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Abstract

We provide details on the full reconstruction of the dynamic equations from measured time series data, given the general

class of the underlying physical process. Our results can be used by researchers in physical modelling and statistical

mechanics interested in an efficient estimation of low dimensional models, incorporating dynamic as well as observational

noise. Our approach is Bayesian, based on an auxiliary variables algorithm that is fast and accurate, and direct, in the sense

that only uniform distributions need to be sampled. This method is simpler than other Bayesian approaches where one has

to sample from non-standard–unknown distributions using MCMC methods.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Time varying phenomena in the physical sciences often exhibit irregular and complex behaviour. It has been
known, since Poincare’s pioneering work, that physical phenomena even in the macroscopic level that is purely
deterministic, may present complicated and irregular behaviour. Later in the 1970s, Lorentz observed this type
of behaviour in a simple deterministic dynamical model for meteorological fluid mechanics. It was termed
chaos and initiated a new area in the mathematical and physical sciences. Such type of behaviour from simple
and low dimensional dynamical systems was used in the modelling of a large variety of physical situations. For
instance, as a simple model for turbulence [1], to understand the behaviour of plasmas [2] and the origin of
kinetic theory in statistical mechanics [3,4], in modelling the behaviour of nonlinear electronic circuits [18], etc.

To compensate for a small number of degrees of freedom, such models can incorporate dynamic noise,
perhaps as model error, resulting in what is known as random dynamical systems. In the case of laboratory or
‘‘real world’’ time series data we have often inaccurate measurements of the underlying dynamic process,
making the states of the true system unobservable. Therefore, it is possible that observational noise is
incorporated in such models.
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Suppose that system identification has led us to believe that the underlying physical process can be modelled
as a low dimensional and nonlinear, time discretized, continuous state space parametric dynamical system that
incorporates both dynamic and observational noise. To fully reconstruct the model of the dynamical system
from measured time series data, provided that the general class of the underlying model is known, we need to
estimate the state space parameters of the system comprised of the vector of parameters of the deterministic
part and the characteristics of the dynamic noise components.

When dynamic and observational noise components are independent and identically distributed (iid)
(typically normally distributed) the stochastic model is Markovian and techniques that make use of the
likelihood function, that is the joint density of the observations given all the unknown state space parameters
of the system, can be used to fully reconstruct the model. In the Bayesian statistical approach the unknown
state space parameters are treated as random variables and any prior knowledge available to the researcher
can be incorporated together with the likelihood function. Using Bayes theorem the posterior density, that is
the conditional density of the state space parameters given the time series, can be obtained. The last and most
crucial step is to sample from this posterior density. Then one recovers the probability that each of the state
space parameters lies in a certain interval in the presence of the information given by the observed time series
data.

In Refs. [5,6], computer intensive Markov chain Monte Carlo (MCMC) methods are used; specifically the
Metropolis within Gibbs algorithm [7,8]. This is typically employed when one has to sample from non-
standard distributions. Therefore, to sample from the posterior efficiently one has to employ an appropriate
proposal (jumping) distribution. We believe that the auxiliary variables sampler (the slice sampler) is more
appropriate for such a situation as the algorithm depends only on the proposed functional form of the
underlying random dynamical system. Sampling then from the joint posterior is simpler and amenable to
automatic construction of MCMC samplers [9,10] for such models.

We believe that the results of this work may be of interest to the physics community, especially those
interested in physical modelling and statistical mechanics. For instance, our results may be used for the
improved estimation of low dimensional models for observable data. Such low dimensional models are known
by now to describe quite well certain systems e.g. fluid flows, electronic circuits, competing populations or even
stochastic macroeconomic laws [11,17]. Our method may be used for accurate parameter estimation of such
models and subsequently these may be used for prediction for control of the system. As an example, we may
consider the problem of perturbing a chaotic trajectory to a periodic one (or vice versa). Chaos control was
first successfully tested on the Henon map which since has become a canonical example of chaotic motion.

The paper is organized as follows. In Section 2 we provide a brief introduction on discrete time random
dynamical systems. In Section 3 we describe in detail the auxiliary variables sampling algorithm for a
k-dimensional dynamical system. In Section 4 we describe in detail a one-dimensional slice sampling
algorithm. Namely we reconstruct the dynamic equation of the random logistic map with observational noise,
which is the one-dimensional limit of the Henon map. In Section 5 we deal with a two-dimensional random
map. We apply the slice sampling algorithm on the reconstruction of the dynamic equations of the Henon map
with dynamic noise.

2. Discrete random dynamical systems

We define the random recurrence relation T : X � Y ! X by

xi ¼ Tðxi�1; ZiÞ; i ¼ 1; 2; . . . , (1)

where xi ¼ ðxi1; . . . ;xikÞ takes values in X, a Borel set of Rk and Z ¼ fZigiX1 is a p-dimensional random process
having Y, some Borel set of Rp, as its state space. We assume that for fixed x the function Tðx; yÞ is measurable
in y, and for fixed y, Tðx; yÞ is continuous in x (see Ref. [12], and references therein). We could work with
discontinuities in T but it is harder to do so and all our examples are based on continuous T so we assume this
is true. Successive applications of the random map T generate realizations of the stochastic process xi which
depend solely on the initial value x0 and on the particular realization of the process Z. For a rigorous definition
of a random dynamical system see Refs. [13–15]. When the random variables Zi are iid, the xi process is
Markovian with a stationary transition density.
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Here we will only consider additive noise, Tðx; yÞ ¼ f ðxÞ þ y. The general case of multiplicative and additive
noise can be treated in exactly the same way from a Bayesian perspective (by taking logarithms for example).

Denoting by y 2 Rm any dependence of the deterministic map f on parameters, and setting p ¼ k, relation
(1) reads

xi ¼ f ðxi�1; yÞ þ Zi; Zi�
iid
pð�Þ; i ¼ 1; 2; . . . . (2)

We further assume that the random variables Zij of the random vector Zi ¼ ðZi1; . . . ; ZikÞ are all independent of
each other. Assuming that noisy measurements of the outputs xi occur at all times for all 1pipn, making the
xi sequence unobservable, we introduce the observable quantities yi ¼ ðyi1; . . . ; yikÞ such that

yi ¼ xi þ �i; �i�
iid
nð�Þ; 1pipn, (3)

again imposing the condition that the random variables �ij of the random vector �i ¼ ð�i1; . . . ; �ikÞ are all
independent of each other. In addition, let

Zij�Nð�j0; 1=xjÞ; �ij�Nð�j0; 1=ljÞ; 1pjpk,

and denote by f j the jth component of the vector function f. Then we obtain the following normal–normal
model:

yijjxij ; lj�Nð�jxij ; 1=ljÞ, (4)

xijjxi�1; y; xj�Nð�jf jðxi�1; yÞ; 1=xjÞ. (5)

In what follows we let y ¼ ðyijÞ be the n� k array of observations, and x ¼ ðxijÞ be the corresponding n� k

array of unobserved outputs generated by the recursion given in relation (2).

3. The slice sampler

Suppose that we are in a situation where we have observed y, and the functional form of the random
dynamical system responsible for the output is known. The initial state of the system x0 ¼ ðx01; . . . ;x0kÞ, the
parameters y ¼ ðy1; . . . ; ymÞ and x ¼ ðx1; . . . ; xkÞ as well as l ¼ ðl1; . . . ; lkÞ, are all unknown quantities. We
denote by W ¼ ðx0; l; x; yÞ the 3k þm tuple of parameters we wish to estimate and by pðWjyÞ the posterior
density of W given the data y. Since

pðWjyÞ ¼
Z

X n

pðW;xjyÞdx,

we can sample W from the joint posterior density pðW;xjyÞ, which is the joint posterior density of W and x given
the data y, and is given by

pðW;xjyÞ /
Yn

i¼1

Yk

j¼1

fNðyijjxij ; 1=ljÞ �Nðxijjf jðxi�1; yÞ; 1=xjÞgpðWÞ. (6)

This follows from (4) and (5) and that the conditional density of x given the vector of parameters W is given as

pðxjWÞ ¼ pðx1; . . . ; xnjx0; l; x; yÞ

¼
Yn

i¼1

pðxijx0; . . . ;xi�1; l; x; yÞ

¼
Yn

i¼1

pðxijxi�1; x; yÞ.

To estimate W we must first compute the full conditionals of the joint posterior density, pðW;xjyÞ. But direct
algorithms, such as the Gibbs sampler, are difficult to implement since it is required to sample from full
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conditionals looking like

pðxijx½�i�; y; WÞ /
Yk

j¼1

exp �
lj

2
ðyij � xijÞ

2

� �

�
Yk

j¼1

exp �
xj

2
½ðxij � f jðxi�1; yÞÞ

2
þ ðxiþ1;j � f jðxi; yÞÞ

2
�

� �
,

where x½�i� ¼ ðx1; . . . ;xi�1;xiþ1; . . . ;xnÞ, which are of non-standard form for all 1pion.
Here we will describe how after the introduction of strategic latent variables, u ¼ ðuijÞ and v ¼ ðvijÞ, 1pipn,

1pjpk, all the full conditional distributions required for the Gibbs sampler become standard. See Ref. [9] for
further details. In the following we use Gaða; bÞ to denote a gamma distribution with mean a=b; Uða; bÞ to
denote a uniform distribution on the interval ða; bÞ; ExpðaÞ to denote an exponential distribution with mean
1=a; and I to represent the indicator function.

For 1pipn and 1pjpk consider the random variables

uijjxj�Gað�j3=2; xj=2Þ,

xijjxi�1; uij ; y�Uð�jf jðxi�1; yÞ �
ffiffiffiffiffi
uij
p

; f jðxi�1; yÞ þ
ffiffiffiffiffi
uij
p
Þ, ð7Þ

and

vijjlj�Gað�j3=2; lj=2Þ,

yijjxij ; vij�Uð�jxij �
ffiffiffiffiffi
vij
p

; xij þ
ffiffiffiffiffi
vij
p
Þ. ð8Þ

We also have

pðuijxÞ ¼
Yk

j¼1

pðuijjxjÞ; pðujxÞ ¼
Yn

i¼1

pðuijxÞ, ð9Þ

pðvijlÞ ¼
Yk

j¼1

pðvijjljÞ; pðvjlÞ ¼
Yn

i¼1

pðvijlÞ, ð10Þ

along with

pðxijxi�1; y; uiÞ ¼
Yk

j¼1

pðxijjxi�1; y; uijÞ,

pðxjy; uÞ ¼
Yn

i¼1

pðxijxi�1; y; uiÞ ð11Þ

and

pðyijxi; viÞ ¼
Yk

j¼1

pðyijjxij ; vijÞ,

pðyjx; vÞ ¼
Yn

i¼1

pðyijxi; viÞ. ð12Þ

We now calculate the augmented likelihood

pðx; y; u; vjWÞ ¼ pðvjWÞpðujv;WÞpðxju; v; WÞpðyjx; u; v;WÞ.

Using (9)–(12) one obtains

pðx; y; u; vjWÞ ¼
Yn

i¼1

Yk

j¼1

pðuijjxjÞpðxijjxi�1; y; uijÞ �
Yn

i¼1

Yk

j¼1

pðvijjljÞpðyijjxij ; vijÞ.

ARTICLE IN PRESS
S.J. Hatjispyros et al. / Physica A 381 (2007) 71–8174



Aut
ho

r's
   

pe
rs

on
al

   
co

py

From (7) and (8) the above-written equation becomes

pðx; y; u; vjWÞ /
Yn

i¼1

Yk

j¼1

x3=2j expf�0:5xjuijgIðuij4ðxij � f jðxi�1; yÞÞ
2
Þ

�
Yn

i¼1

Yk

j¼1

l3=2j expf�0:5ljvijgIðvij4ðyij � xijÞÞ
2
Þ. ð13Þ

The marginal of the joint posterior pðW;x; u; v; jyÞ with respect to the variables u, v is given by (6). For the
appropriate choice of independent priors for the parameters x0, l, x and y, the corresponding Gibbs sampler
has only standard full conditionals, as follows: observing thatZ

Rþ
l3=2j e�vijlj=2Iðvij4ðyij � xijÞ

2
Þdvij / Nðyijjxij ; 1=ljÞ

and Z
Rþ

x3=2j e�uijxj=2Iðuij4ðxij � f jðxi�1; yÞÞ
2
Þduij / Nðxijjf jðxi�1; yÞ; 1=xjÞ,

the joint density just described gives the required posterior in (6) once we have integrated out the latent
variables u and v.

The full conditionals for the Gibbs sampler, for uij and vij, 1pipn, 1pjpk are

p vijj�
� �

/ expð�ljvij=2ÞIðvij4ðyij � xijÞ
2
Þ, (14)

p uijj�
� �

/ expð�xjuij=2ÞIðuij4ðxij � f jðxi�1; yÞÞ
2
Þ. (15)

For the choice of priors pðljÞ / l�1j and pðxjÞ / x�1j (diffuse gamma priors), sampling from the full
conditionals for lj and xj is also straightforward and involves only gamma distributions. This is a standard
procedure for applying non-informative prior distributions and provides proper posterior distributions even
though the priors are improper. Then

p ljj�
� �

/ l�1j

Yn

i¼1

l3=2j e�uijlj=2 / Gaðljj3n=2;Vnj=2Þ, (16)

pðxjj�Þ / x�1j

Yn

i¼1

x3=2j e�uijxj=2 / Gaðxjj3n=2;Unj=2Þ, (17)

where V nj ¼
Pn

i¼1vij , Unj ¼
Pn

i¼1uij .
The prior for the jth coordinate of the initial condition x0 will be uniform on the interval ðx�0j ; x

þ
0jÞ that is

pðx0jÞ / Iðx�0jox0joxþ0jÞ

and the full conditional for x0j is given by

pðx0jj�Þ / Iðx�0jox0joxþ0jÞ
Yk

r¼1

Iðu1r4ðx1r � f rðx0; yÞÞ
2
Þ, (18)

which is uniform in the intersection of the interval ðx�0j ;x
þ
0jÞ and the set

\k
r¼1

fx0j : u1r4ðx1r � f rðx0; yÞÞ
2
g.

Another conditional density is that of xij , conditional on all the other parameters. For 1pipn we have

pðxijj�Þ / Iðvij4ðyij � xijÞ
2
ÞIðuij4ðxij � f jðxi�1; yÞÞ

2
Þ �

Yk

r¼1

Iðuiþ1;r4ðxiþ1;r � f rðxi; yÞÞ
2
Þ

( )1�din

, (19)
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where din is Kronecker’s delta. Clearly for ion and 1pjpk the full conditional of xij is uniform with support
given by the intersection of the following sets:

S1
ij ¼ fxij : yij �

ffiffiffiffiffi
vij
p oxijoyij þ

ffiffiffiffiffi
vij
p
g,

S2
ij ¼ fxij : f jðxi�1; yÞ �

ffiffiffiffiffi
uij
p

oxijof jðxi�1; yÞ þ
ffiffiffiffiffi
uij
p
g,

S3
ij ¼

\k
r¼1

xij : xiþ1;r �
ffiffiffiffiffiffiffiffiffiffiffi
uiþ1;r
p

of rðxi; yÞoxiþ1;r þ
ffiffiffiffiffiffiffiffiffiffiffi
uiþ1;r
p� �

.

In the case i ¼ n, the full conditional for xnj , for 1pjpk is again uniform with support S1
nj \ S2

nj .
Notice that at each iteration of the Gibbs sampler there is a least an xij which belongs to the intersection of

the sets S1
ij \ S2

ij \ S3
ij because of the way the uij and vij were sampled in (14) and (15), respectively. Moreover,

from the assumption of the continuity of the f r for 1prpk their intersection is an interval.
The final conditional density to sample is that for yl , 1plpm. The prior for yl will be taken to be uniform

on the interval ðy�l ; y
þ
l Þ. Then its full conditional becomes

pðylj�Þ / Iðy�l oyoyþl Þ
Yn

i¼1

Yk

j¼1

Ifuij4ðxij � f ðxi; yÞ
2
Þg, (20)

which is uniform with support given by the intersection of the sets ðy�l ; y
þ
l Þ and

\n
i¼1

\k
j¼1

fyl : xij �
ffiffiffiffiffi
uij
p of jðxi; yÞoxij þ

ffiffiffiffiffi
uij
p
g.

This completes the description of the full conditional distributions.

4. A slice sampler for the random logistic map

Here k ¼ 1 and m ¼ 1 with f 1 ¼ f and f ðx; yÞ ¼ 1� yx2. Then the model in relations (4) and (5) becomes

xijxi�1; y; x�Nð�jf ðxi�1; yÞ; 1=xÞ,

yijxi; l�Nð�jxi; 1=lÞ. ð21Þ

A parameter of interest is y and in a Bayesian context it is assigned a prior distribution, say pðyÞ. As well, we
assign non-informative gamma prior distributions to both l and x and a uniform prior on ð0; 1Þ to the initial
condition x0.

The joint posterior pðW; u; v;xjyÞ given by (13) becomes

pðW; u; v; xjyÞ / pðWÞ
Yn

i¼1

x3=2e�uix=2Iðui4ðxi � f ðxi�1; yÞÞ
2
Þ �
Yn

i¼1

l3=2e�vil=2Iðvi4ðyi � xiÞ
2
Þ,

where W ¼ ðx0; l; x; yÞ is the 4 tuple of parameters we wish to estimate.
The full conditionals for the Gibbs sampler, for ui and vi are from relations (14) and (15)

pðvij�Þ / expð�lvi=2ÞIðvi4ðyi � xiÞ
2
Þ,

pðuij�Þ / expð�xui=2ÞIðui4ðxi � f ðxi�1; yÞÞ
2
Þ; 1pipn.

It is worth pointing out that letting pðwÞ ¼ U 0; 1ð Þ and u ¼ �2l�1 logðwÞ þ K one obtains

pðuÞ / e�lu=2Iðu4KÞ.

Therefore the conditional densities for all the latent variables which are truncated exponential random
variables, can be sampled as

ui ¼ �2l
�1 log wi þ ðyi � xiÞ

2
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and

vi ¼ �2x
�1 log w�i þ ðxi � f ðxi�1; yÞÞ

2,

where the wi and w�i are iid uniform on the unit interval.
Using diffuse gamma priors for l and x, one obtains from relations (16) and (17) the full conditionals

pðlj�Þ / Gaðlj3n=2;Vn=2Þ; p xj�ð Þ / Gaðxj3n=2;Un=2Þ,

with Un ¼
Pn

i¼1ui and Vn ¼
Pn

i¼1vi.
The prior for x0 will be taken to be uniform on ð0; 1Þ, more commonly known as a non-informative flat

prior. For the full conditional of x0 relation (18) gives

pðx0j�Þ / Ið0ox0o1ÞIðu14ðx1 � f ðx0; yÞÞ
2
Þ,

which is uniform with support given by the intersection of ð0; 1Þ and

x0 : �
ffiffiffiffiffi
u1

p
þ x1of ðx0; yÞo

ffiffiffiffiffi
u1

p
þ x1

� �
.

From (19) one obtains the density of xi conditional on all the other parameters,

pðxij�Þ / Iðvi4ðyi � xiÞ
2
ÞIðui4ðxi � f ðxi�1; yÞÞ

2
Þ � ðIðuiþ14ðxiþ1 � f ðxi; yÞÞ

2
Þ
1�din .

Clearly for ion the full conditional of xi is uniform with support given by the intersection of the
three sets

S1
i ¼ xi : yi �

ffiffiffiffi
vi

p
oxioyi þ

ffiffiffiffi
vi

p� �
,

S2
i ¼ xi : f ðxi�1; yÞ �

ffiffiffiffi
ui

p
oxiof ðxi�1; yÞ þ

ffiffiffiffi
ui

p� �
,

S3
i ¼ xi : xiþ1 �

ffiffiffiffiffiffiffiffi
uiþ1
p

of ðxi; yÞoxiþ1 þ
ffiffiffiffiffiffiffiffi
uiþ1
p� �

.

From the discussion in the previous section it is to be understood that the intersection of the three sets is the
interval ðai;biÞ with

ai ¼ max yi �
ffiffiffiffi
vi

p
; 1� yx2

i�1 �
ffiffiffiffi
ui

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xiþ1 �

ffiffiffiffiffiffiffiffi
uiþ1
p

y

r( )

and

bi ¼ min yi þ
ffiffiffiffi
vi

p
; 1� yx2

i�1 þ
ffiffiffiffi
ui

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xiþ1 þ

ffiffiffiffiffiffiffiffi
uiþ1
p

y

r( )
.

For i ¼ n, the full conditional for xn is again uniform on the interval S1
n \ S2

n.
The final conditional density to sample is that for y, which is given by relation (20). It can be verified that the

map f ð�; yÞ : X ! X , where X ¼ ½�tðyÞ; tðyÞ� and tðyÞ ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4y
p

Þ=2y for 0oyp2 is compact. Setting the
prior for y to be uniform on the interval ð0; 2Þ, its full conditional becomes

pðyj�Þ / Ið0oyo2Þ
Yn

i¼1

Iðui4ðxi � f ðxi�1; yÞÞ
2
Þ,

which is uniform with interval given by the intersection of the interval ð0; 2Þ and

\n
i¼1

y : xi �
ffiffiffiffi
ui

p
of ðxi�1; yÞoxi þ

ffiffiffiffi
ui

p� �
.

In the case of the logistic map, all of these intervals are easy to find.
Results for random logistic: We ran the slice/Gibbs sampler for the logistic map using y ¼ 0:5, x ¼ 100, l ¼ 500

and x0 ¼ 0:5. Fifty data points were generated and the slice sampler was run for 20,000 iterations. The posterior
distributions for the parameters of interest, namely y and x0, are presented in Fig. 1 as histograms of the samples
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from the chain. The mean values from the samples are 0.49 and 0.48 for y and x0, respectively. As a check that the
chain has converged we plot the running average of the y chain and to see that the chain is mixing well we also plot
the y chain. These are presented in Fig. 2. Fig. 3 provides the autocorrelation functions for the y series. These
pictures clearly show that the chain has no problems converging and is mixing well.
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5. A slice sampler for the random Henon map

The Henon map is a second order nonlinear map xi ¼ y2 � y1x2
i�1 þ y3xi�2. Letting xi1 ¼ xi and xi2 ¼

y3xi�1 we obtain the deterministic law

xi1 ¼ f 1ðxi�1; yÞ ¼ y2 � y1x2
i�1;1 þ xi�1;2,

xi2 ¼ f 2ðxi�1; yÞ ¼ y3xi�1;1.

The model for the associated perturbed map with no observational noise is

xijjxi�1; y; xj�Nð�jf jðxi�1; yÞ; 1=xjÞ; j ¼ 1; 2

with y ¼ ðy1; y2; y3Þ, x ¼ ðx1; x2Þ, and target vector W ¼ ðy; x; x0Þ.
Here our data consist of n consecutive observations x ¼ ðx1; . . . ;xnÞ and the posterior density we want to

sample from is pðWjxÞ. Now

pðWjxÞ / pðWÞ
Yn

i¼1

Y2
j¼1

Nðxijjf jðxi�1; yÞ; 1=xjÞ (22)

and the extended joint posterior including the 2n latent variables uij is proportional to

pðW; ujxÞ / pðWÞ
Yn

i¼1

Y2
j¼1

x3=2j e�uijxj=2Iðuij4ðxij � f jðxi�1; yÞÞ
2
Þ.

The full conditionals for uij and xj for 1pipn and j ¼ 1; 2 are the same as in relations (14) and (17),
respectively. The priors for the initial conditions x01 and x02 will be taken to be uniform on the intervals
ðx�01;x

þ
01Þ and ðx

�
02;x

þ
02Þ, respectively. For the full conditionals of x01 and x02 one has

pðx01j�Þ / Iðx�01ox0oxþ01ÞIðu114ðx11 � f 1ðx0; yÞÞ
2
Þ � Iðu124ðx12 � f 2ðx0; yÞÞ

2
Þ,

pðx02j�Þ / Iðx�02ox1oxþ02ÞIðu114ðx11 � f 1ðx0; yÞÞ
2
Þ.
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The final conditional densities to sample is that for y1, y2 and y3. Uniform priors yield the following full
conditionals:

pðysj�Þ / Iðy�s oysoyþs Þ
Yn

i¼1

Iðui14ðxi1 � f 1ðxi�1; yÞÞ
2
Þ; s ¼ 1; 2

and

pðy3j�Þ / Iðy�3 oy3oyþ3 Þ
Yn

i¼1

Iðui24ðxi2 � f 2ðxi�1; yÞÞ
2
Þ.

Numerical results for the Henon map: In this case we take 1000 data points and the parameters are y1 ¼ 0:3,
y2 ¼ �0:3, y3 ¼ 0:3, x ¼ 50, l ¼ 100 and x01 ¼ x02 ¼ 0:1. The chain was run for 1000 iterations, which due to
the large sample size, is adequate for obtaining the posterior distributions. The histograms of the samples for
the three y parameters are presented in Fig. 4. As can be seen, these are very tight about the true values. This is
purely due to the large sample size.
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6. Discussion

Slice sampling algorithms are becoming popular throughout the statistical analysis of complicated models.
For example, in Ref. [16] a slice sampling algorithm is being introduced for the ARCH model. Here we have
introduced the idea for random dynamical systems. As we have demonstrated, the algorithms are fast and
accurate, and are direct in that only standard distributions, that is uniform distributions, need to be sampled.
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