Tapoifengue Opijoupe Tnv $\underline{\sigma \delta} \quad\left\{N_{t}\right\}_{t \geq 0}$ Gav
$N_{t}=\sup \left\{\eta \geq 0: \sum_{i=1}^{n} T_{i} \leq t\right\}$, \quad órou $T_{i} \stackrel{\text { rid }}{\sim}$ (.). $\in \delta_{a}$ - Xupos nотаgtógtwr fivar siexpitós $S=N_{t}(\Omega)=\mathbb{T} T_{0}$ K^{\prime} o xpôvos Gurexris. $t \in \mathbb{R}_{0}^{+}$. $H \quad \sigma \delta\left\{N_{t}\right\}_{t \geq 0}$ sivae
 agifierr tuxaiar endexopitaur Gro ($0, z]$) 6Tnr 070ioc ol Evdropuegor xpôrol arapuorn's T_{i} Co xpôros arefiom's jra
 ptntes kl toutotinó katarefingivies tuyaíes hietaphnte's. Tétoles stoX. siedikocies orohajovem proventikés.
Oetartas $Y_{n}=\sum_{i=1}^{n} T_{i}$ opijoulae tor xpovo avo.forn's giae n evjexjferoc $Y_{\eta}=\inf \left\{t>0: N_{t}=n\right\}$ गou बurd́órtou $\mu \mathrm{E}$ tous evdiaffrous xpúrous avaporris T_{i} Eqobewr $T_{1}=Y_{1}$ k^{\prime} rıa $i \geq 2, T_{i}=Y_{i}-Y_{i-1} \Leftrightarrow Y_{i}=\sum_{j=1}^{i} T_{j}$

M1ac $\omega-\tau$ pox $1 a^{\prime}$ avoveurtinis fiafiko.bias

Einr eifinn repintivon nov or evfépefar xpóvor T_{i} EXour Ekletikn＇keteropn＇fie fégo 1A $T_{i} \stackrel{\text { idd }}{\sim}$ Exp（．1d）， n avorewtinn＇siafikegia $\left\{N_{t}\right\}_{t \geq 0}$ orofíafran fiadmedioc Poisson．

Opibfís Miar $6 \delta \quad\left\{N_{t}\right\}_{t \geq 0}$ ovofiajecar fredikegio Poisson otar ikavomolei tis naperáto guvinkes：

I．$N_{0}=0, t \leq s \Rightarrow N_{t} \leq N_{s}$（有就．$n N_{t}$ aivod pin Givavga ws mpos to xpovo t ）．
 Gu申阝ei èva to nodú evjexóphevo $k^{\prime} n$ mivavồnte va Gufonge＇auto to erdexiffero eivou avatogn $\psi \in$ to finikos Tou Siegtrifatos

$$
P\left\{N_{t+h}-N_{t}=k \mid N_{t}=n\right\}=\left\{\begin{array}{rr}
1-\lambda h+\sigma(h) & k=0 \\
\lambda h+\sigma(h) & k=1 \\
O(h) & \alpha \nmid l o v
\end{array}\right.
$$

Onou $\frac{G(h)}{h} \underset{h \rightarrow 0}{\longrightarrow}$ Snd．To $O(h)$ aval froe no60intac Hou teiva 6To 0 rio jprijope ano＇to h.

III．$t<s \Rightarrow N_{5}-N_{t}$ aveGapinto tou N_{t}（ônd．n Slefikoola $\left\{N_{t}\right\}$ extel avefipmites npurau\}n'бas) k^{\prime} $N_{s}-N_{t} \stackrel{d}{=} N_{s-t}$

Aoknon N_{a} Saxjai or $N_{t} \sim P_{0}(\cdot \mid \lambda t)$

$$
\begin{aligned}
& \left\{N_{t}=n\right\}=\left\{N_{t}<n+1\right\} \backslash\left\{N_{t}<n\right\}=\left\{Y_{n+1}{ }^{>} t\right\} \backslash\left\{Y_{n}>t\right\} \Rightarrow \\
& P\left\{N_{t}=n\right\}=P\left\{Y_{n+1}>t\right\} \sim P\left\{Y_{n+1}>t, Y_{n}>t\right\} \\
& =p\left\{Y_{n+1}>t\right\}-P\left\{Y_{n}>t\right\}=\int_{t}^{\infty} G_{\alpha}(x \operatorname{ln+1}, \lambda) d x-\int_{t}^{\infty} G_{x}(x \mid n, \lambda) d x \\
& =\frac{\lambda^{n+1}}{n!} \int_{t}^{\infty} x^{n} e^{-\lambda x} d x-\frac{\lambda^{n}}{(n-1)!} \int_{t}^{\infty} x^{n-1} e^{-\lambda x} d x \\
& =-\frac{\lambda^{n}}{n!}\left\{\left[0-t^{n} e^{-\lambda t}\right]-n \int_{t}^{\infty} x^{n-1} e^{-\lambda x} d x\right\}-\frac{\lambda^{n}}{(n-1)!} \int_{t}^{\infty} x^{n-1} e^{-\lambda x} d x \\
& =e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}=P_{0}(n \mid \lambda t)
\end{aligned}
$$

Mapkoprovès Aiefireales
 Eival ón n ffetlortun' Tous EJidi\}n eFaptaital atlo Thr notabtasn Ginv omoie ßpighoutal 6To rapór K^{\prime} óxl amó to Topekjor tous

The Mapöfrifho sav $\left\{x_{\eta}\right\}_{n \geq 0}$ sivou $\sigma \delta$ Siekpitaù xpivou
 18istnta, va isxuer ót1:

$$
\begin{align*}
& \forall A \subseteq S, P\left\{x_{n+1} \in A \mid X_{n}=x, x_{n-1}=x_{n-1}, \ldots, x_{0}=x_{0}\right\}= \\
& =P\left\{x_{n+1} \in A \mid x_{n}=x\right\}, \forall x, x_{n-1}, \ldots, x_{0} \in S \tag{7.1}
\end{align*}
$$

$P(n, x, A) \equiv P\left\{x_{n+1} \in A \mid x_{n}=x\right\}=H$ niverómie pereßseens ens siedinegias ano to x ito A Gexpore n.

M10 $\sigma \delta$ $\psi \in$ Tnv ifiotnte (7.1), slakptoù xpírou k^{\prime} Slaripiroú Xŵpou kateoribewr, ovopijeran atubide Markov
 Mivovomitas Tiov \in goptoital aro to x to $A K^{\prime}$ tov Xpovo feráperns n.

$$
P(n, x, \cdot)=\pi_{x_{n+1} \mid x_{n}}(\cdot \mid x): F \rightarrow[0,1]
$$

Aéfe ót n adugifo eivou xporike' opoyevris o'tar

$$
P(n, x, \cdot)=P(n-1, x, \cdot)=\cdots=P(0, x, \cdot) \equiv P(\cdot \mid x)
$$

fndain n tö́n $\mu \in T$ épagns eivou avegópmon tou xpivou.
Topodidnge 0 antis tuxaíos repinarus 6 Tn (2.1)

$$
x_{n}=x_{n-1}+z_{n}, x_{0}=0, \quad z_{i} \stackrel{i i d}{\sim}\left(\begin{array}{cc}
-1 & 1 \\
1-p & p
\end{array}\right)=\pi
$$

eival fire xporikè oprojern's alugifo Markov.

$$
\begin{aligned}
& P\left\{x_{n+1}=y \mid x_{n}=x, x_{n-1}=x_{n-1}, \ldots, x_{0}=x_{0}\right\}=P\left\{z_{n+1}=y-x\right\} \\
& =P\left\{x_{n+1}=y \mid x_{n}=x\right\}
\end{aligned}
$$

Eneion $z_{i} \stackrel{i i d}{\sim} \pi$ expupe or

$$
\begin{aligned}
& \underbrace{P\left\{z_{n+1}=y-x\right\}}_{P(n, x, y)}=\underbrace{P\left\{z_{n}=y-x\right\}}_{P(n-1, x, y)}=\cdots=\underbrace{P\left\{z_{1}=y-x\right\}}_{P(0, x, y)} \Rightarrow \\
& \Rightarrow P(y \mid x)=P\left\{z_{n+1}=y-x\right\} \stackrel{(3,1)}{\Rightarrow} \begin{cases}8, & y=x-1 \\
p, & y=x+1 \\
0, & \text { a)Nou. }\end{cases}
\end{aligned}
$$

Tapídnghe Σe Tedaiótepes eroxe's n xprión ou mlequivou yitar èva euaigonto difia. As unodeboufie on ro and.
 as nouifie to n-ogtó λ tettó, tote fe nivoromita γ, de eithu kettidnfpievo to enópero λ fitó. Eav to mi. eivar ketcinnpipero Katice to n-obtoं λ ertó, ∇_{0} eival etaitapo to erapfero λ ento'
 To pndevikó dertó. Oe redafe ra anorvigoufe grs toponatar Epumions
I. Toia n mivorvotita x_{n} ore to tad. Do eiroc edfuitepo kató to n-obtó 入ertó?
IF. Toio to $\lim _{n \rightarrow \infty} x_{n}$ Eov to ipso unepxer?
 to n-ogTo λ etió.
$B_{n}=\Omega \backslash A_{n}=$ To evdeljufievo to ind. Ve eivar kotadnlelievo Katá to n-0GTo גertó.
EXou施 on: $\quad P\left(B_{n+1} \mid A_{n}\right)=p, P\left(A_{n+1} \mid B_{n}\right)=q$

$$
x_{n}=P\left(A_{n}\right), \quad x_{0}=P\left(A_{0}\right)=1
$$

$$
\begin{align*}
x_{n+1} & =P\left(A_{n+1}\right)=P\left(A_{n+1} \cap\left(A_{n} \cup B_{n} 1\right)=P\left(A_{n+1} \cap A_{n}\right)+P\left(A_{n+1} \cap B_{n}\right)\right. \\
& =P\left(A_{n}\right) P\left(A_{n+1} \mid A_{n}\right)+P\left(B_{n}\right) P\left(A_{n+1} \mid B_{n}\right)=x_{n} \cdot(1-P)+\left(1-x_{n}\right) q \\
& =q+(1-p-q) x_{n} \Leftrightarrow x_{n+1}=q+(1-p-q) x_{n} \quad \therefore(10,1) \tag{10.1}
\end{align*}
$$

Eotw ón $\lim _{n \rightarrow \infty} x_{n}=x$

$$
\begin{aligned}
& \text { (10.1) } \Rightarrow x=q+(1-p-q) x \Leftrightarrow x=\frac{q}{q+p} \Leftrightarrow \\
& \Leftrightarrow \frac{q}{q+p}=q+(1-p-q) \frac{q}{q+p}:(10.2) \\
& (10.1)-(10.2) \Rightarrow x_{n+1}-\frac{q}{q+p}=(1-p-q)\left(x_{n}-\frac{q}{q+p}\right) \Rightarrow \\
& \Rightarrow x_{n}-\frac{q}{q+p}=(1-p-q)^{n}\left(x_{0}-\frac{q}{q+p}\right):(10.3) \\
& \stackrel{x_{0}=1}{\Rightarrow} \quad x_{n}=\frac{q}{q+p}+\frac{p}{q+p}(1-p-q)^{n} \\
& 0<p, q<1 \Rightarrow 0<p+q<2 \Leftrightarrow-1<1-p-q<1 \Leftrightarrow|1-p-8|<1 \\
& \Leftrightarrow \lim _{n \rightarrow \infty}(1-p-q)^{n}=0 \text { Hov SEiXVG ìt } \lim _{n \rightarrow \infty} x_{n}=\frac{q}{p+q} \text {. }
\end{aligned}
$$

Taparn'pnon I: $\theta \in$ tova.s $y_{n}=P\left(B_{n}\right) \Rightarrow y_{n+1}=P\left(B_{n+1}\right)=$

$$
\begin{aligned}
& =P\left(B_{n+1} \cap\left(A_{n} \cup B_{n}\right)\right)=P\left(B_{n+1} \cap A_{n}\right)+P\left(B_{n+1} \cap B_{n}\right)= \\
& =P\left(A_{n}\right) P\left(B_{n+1} \mid A_{n}\right)+P\left(B_{n}\right) P\left(B_{n+1} \mid B_{n}\right)=p x_{n}+(1-q) y_{n} \\
& =P\left(1-y_{n}\right)+(1-q) y_{n}=p+(1-p-q) y_{n}:(10, y)
\end{aligned}
$$

$$
\binom{x_{n}}{y_{n}}=\binom{\frac{q}{q+p}}{\frac{p}{q+p}}+(1-p-q)^{n}\left\{\binom{x_{0}}{y_{0}}-\binom{\frac{q}{q+p}}{\frac{p}{q+p}}\right\}
$$

zntwivtes $\quad y_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} y \quad n(10.4)$ Sivet $y=p+(1-p-q) y$

$$
\Leftrightarrow y=\frac{p}{q+p} \Leftrightarrow \frac{p}{q+p}=p+(1-p-q) \frac{p}{q+p}:(11,1)
$$

Ayaipürtas kote μ^{\prime} 'in tis (10.4) K'(11.1) mon'proufe

$$
\begin{aligned}
& y_{n+1}-\frac{p}{q+p}=(1-p-q)\left(y_{n}-\frac{p}{q+p}\right) \Rightarrow \\
\Rightarrow & y_{n}=\frac{p}{q+p}+(1-p-q)^{\eta}\left(y_{0}-\frac{p}{8+p}\right):(11.2)
\end{aligned}
$$

$y_{0}=0$

$$
\Rightarrow \quad y_{\eta}=\frac{p}{q+p}-\frac{p}{q+p}(1-p-q)^{n}
$$

Teparipion \# : $\quad\binom{x_{n+1}}{y_{n+1}}=\left(\begin{array}{cc}1-p & q \\ p & 1-q\end{array}\right)\binom{x_{n}}{y_{n}} \Rightarrow$
\Rightarrow It misovomion evós evdexopitrou ee Xporo $n+1$ Ejopréron forvo amo' to a gulapaire ge xporo n K^{\prime} óxi ano to mopediov. Ande反n' to HOUTEAO nou
 Morkov.
 Tleper. ms $\sigma \in \lambda$. 9 Eival a lucíio Markov. 2 kategtébewr.
 $\operatorname{kou}^{\prime} \Omega=\left\{\omega=\omega_{0} \omega_{1} \cdots \omega_{n} \cdots: \omega_{i} \in S, i \geq 0\right\}$
 Oe fropoúge va eivon $\psi_{0}\left\{s_{0}\right\}=\left\{\begin{array}{ll}1, & s_{0}=0 \\ 0, & s_{0}=1\end{array}\right.$ nou arat GTolxfi ginv nepintwon to ind. va Giva fiteotepo apxiná.

$$
\begin{aligned}
& P\left\{\omega \in \Omega: \omega_{0}=s_{0}\right\}=\mu_{0}\left\{s_{0}\right\}, \\
& P\left\{\omega \in \Omega: \omega_{0}=s_{0}, \omega_{1}=s_{2}, \ldots \omega_{n}=s_{n}, \omega_{n+1}=s_{n+1}\right\}= \\
& P\left(s_{n+1} \mid s_{n}\right) P\left\{\omega \in \Omega: \omega_{0}=s_{0}, \omega_{1}=s_{1}, \ldots, \omega_{n}=s_{n}\right\}:(12.1)
\end{aligned}
$$

ड̂tou $P\left(S_{n+1} \mid S_{n}\right)$ givau gtoikgio tou nirockoc
(12.2): $\left[\begin{array}{ll}p(0 / 0) & p(0 \mid 1) \\ p(1 / 0) & p(1 \mid 1)\end{array}\right]=\left[\begin{array}{cc}1-p & q \\ p & 1-q\end{array}\right]$

$$
\begin{array}{r}
(12.1) \Rightarrow P\left\{\omega \in \Omega: \omega_{0}=s_{0}, \ldots, \omega_{n+1}=s_{n+1}\right\}=p\left(s_{n+1} \mid s_{n}\right) p\left(s_{n} \mid s_{n-1}\right) \ldots \\
\cdots \gamma\left(s_{1} \mid s_{0}\right) \mu_{0}\left\{s_{0}\right\}
\end{array}
$$

It sio.jnacion $\left\{X_{n}\right\}_{n \geqslant 0} k^{\prime} X_{n}(\Omega)=S$ opiferae foov $X_{n}(\omega)=\omega_{n}, \forall \omega \in \Omega$.
Oe sn\}oupe on $P\left\{x_{n+1}=s_{n+1}\left(x_{n}=s_{n}\right\}=p\left(s_{n+1} \mid s_{n}\right) \quad k^{\prime}\right.$ on $P\left\{x_{n+1}=s_{n+1} \mid x_{0}=s_{0}, \ldots, x_{n}=s_{n}\right\}=P\left\{x_{n+1}=s_{n+1} \mid x_{n}=s_{n}\right\}$

$$
\begin{align*}
& p\left\{x_{0}=s_{0}, \ldots, x_{n}=s_{n}, x_{n+1}=s_{n+1}\right\}=P\left\{\omega \in \Omega: x_{0}(\omega)=s_{0}, \ldots, x_{n+1}(\omega)=s_{n+1}\right\} \\
& =P\left\{\omega \in \Omega: \omega_{0}=s_{0}, \ldots, \omega_{n+1}=s_{n+1}\right\}=P\left(s_{n+1} \mid s_{n}\right) P\left\{\omega \in \Omega: \omega_{0}=s_{0}, \ldots, \omega_{n}=s_{n}\right\} \\
& =\gamma\left(s_{n+1} \mid s_{n}\right) P\left\{x_{0}=s_{0}, \ldots, x_{n}=s_{n}\right\} \\
& \Leftrightarrow P\left\{x_{0}=s_{0}, \ldots, x_{n}=s_{n}\right\} \cdot P\left\{x_{n+1}=s_{n+1} \mid x_{0}=s_{0}, \ldots, x_{n}=s_{n}\right\}= \\
& =p\left(s_{n+1} \mid s_{n}\right) p\left\{x_{0}=s_{0}, \ldots, x_{n}=s_{n}\right\} \\
& \Leftrightarrow p\left\{x_{n+1}=s_{n+1} \mid x_{0}=s_{0}, \ldots, x_{n}=s_{n}\right\}=r\left(s_{n+1} \mid s_{n}\right):(13.1) \\
& P\left\{x_{n+1}=s_{n+1} \mid x_{n}=s_{n}\right\}=\frac{P\left\{x_{n+1}=s_{n+1}, x_{n}=s_{n}\right\}}{P\left\{x_{n}=s_{n}\right\}} \tag{13.2}\\
& P\left\{x_{n+1}=s_{n+1}, x_{n}=s_{n}\right\}=P\left\{\omega \in \Omega: \omega_{n+1}=s_{n+1}, \omega_{n}=s_{n}\right\}= \\
& =\sum_{s_{0}, \ldots, s_{n-1} \in S} P\left\{\omega \in \Omega: \omega_{0}=s_{0}, \ldots, \omega_{n-1}=s_{n-1}, \omega_{n}=s_{n}, \omega_{n+1}=s_{n+1}\right\} \\
& =P\left(s_{n+1} \mid s_{n}\right) \sum_{S_{0}, \ldots, S_{n-1} \in S} P\left\{\omega \in \Omega: \omega_{0}=S_{0}, \ldots, \omega_{n-1}=s_{n-1}, \omega_{n}=s_{n}\right\} \\
& =p\left(s_{n+1} \mid s_{n}\right) P\left\{\omega \in \Omega: \omega_{n}=s_{n}\right\}=p\left(s_{n+1} \mid s_{n}\right) P\left\{x_{n}=s_{n}\right\} \tag{13.3}\\
& (13.2)(13.3) \Rightarrow P\left\{x_{n+1}=s_{n+1} \mid x_{n}=s_{n}\right\}=p\left(s_{n+1} \mid s_{n}\right) \tag{13.1}\\
& \Rightarrow P\left\{x_{n+1}=s_{n+1} \mid x_{0}=s_{0}, \ldots, x_{n}=s_{n}\right\}=P\left\{x_{n+1}=s_{n+1} \mid x_{n}=s_{n}\right\}
\end{align*}
$$

