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Abstract. The subject of the present paper is the derivation and asymptotic
analysis of a mathematical model for the formation of a mushy region during
sulphation of calcium carbonate. The model is derived by averaging, with the
use of the multiple scales method, applied on microscopic moving - boundary
problems. The latter problems describe the transformation of calcium carbon-
ate into gypsum on the microscopic scale. The derived macroscopic model is
solved numerically with the use of a finite element method. The results of some
simulations and a relevant discussion are also presented.

1. Introduction. Corrosion of monuments is an important aspect that should be
studied in relation with the conservation and restoration of cultural heritage. There
are a lot of factors that cause this process and in general it is quite difficult to
determine all of them together with their significance and study the problem in its
full complexity. Certainly one of them is air pollution. Various pollutants existing
in the atmosphere especially in big cities like Athens, Rome, etc can react, under
certain conditions, with calcium carbonate and create damage, corrosion in natural
building stones, marble monuments etc.

These pollutants can be sulphur dioxide (SO2), nitrogen oxides (NO−
3 ,N2O) etc.

(see [19]). One with the most importance and probably causing the most damage in
stones, and therefore in monuments as well, is sulphur dioxide. The latter pollutant
can react with calcium carbonate, CaCO3, in the presence of water and create gyp-
sum. The appearence of gypsum in a monument surface provides insubstantiality
in a monument. Gypsum can be washed away and thus damage is done.

Therefore is of great importance if we can understand in depth this process, the
factors that are involved and their importance so as to provide with a useful tool
the people who work in the conservation and restoration of cultural heritage. One
can proceed in this direction by deriving suitable mathematical models regarding
this process.

In this paper we present such a model which accounts for the case that corrosion
evolves in such a way so that gypsum and calcium carbonate coexist in a volume
element of the corroded area (a type of mushy region).
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A model for the marble sulphation, and more specifically for the dry deposition
of SO2 in calcium carbonate stones, in the form of a macroscopic moving bound-
ary problem, was presented initially in [1] and in [2]. Actually this model is the
motivation of the present work.

Additionally a hydrodynamic model for sulfation of calcium carbonate stones in
the form of a reaction diffusion system is presented and analysed extensively in [3]
- [7].

In the present paper we derive a model, by modifying that of [2], which addressees
the cases with an area that is partly corroded, i.e. when corroded and uncorroded
parts of the material coexists in a microscale during the process. Such a model
was initially introduced in [17] and extended in [18] for a similar phenomenon, the
sulphation process in sewer pipes. The model introduced here is derived with the
same methodology addressing the case of monument corrosion and resulting in a
system of reaction diffusion equations.

The origin of the method used for the derivation of such models comes from the
papers [14] and [15] which introduce macroscopic models derived from averaging
microscopic free boundary problems.

Note that the multiscale approach has been also adopted to study similar pro-
cesses. A very similar phenomenon as marble or calcium carbonate stones corrosion
by sulphur dioxide, is concrete corrosion by sulphate. For this case, a multiscale
reaction diffusion system, describing concrete corrosion, is also derived and exten-
sively analysed in [8]-[12].

In the following parts of the paper in section 2 we proceed initially with a de-
scription of the material under study and a presentation of the actual setting of
the model. Next the model equations, based on those of [1] and [2], describing the
diffusion of the pollutants and the reaction causing corrosion are presented. These
are assumed to account for the length scale of a pore (microstructure). With the use
of multiple scales method averaging is applied to them, as in [14], [15], [17], in order
to derive equations that account for the bulk of the material i.e. for a length scale
related to the experimentally observed corrosion thickness. The resulting equations
describe the diffusion of SO2 and H2O. The source term in them is related with
the reaction and depends on a parameter describing, at each corresponding point of
the macroscale, the evolution of the corrosion in the microscale . The latter comes
from the solution of a hyperbolic equation having the form of the Eikonal equation,
which in cases it has analytical solutions.

Next in section 3 a numerical approach for the solution of the resulting equations
is presented. Also the Eikonal equation, describing the evolution of the corrosion
inside a single pore, is solved with the use of an upwind scheme, when analytical
solutions of it are not available. Various numerical simulations are also presented.

Finally a discussion of the results of this paper and possible future work exten-
sions are given in section 4.

2. The model. Marble and in general calcium carbonate stones are porous mate-
rials, composed of calcium carbonate, CaCO3. In order to tackle the problem and to
pose the equations describing its corrosion, we need a somehow idealized description
of its microstucture. Thus initially we present briefly the basic assumptions used to
describe the material, or rather an idealized version of it, that is under corrosion.
Actually this is the same setting with that described also in [17], [18].

We assume that the bulk of the material under study consists of uniform cells
containing calcium carbonate. To describe the porosity of the material we assume
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Figure 1. Schematic representation of a segment of a calcium
carbonate stone under corrosion. In the side cells Ωc denotes the
area of calcium carbonate and “g” denotes the gypsum segments
while the rest of the cells is void.

that the rest of the cell is void (representing the space of the pore filled with water
and or air) surrounding the calcium carbonate core. Additionally we will also
assume (for convenience later on in the asymptotics) that the calcium carbonate
inside one cell (Ωc in Figure 1a& b) contains also voids but of minor, very small,
size so as to allow some flow inside it but no reaction taking place.

This porosity of such a calcium carbonate core, say φs, will be taken to be
negligible compared to the porosity of the gypsum and that the voids inside the
calcium carbonate stone have volume negligible compared with the main void of
the cell (|Ω| − |Ωc|). The reaction is taking place only in the calcium carbonate
core’s outer surface (in ∂Ωc of Figure 1a & b).

Note that, summarizing the above, we assume that we have diffusion in the whole
of the cell ant that the reaction takes place in the cores surface. The assumption
that we have diffusion but no reaction inside the calcium carbonate core is rather
unrealistic but allow us to obtain a model that it is easier to tackle analytically and
especially numerically. This will be also apparent later in the asymptotic analysis
that follows.

A natural and fairly simple choice is to assume that the cells of the material are
cubical. Although in order to simplify our analysis, this consideration can be relaxed
and assume that we have cells of square shape, and a two-dimensional geometry,
as the cells, (a) to (c) shown in Figure 1 or even cells that are line segments and a
one-dimensional geometry (e.g. see [17]).

More specifically in the first case we may take an infinite set of indistinguishable
cubical cells, inside the material. In such a cubical cell we assume that the calcium
carbonate is contained inside it forming a solid core of some shape, a cube, a sphere,
or a Lamé surface, etc placed symmetrically inside the cubical cell with center that
of the cell. The rest of the cell is void, filled with water and or air.

In the same way and making things simpler we may think of having cells of square
shape, infinite in number, filling a plane. Again inside the cell, we have a calcium



4 CHRISTOS V. NIKOLOPOULOS

carbonate core of square, circular or elliptical, etc shape, placed symmetrically in its
center. This simplification can be taken if we consider to have, in the microscopic
scale, corrosion evolving in a two-dimensional way and with the square cells formed
by a net of of horizontal and vertical lines that intersect in an orthogonal way.
These lines may correspond to the axis of the pores (see cell (a) in Figure 1 ).

This can be simplified even more if we consider inside the material, long nar-
row cylindrical cracks which are equispaced and parallel. If we think of a vertical
line intersecting the axis of these cylinders we have a sequence of line segments
corresponding to calcium carbonate in the space between the voids, interchanging
with line segments corresponding to these voids, i.e. the diameter of the cylindrical
pores.

In each of the above three cases we may have the image inverted (this has meaning
for the cubical and square cells) with now the core of the cells being the void and
the rest of the cell filled with calcium carbonate. In general in the three-dimensional
case we may think of a calcium carbonate grid filling the space.

Such a material may be corroded due to the penetration of sulphur dioxide inside
the pores causing a reaction which transforms calcium carbonate into gypsum. The
basic reaction describing the fact that SO2 reacts with calcium carbonate CaCO3

forming gypsum CaSO4 · 2H2O and causing the corrosion of the monument, is the
following:

CaCO3 + SO2 +
1

2
O2 + 2H2O

ku−→ CaSO4 · 2H2O+CO2. (1)

More specifically we have that one mole of calcium carbonate reacts with one mole
of sulphur dioxide and two moles of water to produce one mole of calcium sulfate
dihydrate, i.e. gypsum, and one of carbon dioxide. For the reaction to take place we
must have a film of water or water droplets covering the calcium carbonate inside
the pores. Then the presence of water together with that of SO2, diffused inside the
pores of the marble or of the calcium carbonate stone, since it exist as a pollutant
in the atmospheric air, triggers the reaction forming gypsum. An external layer of
gypsum is formed which may be drained out or form crust and then exfoliate.

This is the reaction that accounts for the dry deposition of SO2 on calcium
carbonate stones (see [2]) and it is the most usual process causing damage in stones.

We consider a model for gypsum formation which allows gypsum and calcium
carbonate to coexist at some volume element. This element may be specified as one
cell as those already described, containing a single pore, or in general as one having
its length side of order similar to the radius of a cross-section of a typical pore.

More specifically we have that through the calcium carbonate and due to its
porosity and the cracks existing in it, there is diffusion (dispersion) of SO2 which in
the presence of water (needed for the reaction) reacts with the calcium carbonate,
forming gypsum. The reaction takes place initially at the cracks’ inner surface
surrounding the pure solid calcium carbonate. Then gypsum is formed, having
larger porosity than the marble and thus new cracks are formed and diffusion takes
place in the gypsum - void (containing no solid and filled with air and water) due
to cracks area.

Such a situation is represented by the cell (b) in Figure 1 where a single cell is
partly corroded and then in the cell (c) in Figure 1 where the cell is fully corroded
and the transformation to gypsum is now complete. As the process evolves, in a
planar way as it is assumed in Figure 1, there are cells not corroded yet, right to
the point point C, partly corroded, between the points B and C, and fully corroded
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between the points A and B. In case that the points B and C coincide then we have
a sharp interface of the corrosion front, the case studied in [1], [2], while if this does
not occur we have a type of mushy region formed which is the case addressed here.

In order to model this phenomenon and to be able to apply the homogenization
process we may study initially the above process as taking place in one single pore, or
rather cell, and then with the use of the multiple scales method we derive equations
for the whole of the material.

Finally due to the fact that the porosity of the gypsum is larger than that of
the calcium carbonate, as gypsum is formed and calcium carbonate is consumed
we have expansion of the overall volume of the material (see [1]). To keep things
simple, as in [17], [18], we assume in the following that this volume expansion is
negligible, compared with the length scale of the corroded layer of the material.

The model equations. We assume that SO2 diffuses inside the voids of the ma-
terial and its concentration satisfies the equation

ut = Ds∆u, (2)

where u is the molar concentration of SO2, Ds is diffusivity of SO2 in the voids of
the pores. Moreover u = u(x, t) and in general x ∈ R

n, n = 1, 2, 3 depending the
macroscopic geometry of the material under consideration. In general we assume
that x ∈ ΩM , where ΩM is the domain of the material under study.

The boundary conditions at the interface ΓM of the corroded - uncorroded ma-
terial must account for the fact that we have motion of the boundary ΓM due to
the transformation of calcium carbonate to gypsum and that this motion should be
related to the rate of the reaction. The latter can be specified by a direct applica-
tion of the law of mass action (see [19]). For w being the molar concentration of
the water and Cc that of calcium carbonate, the rate of the reaction according to
equation (1) will be

kuCc uw
2.

For Cc constant we set k = kuCc. However according to [2] we need to take
into account the fact that when the concentration of the water w is smaller than a
threshold wl then the reaction does not takes place at all, while it gains its full speed
when w is larger than an upper threshold wu. We have that when wl < w < wu the
reaction does not attain its full speed and this is due to the fact that the CaCO3 is
not coated by a continuous film but more likely coated by humid spots. Therefore
in order to address that behaviour we express the rate of reaction as

g(w)k uw2,

where g(w) = min(max(w,wl),wu)−wl

wu−wl
, so that g(w) = 0 for w ≤ wl and g(wu) = 1 for

w ≥ wu while it increases linearly between wl and wu. Reasonable values for these
thresholds (see [2]) are wl = 0.25 and wu = 0.75.

Note that in [2] the process is separated in two regimes and that the reaction
rate can grow to infinity giving u = 0 in the boundary and a sharp interface. In our
case we want to avoid this since we want to focus in those cases that we do not have
a purely diffusive front in the macroscale but rather an area, a mushy region, that
gypsum and calcium carbonate coexists for some period of time. Thus we proceed
with the above approach by taking at all times that the reaction rate has the form
given by the law of mass action.



6 CHRISTOS V. NIKOLOPOULOS

In accordance with the above we expect that at the boundary separating calcium
carbonate and gypsum ΓM (consisted by the union of these boundaries in the cells
of the material), the kinetic condition should have the form “speed of the boundary
× calcium carbonate concentration ∝ rate of reaction”, i.e.

Cc v = g(w)k uw2, x ∈ ΓM , (3)

where v = v(x, t) is the speed of the moving boundary ΓM .
In addition the flux of u arriving at the interface is expected to be consumed by

the chemical reaction transforming calcium carbonate into gypsum and therefore
we have

−Ds

∂u

∂n

∣

∣

∣

∣

J

= Ccv + uv, x ∈ ΓM , (4)

where n is the outward normal vector at a point of the moving boundary ΓM , and
un|J := u+

n − u−
n denotes the jump of the flux at the boundary. Equation (4)

expresses the total molar balance of SO2 (see [2]). The first term “Ccv” includes
the loss rate due to the reaction while the second one “uv” stands for the advective
flux due to the transport of the residual SO2. Given that v = g(w)kuuw

2 we get

−Ds

∂u

∂n

∣

∣

∣

∣

J

= g(w)kuCcuw
2 + g(w)kuu

2w2 = g(w)kuuw
2(Cc + u), x ∈ ΓM .

Note that assuming that the transport of the residual SO2 is negligible we have
just −Ds

∂u
∂n

∣

∣

J
= g(w)kuCcuw

2.
The diffusion process for the water molar concentration w can be described by

similar equations. Water is diffused inside the pores of the material, that is

wt = Dw∆w, (5)

where Dw is diffusivity of H2O in the voids of the pores.
The flux of w arriving at the interface similarly is expected to be consumed by

the chemical reaction while the residual water is transferred with a rate proportional
to the boundary speed. Hence we have

−Dw

∂w

∂n

∣

∣

∣

∣

J

= 2Ccv + wv, x ∈ ΓM , (6)

or

−Dw

∂w

∂n

∣

∣

∣

∣

J

= 2g(w)kuCcuw
2 + g(w)kuuw

3 = g(w)kuuw
2(2Cc + w), x ∈ ΓM . (7)

Scaling. The equations for u and w can be scaled to obtain a dimensionless form.
We scale x with l, and the dimensionless length y is given by y = x

l
where l

is a typical length of the observed corrosion in a period of years i.e. an empirical
estimation of the corrosion length in such a time period or a macroscopic length
associated with the thickness of the calcium carbonate stone.

We scale u, w with λ1, λ2 (atmospheric concentrations), respectively. We take
λ1 to be a typical molar concentration of SO2 in the ambient atmosphere. Also
λ2 is similarly a typical concentration of the humidity. Given that in the ambient
atmosphere we have variation of these concentrations during the period of one or
more years or even daily we can take the average values of them during a simulation
period as typical. We set U = u

λ1
, W = w

λ2
, for U and W the dimensionless

concentrations of SO2 and H2O respectively. Additionally the speed of the boundary
should be scaled with the quantity l/t0, i.e. v = V l/t0 where t0 is a time scale chosen
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appropriately so as to balance the terms in the kinetic condition. The latter means
that we must choose t0 = l

ku λ1 λ2
2

= and we set τ = t/t0 for τ the dimensionless

time. The resulting dimensionless equations have the form

ǫ1
∂U

∂τ
= ∆U, in the voids, (8a)

V = g(W )U W 2, on ΓM , (8b)

γ1
∂U

∂n

∣

∣

∣

∣

J

+ g(W )U W 2 (1 + β1U) = 0, on ΓM , (8c)

ǫ2
∂W

∂τ
= ∆W, in the voids, (8d)

γ2
∂W

∂n

∣

∣

∣

∣

J

+ g(w)U W 2(2 + β2W ) = 0, on ΓM , (8e)

for U = U(y, τ), W = W (y, τ). Regarding the dimensionless parameters appearing

in the equations we have ǫ1 = l2

t0Ds
=

lkuλ1λ
2
2

Ds
, γ1 = Ds

lkuCcλ
2
2

, β1 = λ1

Cc
, ǫ2 = l2

t0Dw
=

Ds

Dw

lkuλ1λ
2
2

Ds
, γ2 = Dw

lkuCcλ1λ2
, β2 = λ2

Cc
. Note also that ǫ1 = 1

γ1

λ1

Cc
, ǫ2 = Ds

Dw
ǫ1,

γ2 = 1
ǫ2

λ2

Cc
.

Also we assume that length scales are chosen so as to have γ1 = γu
1
δ
, γ2 = γw

1
δ

for γu = γw = O(1) where δ is the ratio of the macroscopic and microscopic length
scales that is specified in detail later. We need this so as to be able to balance the
terms of the kinetic condition and be able to capture the motion of the boundary
in the microscopic scale. This will be apparent later in equation(18) (see also [17],
[18]).

Since we have assumed that the material consists of identical cells, we can focus
our study on the behaviour of these equations in a single cell.

We consider a line segment, square or a cubic cell, say Ω, with boundary ∂Ω = Γe,
which initially contains pure calcium carbonate occupying the domain Ωc with its
boundary ∂Ωc = Γc separating it initially from the void space. Namely we take the
void, inside the cell, to be specified by the boundaries Γe and Γc and its domain
before the corrosion process starts is Ωv = Ω\Ωc. The minor voids inside Ωc due to
their negligible size, as assumed previously, are not taken into account. The area of

Ωv should be such that |Ωv |
|Ω| = φc for φc being the porosity of the calcium carbonate

(see Figure 1 at (a)). As corrosion evolves and gypsum is formed the boundary Γc

now separates pure calcium carbonate from the gypsum and void parts of the rest
of the element. We denote the gypsum-void part of the element by Ωg and we have
Ω = Ωg ∪ Ωc (see Figure 1 at (b)). Note that at t = 0, Ωg(0) = Ωv. This process
continues until the transformation of the calcium carbonate to gypsum is completed
and have Ω = Ωg, Γc = ∅ (see Figure 1 at (c)) .

Note that we can take ΩM as the infinite union of identical cells Ω. Similarly the
interface between calcium carbonate and gypsum-void segments ΓM can be seen as
the infinite union of the boundaries Γc in each cell. Also for convenience for the
rest of the presentation we may think of the cell as being a square one, unless it is
stated otherwise.

Additionally to the equations expressing the diffusion of SO2 and of H2O on a
single cell and the reaction in the interface of gypsum and calcium carbonate we
need to pose conditions in the fixed boundary of the cell.
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More precisely, on the cell boundary, Γe, periodic conditions should be applied
for the variable u. This is due to the fact that we have an infinite set of identical
cells inside the material. These periodic conditions can be summarized, according
to [17], [14], in the following form :

n · ∇U |∂Ω = 0 x ∈ Γe. (9)

Finally periodic conditions for w can be summarized as well in the equation,

n · ∇W∂Ω = 0 x ∈ Γe. (10)

Therefore summarizing the above we have that in one cell of the material the
following equations for U and W hold

ǫ1
∂U

∂τ
= ∆U, x ∈ Ωv, (11a)

V = g(W )U W 2, x ∈ Γc, (11b)

γ1
∂U

∂n

∣

∣

∣

∣

J

+ g(W )U W 2(1 + β1U) = 0, x ∈ Γc, (11c)

n · ∇U∂Ω = 0 x ∈ Γe, (11d)

ǫ2
∂W

∂τ
= ∆W, x ∈ Ωv, (11e)

γ2
∂W

∂n

∣

∣

∣

∣

J

+ g(W )U W 2(2 + β2W ) = 0, x ∈ Γc, (11f)

n · ∇W∂Ω = 0 x ∈ Γe. (11g)

Rescaling and averaging. In the following we apply the methodology described
in [14], [15] and also in [17], [18]. This method can be relatively easily adapted
to our case together with the necessary modifications and it is presented here for
completeness..

We consider two spatial scales for the problem, the macroscopic length scale
represented by the variable y and a microscopic length scale represented by the
variable z.

Let d be a microscopic length scale. The length scale d can be taken to be of
order of an average distance between two neighbouring voids inside the material or
the average diameter of a void inside a specified cell. This distance can be used
as a characteristic length in the microscopic scale. We expect that d ≪ l, for l
the macroscopic length scale, and their ratio is δ = d

l
≪ 1. More specifically we

have that for x being the dimensional original distance, x = ly and x = dz with
δ = d

l
≪ 1.

In addition for the following analysis to hold we will assume that even for the
case that we have ǫ1,2 ≪ 1 the condition 1 ≫ ǫ1,2 ≫ δ holds.

As a next step, we take

U = U(y, z, τ), W = W (y, z, τ).

The multiple scales approach (see [13]) gives instead for the spatial derivative ∇yU
at the point (y, z, t) the expression

∇yU +
1

δ
∇zU.

Also the boundary Γc can be described by some function s = s(y, τ) (s = s/l for
s the dimensional position of the boundary) giving the position of the boundary at
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each time. The position of the boundary s can be also rescaled with d and we take
S = s

d
(= l

d
s = 1

δ
s).

Rescaling also with d the speed of the boundary V, will give V = δV , where V
is the new dimensionless variable for the speed ( v = V l/t0 = V d/t0, or V = δV).
This implies that V = g(W )UW 2 on Γc.

If we denote by S the function representing the position of the boundary in the
form S(y, z, τ) = 0, ( S(y, z, τ) = z2 − S(y, z1, τ) = 0), we have that the rescaled
speed of the boundary V , has the form

V =
∂S
∂τ

1

|∇zS + δ∇yS|
.

Initially we focus in the equation for U . Application of the multiple scales method
implies

ǫ1Uτ =
1

δ2
∇2

zU +
2

δ
∇y∇zU +∇2

yU.

Regarding the condition(4), we have

δV (1 + β1U) = δ
∂S
∂τ

1

|∇zS + δ∇yS|
(1 + β1U) = −γu

1

δ
n · [∇zU + δ∇yU ]|

J
,

and also at the same boundary

γu n · [∇zU + δ∇yU ]|
J
+ δ2g(W )UW 2(1 + β1U) = 0.

At the boundary Γe similarly we have

n · [∇zU + δ∇yU ] = 0. (12)

In the following we proceed with a formal asymptotic expansion for U , W and S.
The equation for U , by assuming that U ∼ U0 + δU1 + . . ., W ∼ W0 + δW1 + . . .

take the form

ǫ1U0τ + δǫ1U1τ + δ
2
ǫ1U2τ + . . . =

1

δ2
∇2

zU0 +
2

δ
∇z∇yU0 +∇2

yU0

+
1

δ
∇2

zU1 + 2∇z∇yU1 + δ∇2
yU1

+∇2
zU2 + 2δ∇z∇yU2 + δ

2∇2
yU2

+δ∇2
zU3 + 2δ2∇z∇yU3 + . . . .

At the points (y, z, τ) of the boundary Γc, we have for S = S0 + δS1 + . . ., and
|∇zS + δ∇yS| = |∇zS0 + δ∇yS0 + δ∇zS1 + . . .|, that
∂S0

∂τ

1

|∇zS0|
(1 + β1U0) = −γu n ·

[

1

δ2
∇zU0 +

1

δ
∇yU0 +

1

δ
∇zU1 +∇yU1 +∇zU2 + . . .

]
∣

∣

∣

∣

J

,

g(W0)U0W
2
0 (1+β1U0)+γu n ·

[

1

δ2
∇zU0 +

1

δ
∇yU0 +

1

δ
∇zU1 +∇yU1 +∇zU2

]∣

∣

∣

∣

J

+ . . . = 0.

Similarly at the points (y, z, τ) of the boundary Γe we have

n ·
[

1

δ2
∇zU0 +

1

δ
∇yU0 +

1

δ
∇zU1 +∇yU1 +∇zU2

]

+ . . . = 0 (14)

For order O( 1
δ2
) terms we have ∇2

zU0 = 0 in Ωg, n · ∇zU0 = 0 in Γc, i.e. at
z = S and n ·∇zU0 = 0 in Γe. From these equations and a direct application of the
maximum principle we deduce that U0 = U0(y, τ).
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For order O(1
δ
) terms we have that 2∇z∇yU0 + ∇2

zU1 = ∇2
zU1 = 0, in Ωg,

n · [∇yU0 +∇zU1]|J = 0 on Γc and n · [∇yU0 +∇zU1] = 0 on Γe. Due to the fact
that U0 = U0(y, τ) and that n · ∇yU0|J = 0. we have similarly U1 = U1(y, τ).

Note that these set of equations for O(1
δ
) and O( 1

δ2
) are exactly the same as in

[14]. Having not allowing diffusion inside the calcium carbonate core of a single cell
would give for O(1

δ
) terms n · ∇zU1 = −n · ∇yU0 leading to dependence on z of

U1. Consequently we would obtain an extra term in the macroscopic equation later
on, expressing the fact that diffusion takes place not in a whole square cell but in
an evolving part of it. More precisely we will have the effect of changing effective
diffusivity, depending in Ωc(y, τ), in the derived macroscopic diffusion equations.
To avoid further analytical and numerical complications such a situation is avoided
here by allowing flow inside the calcium carbonate core of the cell due to very small
pores existing in it.

Next for O(1) terms, we have

ǫ1U0τ = ∇2
yU0 +∇2

zU2, (15)

while at the boundary Γc,

∂S0

∂τ

1

|∇zS0|
(1 + β1U0) = −γu n · [∇yU1 +∇zU2] = g(W0)U0 W

2
0 (1 + β1U0). (16)

We next proceed by averaging the field equation, (15). In this way eliminate
the z-dependence from the equations and obtain a model depending only in y
and τ , describing the phenomenon at the macroscopic scale. This can be done
by integrating both sides of the equation with respect to z over the cell area, Ω.
Note that A(y, τ) =

∫

Ωg
dz and given that the area of voids inside the cell is

φgA(y, τ) + φs

∫

Ωc
dz ≃ φgA(y, τ), for φs ≪ φg < 1, we have that

∫

Ωg

[

ǫ1U0τ −∇2
yU0

]

dz =

∫

Ωg

∇2
zU2dz =

∫

Γc∪Γe

n · ∇zU2dz,

or

φgA(y, τ)
[

ǫ1U0τ −∇2
yU0

]

=

∫

Γc

n · ∇zU2dz +

∫

Γe

n · ∇zU2dz.

In addition we have
∫

Γc∪Γe
n ·∇yU1dz = 0. Also the symmetry conditions at the

cell boundary Γe give
∫

Γe
n · ∇zU2dz = 0 and moreover we have that

∫

Γc

⋂
Γe

n ·
∇zU2dz = 0.

Therefore the source term Fu :=
∫

Γc
n · ∇zU2dz +

∫

Γe
n · ∇zU2dz, due to the

expansion of the Stefan and the Robin conditions at the boundary Γc, takes the
form

Fu(U0,W0) :=

∫

Γc\(Γc

⋂
Γe)

n · ∇zU2dz = − 1

γu
g(W0)U0W

2
0 (1 + β1U0)

∫

Γs

dz,

for Γs = Γc \ (Γc

⋂

Γe). We also write L :=
∫

Γs
dz the length of Γs appearing in the

expression for Fu(U0,W0).
On summarizing, the final set of equations that are derived by this process is

ǫ1U0τ −∇2
yU0 = − 1

γuφg

g(W0)U0W
2
0 (1 + β1U0)

L(y, τ)

A(y, τ)
, (17)

∂S0

∂τ

1

|∇zS0|
= g(W0)U0W

2
0 on Γc. (18)
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In exactly the same way averaging process can be applied in the equation for W
and we obtain

ǫ2W0τ −∇2
yW0 = − 1

γwφg

g(W0)U0W
2
0 (2 + β2W0)

L(y, τ)

A(y, τ)
. (19)

By the fact that to first order terms we have S = z2 − S(y, z1, τ) ≃ S0, we get for
a square cell Ω = [−1, 1]× [−1, 1],

L(y, τ) =
∫

Γs
dz = 4

∫ 1

0

√

1 +
(

∂S
∂z1

)2

dz1.

A(y, τ) = 4
[

1−
∫ 1

0
S(y, z1, τ)dz1

]

.

The factor 4 in the above relations comes from the fact that due to symmetry,
assumed here, it is enough to specify S in [0, 1]× [0, 1].

The derived equations account for the actual concentrations of U and W of SO2

and H2O, while the effective concentrations Ū and W̄ are given by the relations
Ū = φU and W̄ = φW respectively. Here φ = φ(y, τ) is the porosity of the

material φc ≤ φ := (φg − φc)
A(y,τ)−A(y,0)
(4−A(y,0)) + φc ≤ φg. We may now consider the

macroscale domain ΩM in which the equations for U and W apply. A natural choice
for boundary conditions to be taken is Dirichlet conditions in the form, e.g. for U ,
Ū = φU = c(t). This function c(t) may account for the variations of SO2 in the
ambient atmosphere. For convenience and simplicity we may use a constant average
value of SO2 at the boundary and set c(t) = λ1. Thus we take, after appropriate
scalling, φU = 1 on ∂ΩM .

For cases that we have a planar propagation of the corrosion regime we can take
the problem to be one-dimensional. Also symmetry conditions may be imposed at
the center, say at x = l, of the material under study while, y ∈ R and 0 < y < 1
(ΩM = [0, 1]). Therefore a possible set of boundary condition for the problem can
be

φ(0, τ)U(0, τ) = 1,
∂ (φU)

∂y
(1, τ) = 0. (20)

Summarizing, the equations derived, for the case that we consider one dimension
in the macroscale, and by dropping the subscripts in the notation for U , W and S
since U ≃ U0 W ≃ W0, S≃S0, we have

ǫ1Uτ − Uyy = − 1

γuφg

g(W )UW 2(1 + β1U)
L(y, τ)

A(y, τ)
, 0 < y < 1, τ ≥ 0, (21a)

U(0, τ) =
1

φ(0, τ)
, Uy(1, τ) +

φy(1, τ)

φ(1, τ)
U(1, τ) = 0, (21b)

U(y, 0) = Ua(y), (21c)

ǫ2Wτ −Wyy = − 1

γwφg

g(W )UW 2(2 + β2W )
L(y, τ)

A(y, τ)
, 0 < y < 1, τ ≥ 0 (21d)

W (0, τ) =
1

φ(0, τ)
, Wy(1, τ) +

φy(1, τ)

φ(1, τ)
W (1, τ) = 0, (21e)

W (y, 0) = Wa(y), (21f)

− ∂S

∂τ

1
√

1 +
(

∂S
∂z1

)2
= g (W (y, τ))U(y, τ)W 2(y, τ), 0 < z1 < 1, τ ≥ 0, (21g)
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S(y, z1, 0) = Sa(z1),
∂S

∂z1
(y, 0, τ) = 0, (21h)

φ(y, τ) = (φg − φc)
A(y, τ) −A(y, 0)

(4−A(y, 0))
+ φc, (21i)

L(y, τ) = 4

∫

S(y,z1,τ)

dzΓs
, A(y, τ) = 4

[

1−
∫ 1

0

S(y, z1, τ)dz1

]

. (21j)

Here Ua and Wa are the initial conditions for U and W respectively and a natural
choice to make is to take Ua = Wa = 0. Also Sa is the initial position of the moving
boundary Γc, applied to all the cells inside the material, assumed to be independent
of y, while for τ > 0 its position is given by the points (z1, z2) for which we have
z2 = S(y, z1, τ).

In general, also having in mind the results in [17], [18], we can deduce that if the
motion of the boundary is driven by a reaction in such a process the above method
results in a macroscopic diffusion equation with a source term having the form :
“rate of the reaction × length of the moving boundary in a cell / Area of gypsum-
void in the cell”. The corrosion state of a single cell, expressed by the quantities
A and L, represents the state of corrosion at each corresponding macroscopic point
y. In this way the information of the corrosion evolution in the microscopic scale is
transferred to the macroscopic diffusion equation.

Another important remark is that if we have ǫ1,2 = O(δ) or smaller the above
analysis can be carried out with no essential difference. The only difference is that
to O(1) terms the quantity ǫ1U0τ , since it is of O(δ) or smaller, is not included in
equation (15). Therefore we get the equation ∇2

yU0+∇2
zU2 = 0 in place of equation

(15) and finally the equation Uyy = 1
γuφg

g(W )UW 2(1+β1U)L(y,τ)
A(y,τ) instead of (21a).

The same applies for the water concentration W , in equation (21d) when ǫ2 = O(δ)
or smaller.

Next in order to simplify the analysis as well as the numerical treatment of the
problem we proceed with a change in time variable in the equations for the moving
boundary.

In the equation for S = S(y, z1, τ), we set

∂S

∂τ
=

∂S

∂σ

∂σ

∂τ
,

for σ a new time variable. Thus we obtain

−∂S
∂σ

∂σ
∂τ

= g [W (y, τ)]U(y, τ)W 2(y, τ)

√

1 +
(

∂S
∂z1

)2

,

S(y, z1, 0) = Sa(z1),
∂S
∂z1

(y, 0, τ) = 0.

We simplify the problem by setting ∂σ
∂τ

= g [W (y, τ)]U(y, τ)W 2(y, τ) or

σ = σ(τ) =

∫ τ

0

g [W (y, τ ′)]U(y, τ ′)W 2(y, τ ′)dτ ′.

Therefore we obtain a form of the Eikonal equation for S = S(z1, σ),

− ∂S

∂σ
=

√

1 +

(

∂S

∂z1

)2

, 0 < z1 < 1, σ ≥ 0, (22a)

S(z1, 0) = Sa(z1), Sz1(0, σ) = 0. (22b)

In the following we present some cases that the above Eikonal equation attains
analytical solutions (see [18]). In these cases the system of equations for U and W
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take the form of non-local problem. Also for convenience in the following we will
use the notation R(y, τ) := g [W (y, τ)]U(y, τ)W 2(y, τ).

Sandpile solutions.

Square Segment. We consider the case that the calcium carbonate segment is of
a square form, of side say 2L0, contained in a square cell with side of length 2.

The length of the square side 2L0 should be such that 4−(2L0)
2

4 = φc, and therefore

L0 =
√
1− φc. This corresponds to the following equation.

−∂S
∂σ

=

√

1 +
(

∂S
∂z1

)2

, 0 < z1 < 1, σ ≥ 0,

S(z1, 0) = L0,
∂S
∂z1

(0, σ) = 0.

The solution of the equation is S(z1, σ) = L0 − σ for 0 ≤ z1 ≤ L0 − σ, or

S(y, z1, τ) = L0 −
∫ τ

0

R(y, τ ′) dτ ′.

Then the source term in the equation for U , (21a), has the form

Fu(U,W ) = − 1

γuφg

R(y, τ) (1 + β1U(y, τ))
8
[

L0 −
∫ τ

0 R(y, τ ′)dτ ′
]

[

4− 4
(

L0 −
∫ τ

0 R(y, τ ′)dτ ′
)2
] . (23)

The source term for W in equation (21d), similarly is

Fw(U,W ) := − 1

γwφg

R(y, τ) (2 + β2W (y, τ))
8
[

L0 −
∫ τ

0
R(y, τ ′)dτ ′

]

[

4− 4
(

L0 −
∫ τ

0 R(y, τ ′)dτ ′
)2
] .

Cyclical Segment. In that case we assume that initially in a square cell we have

a circular cement segment of radius R0 such that
4−πR2

0

4 = φc, or R0 = 2
(

1−φc

π

)
1
2

.

The Eikonal equation is of the form

−∂S
∂σ

=

√

1 +
(

∂S
∂z1

)2

, 0 < z1 < 1, σ ≥ 0,

S(z1, 0) =
√

R2
0 − z21 , 0 ≤ z1 ≤ 1, Sz1(0, σ) = 0, σ ≥ 0.

with solution

S(y, z1, τ) =

[

(

R0 −
∫ τ

0

R(y, τ ′) dτ ′
)2

− z21

]
1
2

,

for z1 < R0 − σ = R0 −
∫ τ

0
R(y, τ ′) dτ ′. The source term in the equation for U (for

W this can be obtained the same way as before) is

Fu(U,W ) = − 1

γuφg

R(y, τ)(1 + β1U(y, τ))
2π

[

R0 −
∫ τ

0 R(y, τ ′) dτ ′
]

[

4− π
(

R0 −
∫ τ

0 R(y, τ ′) dτ ′
)2
] , (24)
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Cubic Segment. In case that we have a three-dimensional cell, that is a cubic
cell, of edge 2 we take z = (z1, z2, z3) ∈ Ω = [−1, 1]3. Also we assume that
S(z1, z2, 0) = L0, 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1. The solution of the Eikonal equation
(its three-dimensional version), in this case is S(z1, z2, σ) = L0 − σ, 0 ≤ z1 ≤ σ,
0 ≤ z2 ≤ σ. Thus

Fu(U,W ) = − 1

γuφg

R(y, τ) (1 + β1U(y, τ))
3
[

L0 −
∫ τ

0
R(y, τ ′) dτ ′

]2

[

1−
(

L0 −
∫ τ

0 R(y, τ ′) dτ ′
)3
] , (25)

Spherical Segment. For a spherical initial surface of radius R0 inside Ω, we have

that
(8− 4

3
πR3

0)
8 = φc, or R0 =

(

(1 − φc)
6
π

)
1
3 . The solution for S is S(z1, z2, σ) =

(

(R2
0 − σ)2 − z21 − z22

)
1
2 and

Fu(U,W ) = − 1

γuφg

R(y, τ) (1 + β1U(y, τ))
4π

(

R0 −
∫ τ

0 R(y, τ ′) dτ ′
)2

8
[

1− 4
3π

(

R0 −
∫ τ

0
R(y, τ ′)dτ ′

)3
] . (26)

In each of the above cases it is straight forward to get the expressions for Fw

by substituting the term (2 + β2W (y, τ)) /γw in place of (1 + β1U(y, τ)) /γu in the
corresponding expressions for Fu.

3. Numerical solution. The numerical solution of the problem can be given, by
applying the methodology of [18], as a two stages process. Initially we need to solve
the Eikonal equation (22) accounting for the microscopic geometry of the problem
and for the cases that we cannot have an analytical solution of it. Next we use this
solution to evaluate the source terms in the field equations for U and W and then
solve the resulting problem for the macroscale.

Eikonal equation. For the solution of the former problem, i.e. the Eikonal equa-
tion (22a) and (22b) and due to its hyperbolic nature, we use a standard upwind
scheme ([16]).

Let Tσ being the final time of the simulation. We take the grid [0, 1] × [0, Tσ]
with Mσ + 1 points z1j = jδz1 in [0, 1], for δz1 being the spatial step for j =
0, 1, 2, . . . ,Mσ. Similarly in the interval [0, Tσ], we take Nσ time steps of size δσ for

Nσ =
[

Tσ

δσ

]

and σℓ = ℓδσ, ℓ = 1, 2, . . . , Nσ.

We denote with Sℓ
j the approximation of S(z1j , σℓ) and we have

Sℓ+1
j = Sℓ

j − δσ

[

1 +

(

Sℓ
j−Sℓ

j−1

δz1

)2
]

1
2

, j = 2, 3, . . . ,Mσ, (27)

Sℓ+1
1 = Sℓ

1 − δσ, for j = 1,

and ℓ = 2, . . . , Nσ, while S1
j = Sa(z1j).

In the case that we have a three-dimensional microstructure and therefore a cubic
cell a three-dimensional version of the Eikonal equation has to be solved numerically.
In this case the above numerical scheme can be appropriately modified and used in
a straight forward way (see [18]).

Evaluation of A and L. Given the approximation of S, Sj
ℓ we are able to calculate

the quantities L and A in the source term F (U,W ) (F = Fu or Fw depending the
case) at each time step. Namely L = L(Sℓ) = L(σℓ) and A(Sℓ) = A(σℓ), for
Sℓ =

(

Sℓ
1, S

ℓ
2, . . . , S

ℓ
Mσ

)

.
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We compute the integrals IL(S
ℓ) ≃

∫

Sℓ S(z1, σℓ)dz1 and IA(S
ℓ) ≃

∫ 1

0 S(z1, σℓ)dz1
which are the approximations of the quantities L(Sℓ) and A(Sℓ) respectively e.g.
via the Simpson’s rule.

At this point we need also a grid for the macroscopic domain [0, T ]× [0, 1]. We
take for 0 ≤ τ ≤ T , τi = iδτ , δτ =

[

T
N

]

and for N the time steps. Also for 0 ≤ y ≤ 1
we take M + 1 points yj = jδy, j = 0, 1, . . . ,M for δy the spatial step.

Next the quantities A(yj , τi) = A(σℓ) and L(yj , τi) = L(σℓ) for some σℓ are
needed for evaluating the numerical solution of U and W at each point (yj , τi).

In order to find the index ℓ of σℓ that corresponds to the point (yj , τi) we need to

approximate the integral Iτi ≃
∫ τi

0 R(y, τ ′)dτ ′. Then for some ℓ we have σℓ ≃ Iτi .
The index ℓ is the one that minimizes the quantity (σℓ − Iτi). Thus for this specific
ℓ we get A(yj , τi) = IA(σℓ) and L(yj , τi) = IL(σℓ).

Field equations. Recall that we have applied a discetization in the domain [0, T ]×
[0, 1]. We use a finite element approach. Let Φj , j = 0, . . . ,M denote the stan-
dard linear B - splines on the interval [0, 1], defined with respect to the partition
considered.

Φj =











y−yj−1

δy
, yj−1 ≤ y ≤ yj,

yj+1−y

δy
, yj ≤ y ≤ yj+1,

0, elsewhere in [0, 1],

(28)

for j = 0, 1, 2, . . . ,M .

We then set U(y, τ) =
∑M

j=0 auj
(τ)Φj(y), W (y, τ) =

∑M
j=0 awj

(τ)Φj(y), τ ≥ 0,
0 ≤ y ≤ 1.

The standard Galerkin method results in a system of equations for the au’s and
aw’s. Namely for a = au or aw and ǫ = ǫ1 or ǫ2 respectively. Recall also that the
source term denoted by F , with F = Fu or Fw, has the form (1+β1U)/γuφg×RL/A
in the equation for U and (2 + β2W )/γwφg ×RL/A in the equation for W .

ǫ

M
∑

j=0

ȧ(τ) 〈Φj(y)Φi(y) 〉 = −
M
∑

j=0

a(τ)
〈

Φ′
j(y)Φ

′
i(y)

〉

+

〈

F





M
∑

j=0

auj
(τ)Φj(y),

M
∑

j=0

awj
(τ)Φj(y)



Φi(y)

〉

, (29)

where 〈f, g〉 :=
∫ 1

0
f(y)g(y)dy and i = 1, 2, . . . ,M . Setting au = [au1

, au2
, . . . ,

auM
]T aw = [aw1

, aw2
, . . . , awM

]T The system of equations for the a’s takes the
form

Aȧu(τ) = −Bau(τ) + bu(τ),

Aȧw(τ) = −Baw(τ) + bw(τ),

The matrices A and B obtain the standard form in this case (e.g. see [17], [18])
and bu = bu(au, aw), bw = bw(au, aw) are the arrays coming from the last term in
equation (29).

We then apply a three time step approximation, increasing the range of stability
of the method compared with the standard two time step approximation, by taking,

e.g. in the equation for au, ȧu(τn) ≃ an+1
u −an−1

u

2δτ . Hence the resulting scheme has
the form

an+1
u = (A+ δτB)

−1 [
(A− δτB)an−1

u + 2δτ bnu
]

. (30)
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For n = 2 we have in place of equation (30) the following

a2u = (A+ δτB)−1 [(A− δτB)a1u + δτ b1u
]

,

for a1u being determined by the initial condition.
In the cases that we have ǫ1,2 ≪ 1 we can approximate the problem by getting the

versions of the equations (21a), (21d) with the time derivatives omitted. Regarding
the numerical solution of the problem in this case we may proceed in a similar way
as before. In such a case we need to solve at each time step the system

Banu = bu(a
n−1
u , an−1

w ),

Banw = bw(a
n−1
u , an−1

w ).

3.1. Numerical simulations. In Figure 2 we illustrate the approximate solution
to the system of equations (21) with the moving boundaries, yl(τ) and yu(τ), given
by the conditions max{τ : A(yl(τ), τ) = Aa} and min{τ : A(yu(τ), τ) = 4} respec-
tively. This solution is plotted against time. The area of a single cell is assumed to

be 4 while the initial calcium carbonate area is Aa = A(y, 0) = 4
[

1−
∫ 1

0 Sa(z1)dz1

]

.

The y axis corresponds to the macroscopic length of the material. The area between
yl and yu indicates the mushy region. The boundary yl describes, e.g. thinking of
the corrosion of a marble stone, the motion of point C in Figure 1, while in the
same context, yu describes the motion of point B. In the first case in (a) the cal-
cium carbonate segment is taken to be a square of side 2L0 and the source term
(23) is adapted in the model and in the system of equations (21). In (b) similarly
regarding the source term, we have that the initial calcium carbonate area in one
cell is of circular shape with radius R0 and Aa = 4 − πR2

0. The source term of
equation (24) was used. Finally in (c) Aa is assumed to be determined by a curve

of the form xn

cn
1

+ yn

cn
2

= 1 (Lamé curve) for n = 6 and c1 = 1, containing the

calcium carbonate. In addition in (d) a simulation has be done for the case that

Aa = A(y, 0) = 4
∫ 1

0 Sa(z1)dz1 where we have the inverse consideration, i.e. when
calcium carbonate is surrounding the gypsum - void area and Aa is the area inside

the square cell and outside the curve of the form xn

cn
1

+ yn

cn
2

= 1, again for n = 6 and

c1 = 1. In the latter case the boundary Γc is expanding and we need an inverse sign

in equation (22a) and thus we solve in place of it the equation ∂S
∂σ

=

√

1 +
(

∂S
∂z1

)2

.

Finally L0, R0 and c2 are evaluated so that (4−Aa)/4 = φc.
Also for a cubic cell (three-dimensional microstructure) we have the boundaries

indicated by (A) when the calcium carbonate inside the cell has the form of a cube
and (B) when it has the form of a sphere. For the latter simulations equations
(25) and (26) was used respectively. We can notice that for the three-dimensional
microgeometries, i.e. the case of the cube and the sphere, we have a shift to the left
for the boundaries and thus slower corrosion, compared with the two-dimensional
cases, i.e. the case of the square and the cycle.

The values of the parameters used in these simulations are for M = 31, T = 1,
ǫ1 = ǫ2 = 1, γu = γw = 10, φc = 0.05, φg = 0.3, wl = 0.25, wu = 0.75, δτ = .8 · δy2,
Mσ = 41, δσ = .1 · δz1, Tσ = 1.

In Figure 3, the system of equations (21) is solved numerically again but for the
case that ǫ1, ǫ2 ≪ 1. In this case the diffusion is faster and therefore the corrosion
of the material of length l is faster. Corrosion starts instantly and there is not
visible difference for the boundaries yl. The form of the boundary of the calcium
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Figure 2. Moving boundaries, indicating when the corrosion
starts (yl) and when is complete (yu) for a square cell and in the
cases that we have an initial calcium carbonate element in the form
of (a) a square, (b) a cycle, and (c) a Lamé curve. In the case that
calcium carbonate is surrounded by the cell boundary and a Lamé
curve we obtain (d). For a cubic cell similarly when the calcium
carbonate element has the form of a cube we obtain the boundaries
(A) and when this is a sphere we obtain the boundaries (B), denoted
with dotted lines.

carbonate inside a single cell is a factor that reflects on the speed of the corrosion
as it is apparent in Figure 3.

The values of the parameters used in these simulations are for M = 15, T = 0.3,
γu = γw = 10, φc = 0.05, φg = 0.3, δτ = .1 · δy2, Mσ = 101, δσ = .1 · δz1, Tσ = 1.

In addition by taking some typical values as those in [2], we have for Ds =
0.15 cm2/sec,Dw = 0.2178, cm2/sec, λ1 = 14.3·10−12 g/cm3, λ2 = 17.3·10−6 g/cm3,
Cc = 2.83 g/cm3, φc = 0.1, φg = 0.3. Also we take l = 0.012 cm, δ = 10−2 and
ku is estimated so as to give a speed of reaction v0 = (4/3.15) · 10−11 cm/sec =
4 · 10−6m/year. This gives ku = 2.47 · 1011 sec−1g−3cm9. For these values we have
ǫ1 = 1.01 ·10−12 ǫ2 = 6.9964 ·10−13, γu = 5.98, γw = 1.2685 ·1013, β1 = 5.053 ·10−12

and β2 = 6.1131 · 10−6.
These values indicate that diffusion of water is very fast compared with the

reaction progress. Therefore we have Wyy ≃ 0 for ǫ2, 1/γw ≪ 1. For a constant
concentration at the boundary y = 0, Wφ = 1 and (Wφ)y = 0, at the point y = 1,
we get

W =
1

φ(0, τ)

[

1− φy(1, τ)

φ(1, τ) + φy(1, τ)
y

]

. (31)

Also the equation for U , given also that β1 ≪ 1, takes the form
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Figure 3. Moving boundaries for the case that ǫ1, ǫ2 ≪ 1, in-
dicating when the corrosion is complete in the cases of having an
initial calcium carbonate element in the form of (a) a square, (b)
a cycle and (c) a Lamé curve (for n = 6). In (d) the initial void
of the cell is surrounded by a Lamé curve with calcium carbonate
in the exterior of it.

Uyy =
1

γuφg

g(W )UW 2L(y, τ)

A(y, τ)
, 0 < y < 1, τ ≥ 0. (32)

with A and L given in the same way by the equations of the system (21). For this
case a simulation has been done in Figure (3) where the boundaries yu and yl are
plotted against time and Sa is taken to be a cycle. We can see that due to the fact
that diffusion is fast a layer of thickness y = 1 (x = l = .012 cm), instantly becomes
partly corroded, i.e. yl is placed at the τ = 0 point, while this layer is fully corroded
at about 0.17 time units or at about t = 0.17× t0 = 5, 1 years.

Note that since a few of important factors have not been included in the model,
such as the, varying effective diffusivity, the volume expansion of the cell’s and
consequently the swelling of the corroded layer, the mechanical deformation of the
material during the process, the inhomogeneity of the pores inside the calcium
carbonate etc., the above results should be interpreted at this stage only qualitative.

4. Conclusions. In this paper a mathematical model for the formation of a mushy
region in marble or in general in calcium carbonate stones during corrosion by SO2,
converting calcium carbonate into gypsum, is derived and solved numerically.

This model is a modification of the one presented in [1], [2]. This is adjusted in
such a way so as to address the coexistence of corroded and uncorroded parts of the
material in a volume element of it. By following the method of averaging as this is
prescribed in [17], [18] a system of reaction diffusion equations is derived describing
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Figure 4. A simulation of the corrosion process for the case that
we have equations (32) and (31) in place of (21a) and (21d) in the
system (21), for small ǫ2 and γw.

the process. In these equation the information about the evolution of the corrosion
in the microscopic scale is included by the solution of the Eikonal equation. Such a
solution describes the motion of the corrosion front in the microscale as a moving
boundary in a volume element of the material.

Note also that in the model setting by allowing diffusion in the whole of the cell,
so as to avoid complications in the asymptotics and in the numerical treatment of
the problem, by having dependence of the O(1/δ) terms on the microscale length,
we obtain a less realistic picture of the phenomenon but still indicative of how this
process evolves. Such a model can serve as an initial stage in the study of sulphation
process. Inclusion of the diffusion effect in the model, by allowing flow only in a
part of the cell is a very important subject to be studied in the future.

The resulting system is solved numerically considering various cases for the geom-
etry of the material in the microscale. The resulting simulations predict corrosion
up to a reasonable range. Although due to the fact that there are important fac-
tors of the process that should be added in the model such as changing effective
diffusivity, volume expansion, mechanical deformation, inhomogeneity of the mi-
crostructure geometry etc. the results should be interpreted qualitative. This work
can be further improved by including these factors in the model and make it more
realistic and useful in practice. Also the study of the multiscale formal asymptotics
presented here in a more rigorous context, in the spirit of works as [8] - [12], would
be very interesting aspect improving the validity of the model.
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