) = 2'' + c, with a an integer greater than I, and let i$(z) be 
the corresponding zeta function (IS). Then, for all c, the product (1.5) defines a rational 
function of z ,  given by 

Of note is the independence of C:-,(z) from the parameter c. For fixed a, the value k = a- 1 
appears to be the only one for which Cf is independent of c. For a = 2 (quadratic family) 
the broader picture is given by the following conjecture 

Conjecture. For the quadratic family, and all integers k > 1 we have, (dropping the 
superscript a )  

where Gk(z,  c )  is an integral polynomial in z and c of z-degree W2J (LxJ is the largest 
integer not exceeding x). 

Assuming the validity of (1.7), we note that all functions <k share the factor (1 -z)/(l-Zz), 
which is equal to C ~ ( Z ) ,  from proposition 1.1. Also of interest is the existence of a close 
relationship between the poles of (k-l(z) and the zeros of {&), which is consistent with 
a conjecture put forward by Artuso et a1 on a related family of zeta functions ([5] part I, 
p. 349). Finally, one sees that the infinite sequence of polynomials Gk(x, c) provide an 
alternative encoding of the information stored in the multipliers of the system. 

The plan of this paper is as follows., In the next section, after reviewing some 
ideas concerning zeta functions, we consider the convergence of the products (1.5), and 
then relate the coefficients of their logarithmic derivative to multiplier polynomials. In 
section 4 we prove proposition 1.1, and in the following section we provide numerical and 
theoretical support for the conjecture. In appendix 1 we display the polynomials Gk(z,  c )  
for k = 1,  . . . , 12, while the multiplier polynomials &(z) are tabulated in appendix 2 for 
n = 1, . . . ,6 .  
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2. Dynamical zeta functions 
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For a background reference for this section, see [5] and references therein. 

We construct a sequence Z, of complex numbers, defined as follows 
Let Fix(f") be the set of periodic points of period n o f f ,  and let M, be its cardinality. 

where t,,n is a weight associated to the ith n-cycle. The corresponding dynamical zeta 
function 5 ( z )  is defined formally as 

The zeta function is related to the generating function of the sequence Z. via the logarithmic 
derivative 

(2.3) 

We say that the weights ti," are multiplicative when they assume the s&e value at all 
points of a periodic orbit, and when the weight at a point of an orbit repeating r times a 
minimal orbit is the rth power of the weight of the minimal orbit,itself. When this is the 
case, let us denote by p the symbolic representation of a minimal orbit of length jpj = no. 
with associated weight tp = tp,.,. Then the zeta function (2.2) can be written in the form 
of an eulerian product 

t(Z) = n(l -tpZ"')-' (2.4) 
P 

where p runs over all admissible periodic strings of minimal length f i p ,  for all np  > 1. The 
expressions (2.3) and (2.4) are valid wherever the series in (2.2) converges unconditionally. 

; ti.. = IV")YXi)J@ - c o < j ? < o o  (2.5) 

For example, taking the weights ti,n to be 

thermodynamical quantities such as generalized dimensions, entropies and Lyapunov 
exponents can be extracted from the knowledge of the leading singularities of the series 
( 2 4 ,  as functions of the real paranieter j? [6-9]. 

Algebraically speaking, the multipliers themselves are more natural than their absolute 
value (2.5), and in what follows we shall consider the multiplicative weights ti," = 
where w, is given by (1.3), k is a positive integer, and is a point in the ith n-cycle. The 
quantities 2, defined in (2.1) are now sums over multipliers 

and the zeta function becomes 
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The equality between these functions and those defined in (1.5) will be proven in section 
3. In reference [5] it was conjectured, based on a transfer operator argument, that the zeros 
of the zeta function (2.4) should be given by the poles of the zeta function 
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<*(z) = n (1 - tp*znn)-' with t; = tp/ ( fnp) '  (z,). 
P 

Formula (1.7) is a refinement of this conjecture for the zeta function (2.7). The appearance 
of the argument z / 2  results from having chosen the product of points in an orbit rather than 
the muliplier (cf. (1.3)). 

The convergence of the series in (2.7) derives from the boundness of the Julia set of a 
polynomial (see [lo], prop. 4.2 and 4.10). Let B be an upper bound for the modulus of all 
periodic points of f .  Then 

and D(z) converges and does not vanish in the disc IzI c (uBk)- ' ,  where a is the degree 
of f. We compute B as the radius of the smallest circle centered at the origin encircling 
the Julia set of f ,  which is given by 

B = inf ( r  z o I I Z I  < r =) I~ - ' ( z ) I  < r }  . 
For the quadratic family, one verifies that B = B(c) = 1/2 + Jm. (The case in 
which the w: are multipliers-rather than products of points in the orbits--can be treated 
similarly.) 

In the remainder of this section we establish a relation between the coefficients of the 
multiplier polynomials, aid those of the elements of the sequence (2.6). We first recall a 
standard result on symmehic functions. Let :I, . . . , cn be elements of a commutative ring. 
Their kth power sum is the expression S, = ELI .$. If U,,  . . . , U" are the elementary 
symmetric functions of the ti, then the power sums-themselves symmetric functions-can 
be expressed in terms of them. This is achieved via the so-called Newton's relations 

Lemma 2.1. Let &. Sk and Uk be as above. Then 
k-I 

E(-l) 'Ut &-i -k (-1)'kUk = 0 
i=o 

1 < k 6 n 
(2.8) U0 = 1 

For a proof, see 1111, page 51. 

Since the w-weights are multiplicative, we obtain 
We denote by T: the kth power sum of the roots of 6,(z), that is, the trace of 6:(z). 

2," = Ed TFld.  (2.9) 
dln 

To express T in terms of Z we cannot perform the usual Mobius inversion, as the summands 
on the right hand side of equation (2.9) depend on d as well as n/d. Nonetheless an inversion 
is possible, which, together with the Newton's relations (2.8), allows one to express the 
coefficients of the multiplier polynomials in terms of the coefficients of the series (2.3). 
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Proposition 2.2. 1121 Let 2," and T," be as above. Then the following holds 
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(2.10) 

Proof: We define the sequence 

It suffices to show that for all n > 1, = T,". Let t be the number of distinct prime 
factors of n. We write the prime decomposition of n in the form n = nt = n,-lpF, with 
no = 1. Then 

By performing the same algebraic manipulations on the last expression one obtains 

where ol = knt-z f r and f i  = rp;:; pp' . Thus in a finite number of steps we obtain 

which completes the proof. 

3. Proof of proposition 1.1 

Proposition 1.1 is a corollary of the following result 
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Lemma 3.1. Let f ( x )  = fc,..(z) = Z' + c, with a > 2, and let ZA be as in (2.6). Then, for 
all complex c 
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ProoJ The polynomials Pn(z) for fc,, satisfy the recursion relation 

where PI (z) = z" - z + c. It can be verified that for all a > 1 and n > 1 one has 

P.(z) = Q , ( Z )  - 2 + (-lY"f"(O) 

where 

Q " Z  ( ) - - c (-l)j%joz""-j"; U0 = 1 
j=O 

and the 0;'s are the elementary symmetric functions of the roots of Pn(z). Then 

From the fact that 

0 k $ 0  (mod a )  k # a" - 1 
= { (-1y" k = n " - l  

and the first of the Newton's relations (2.8), we obtain an a"-' x an-' linear system in the 
unknowns S..-j.-l, for j = 0.1,. ..,a"-' - 1, namely 

S.-l = 0 

Sk-1 + (-l)=uoSa-] = 0 

+ (-I)=u~sk-l+ (-I)=ukS"-I = 0 
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Substituting the latter into (3.2), we have 2; = an - 1, for all values of the parameter c.  
Using (2.2) we finally get 

m 
CO (az)" 

< ( z )  =exp - - :) 
??=I 

=exp In - -In - ( (1 :az )  ( l i z ) )  
1 - 7  

Proofofproposition 1.1. Let f = fc,n be as in lemma 3.1, let &(z) = SA(z) denote the nth 
multiplier polynomial (1.4), and let m be the number of orbits of minimal period n. All 
that remains to be proved is the equality of the products (1.5) and (2.7). One the one hand, 
we have 

n (1 - wpZn,) = 
P *=I IPI" 

On the other hand 

+(--l)m(wl ...U, " ) Z m "  

=zm"S" ( Z " )  . 

This equation, together with lemma 3.1 and the identity 

n (1 - W p z n n )  = <l(z)-l 
P 

establishes our result. 

4. Support for the conjecture 

In this section we provide theoretical and experimental support for the validity of formulae 
(1.7). 

We begin to justify the presence of the factor <I  ( z )  = (1 - z)/(l - 2 2 )  in each rx(z). For 
each n and k, the quantity T,-the trace of S:(z)-is an integral polynomial in c. This is 
because Sg(z) is the minimal polynomial of a matrix whose entries are i n t e p l  polynomials 
in c (see [I], section 4). Then 2; has the same property, from equation (2.9). We write 

Z!(c) = Z,(O) + Z i ( C )  (4.1) 
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where z:(c) is also integral in c. For c = 0, the non-zero fixed points t of f: are the 
(Zn  - 1)-th roots of unity, with multiplier w&) = 1. Then Z:(O) = 2" - 1, and equation 
(4.1) gives 
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(4.2) 

In order to deal with the exponential term in (4.2), we expand c;' as follows 
m m 

sk(z)-l = nZ""'"'s,K(l/z") = 1 - Cg:z'. (4.3) 
n=l ?=I 

Next we express the coefficients 8: in terms of the trace T," and the norm N," of the 
polynomial 6i(z). The first six coefficients are given by 

k - Tk g, - 1 

k - ~k - N; g2 - 2 

k - T k -  kTk 
g3 - 3 g1 2 

g$ = TJ - gfT: f TlNf  

gs-  - T k  5 - g i r l  
& = T$ - g:Ti - g;T," + glT2 k k k  T3 - N: 

From the knowledge of the first six multiplier polynomials (see appendix 2), and making 
use of the Newton's relations (2.Q we calculate the first six coefficients g:, for k = 2,3,4.  
We obtain 

g: = 1 - 2c 

g: = 1+2c  r = 2 ,  ..., 6 

g: = 1-3c 

g: = g:-' - 3(c + Z)(-C)~-' r = 2, . . . , 6  

g; = 1 - 4c + 2 2  

gi = 1 + 4 c + 6 ~ * + 4 ~ ~  

g," = - Zr(c + l)(c + Z)(-cY-' r = 3 , .  . . ,6 
There are two values of c for which these recursion relations for g: are true for all r (and 
k), namely c = 0, and, less hivially, c = -2, the Ulam mapping [12, 131. This suggests 
that they may be valid for all values c. Assuming this, equations (4.2) and (4.3) give 

(4.4) 
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where [ ~ ( z )  = ( I  - z)/(l - 2z). In order to cast (4.4) in the form (l.7), it is sufficient to 
define 

GI(z,c) = 1 

Gz(z, C) = 1 + 2cz 

G ~ ( z ,  C) = 1 + 4cz 

G~(z, C) = 1 - 2c(c - 3 ) ~  - 8c3zZ. 

Assuming (l.7), we can compute Gk(z, c). We illustrate the computation in the case 
k = 5. We first calculate the coeflicients g: for r = 1, . . . ,6, and equate the coefficients 
up to degree six in the equation 

Letting Gdz, c) = I + viz + . . . + r76Z6, we then solve the corresponding 6 x 6 linear 
system in the unknowns vi. . . . , 06, to obtain 

171 = SC - 6c2 

72 = -32c 3 

v, = 0 r=3 , . . : ,6  

which gives Gdz,  c) = I - 243c - 4)z - 32c3z21 With an analogous procedure, we have 
obtained the polynomials Gk(z, c) fork < 12, which are displayed in appendix 1. 

Finally, we have verified the validity of (1.7) numerically, for the function h 2 ( z ) ,  at the 
parameter values c = 1 and c = 10-3(1 + i). Specifically, the terms up to degree 12 in z 
of the expansion of the reciprocal of the right hand side of (1.7) were found to’agree with 
those of the expansion (4.3), where the coefficients g:’ for r = I , .  . . ,12 were computed 
using the numerical values of the periodic points of period up to 12. 
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Appendix 1 

The polynomials Gdz ,  c) appearing in (1.7), fork < 12 

GI(z,c) = I  

G ~ ( z ,  C) = 1 + ~ C Z  

G ~ ( z ,  C) = 1 + ~ C Z  
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3 2  G~(z,  C) = 1 - ~ C ( C  - 3 ) ~  - 8~ z 

G5(z, C) = 1 - 2 ~ ( 3 ~  - 4 ) ~  - 3 2 ~  z 

G6(Z, c) = 1 + Zc(cz - 6c + 5)z - 4c3(3cz - 5c + 2.0)~'- 64c6z3 

G~(z, c) = 1 + 4c(2c2 - 5c + 3)z - 16c3(5c2 - 6~ + 10)~' - 512c6z3 

Gs(z, c) = 1 - 2c(c3 - 10c2 + 1% - 7)z - 8c3(2c4 - 7c3 + 41c2 - 3% + 392' 

3 2  

+ 32c6(5c3 - 7c2 + 16c - 70)z' + 1 0 2 4 ~ ' ~ ~ ~  

Gg(z, c) = 1 - 2c(5c3 - 20c2 + 21c - 8)z - 8c3(20c4 - 49c3 + 125c2 - 80c + 56)z2 

+ 64c6(35c3 - 40c2 + 64c - l12)z3 + 1 6 3 8 4 ~ ' ~ ~ ~  

G l ~ ( z ,  c) = 1 + 2c(c4 - 15c3 + 352 - 28c + 9)z - 4c3(5c6 - 302 + 238c4 

- 4 0 1 ~ ~  + 6 2 5 ~ ~  - 31% + 1 6 8 ) ~ ~  - 16c6(2Oc6 - 612 + 2 1 5 ~ ~  

- 1115c3+ 1 0 2 9 ~ ~ -  1152c+ 1 1 7 6 ) ~ ~ + 1 2 8 ~ ' ~ ( 3 5 ~ ~ - 4 5 ~ ~  

+ 88c2 - 224c + 1 0 0 8 ) ~ ~  + 3 2 7 6 8 ~ ' ~ ~ '  

Gll(z, c) = 1 + 2c(6c4 - 35c3 + 56c2 - 3 6 ~  + 1 0 ) ~  - 8c3(35c6 - 1 4 4 ~ ~  + 5 0 0 ~ ~  

- 618c3 + 679c2 - 280c + 12 .0 )~~  - 32c6(224c6 - 5492 + 1363c4 

- 3072~' + 2320~' - 192.0~ + 1 3 4 4 ) ~ ~  + 2 0 4 8 ~ ' ~ ( 6 3 ~ ~  - 70c3 

+ 110c2 - 192c + 336)z4 + 1 0 4 8 5 7 6 ~ ' ~ ~ ~  

Glz(z, c) = 1 - 2c(c5 - 21c4 + 70c3 - 84c2 + 4% - 1l)z - 4c3(6c8 - 55c7 

+ 573c6 - 1.557~~ + 3308c4 - 3171~' + 26602 - 924c + 3 3 0 ) ~ ~  

+ 16c6(35c9 - 186~' + 919c7 - 58778 + 1 0 8 3 7 ~ ~  - 1 8 7 4 4 ~ ~  

+ 2.6121~' - 1 6 4 0 1 ~ ~  + 10560~ - 5 5 4 4 ) ~ ~  + 64c"(224c8 

- 64%' + 1961c6 - 6 3 9 9 ~ ~  + 3 1 2 6 7 ~ ~  - 29952~' + 36592~' 

- 44352~ + 44352)~~  - 4O96cl5(63c5 - 77c4 + 140c3 - 306c2 

+ 816c - 3 6 9 6 ) ~ ~  - 2 0 9 7 1 5 2 ~ ~ ' ~ ~ .  

Appendix 2 

The first six multipliers polynomials for the quadratic family 11, 121 

& ( x )  = x  --n +c .  

&(x) = x  - ( c +  1). 

2 
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&(x) =x~- (c+2)x+(c3+2c2+c+1) .  

&(x) = x 3  + (c2 - 3)x2 + (-c4 - c3 + cz + 3)x- 
- (c6 + 3c5 + 3c4 + 3c3 + 22 + 1) 

S S ( X )  =x6 + k5nS + k4n4 + k3x3 + k2n2 + k l x  + ko. 
7. ks =C -c-6 

k4 =3c5 + 3c4 - 6c3 - 2c2 + 5c + 15 
k3 =2c7 + 9c6 + 17c5 + 21c4 + 13c3 - 2cz - 1Oc - 20 
k2 = 3c10 + llc9 + 6c8 - 20c7 - 42c6 - 532 - 37c4 - 3c3 + Sc2 + 1Oc + 15 

kl =c1' + 7c" + 20~" + 33c9 + 40~' + 37c7 + 21c6 + 7cs - c4 - 9c3 - 7c2 
-5c-6 

ko =cI5 + 8cI4 + 28ci3 + 60~" + 94~" + 116~" 
+ 1 14c9 + 94c' + 69c7 + 44c6 + 26c5 + 14c4 + 5c3 + 2c2 + c + 1 

&(X) = X 9  + k& + k7x7 + k6X6 + k5x5 + k4x4 + k3x3 + k2x2 + klx + ko 
3 2  ks = - c  +C +c-9 

6 5 4  k7 = - 4c - 2~ + SC - 4c' - 6c2 - 8c + 36 
k6 =4C9 + 2C8 - 34C7 - 63c6 - 542 - 6C4 + 42c3 + 14c2 4- 28c - 84 
k5 = 6c1' + 14~" - 1 1clo - Sc9 + 101~' + 192c' + 231c6 

+ 142~' - 83c4 - l l k 3  - 14c2 - 56c + 126 
k4 = - 6c" - 2Ocl4 + 15~'~ + 124~'~ + 189c" + 186c" 

+ 49c9 - 2122 - 208c7 - 109c6 - 5c5 + 225c4 + 140c3 + 70c - 126 
k3 = - 4c" - 22ci7 - 22c16 + 112~'~ + 441~'~ + 853~'~ 

+ 1 1 5 7 ~ ~ ~  + 1143~" + 7742' + 322c9 - 392 - 308c7 - 334c6 
- 2502 - 2 3 0 ~ ~  - 84c3 + 14c2 - 5 6 ~  + 84 
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kz =4c2' +30cZ0 + 80~'' + 5 7 ~ ' ~  - 1 9 5 ~ ' ~  - 7 3 4 ~ ' ~  - 1 4 4 1 ~ ' ~  
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- 1 9 4 1 ~ ' ~  - 1 8 8 1 ~ ' ~  - 1344~" - 570~" + 126~" + 467c' + 593c8 

+ 566~' + 375c6 + 212~' + 92c4 + 142 - 14c2 + 28c - 36 

kl = ca + 1 0 ~ ~ '  + 41c2* + 8 4 ~ "  + 602' - 155~" 

- 642~" - 1 3 4 7 ~ ' ~  - 2 0 3 6 ~ ' ~  - 2455~" - 2.522~'~ 

- 2272~'; - 1842~" - 1385~" - 923~" - 536c' - 290~' 

- 1 3 2 ~ ~  - 61c6 - 262 + c4 + Sc3 + 6 2  - 8~ + 9 

ko = - (c2' f 13cZ6 + 78cS + 2 9 3 ~ ~  + 792~'; f 1 6 7 2 ~ ~ ~  

+ 2 8 9 2 ~ ~ '  +4219cZ0 + 5 3 1 3 ~ ' ~  + 5892~" + 5 8 4 3 ~ ' ~  

+ 5 2 5 8 ~ ' ~  +434615 + 3 3 1 0 ~ ' ~  + 2 3 3 1 ~ ' ~  + 1525~" 

+ 927c" + 536~" + 298~' + 155c8 f 76c7 + 35c6 + 17c5 

+7c4 f 3c3 + 2 - c +  1). 
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