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1. Introduction

We consider the non-local initial boundary value problem,

ut(x, t) + ux(x, t) = λ
f(u(x, t))

(

∫ 1

0
f(u(x, t)) dx

)2 , 0 < x < 1, t > 0, (1.1a)

u(0, t) = 0 , t > 0, (1.1b)

u(x, 0) = u0(x) > 0, 0 < x < 1, (1.1c)

where λ > 0. The function u(x, t) represents the dimensionless temperature when an elec-
tric current flows through a conductor (e.g. food) with temperature dependent on electrical
resistivity f(u) > 0, subject to a fixed potential difference V > 0. The (dimensionless) resis-
tivity f(u) may be either an increasing or a decreasing function of temperature depending
strongly on the type of the material (food). Problem (1.1) models one of the main methods
for sterilizing food. The sterilization can take place by electrically heating the food rapidly.
The food is passed through a conduit, part of which lies between two electrodes. A high
electric current flowing between the electrodes results in Ohmic heating of the food which
quickly gets hot. This procedure can be modelled by problem (1.1). A detailed derivation
of the model, (1.1), can be found in [15].

The problem was considered initially in [19] where the stability of models allowing for
different types of flow is studied. More background on this type of process can be found
in [5, 4, 9, 20, 22, 24]. In [15] problem (1.1) is also studied and it is found that for
f decreasing with

∫∞

0
f(s)ds < ∞ then blow-up occurs if the parameter λ (∝ V 2) is too
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large for a steady state to exist or if the initial condition is too big. If f is increasing
with

∫∞

0
ds/f(s) < ∞ blow-up is also possible. If f is increasing with

∫∞

0
ds/f(s) = ∞ or

decreasing with
∫∞

0
f(s)ds = ∞ the solution is global in time ([15]).

In the following we assume f to satisfy

f(s) > 0, f ′(s) < 0, s > 0, (1.2a)

∫ ∞

0

f(s) ds < ∞ (1.2b)

for instance either f(s) = e−s or f(s) = (1 + s)−p, p > 1, satisfy (1.2). In addition for the
initial data it is required that u0(x), u′

0(x) to be bounded, and that u0(x) > 0 in [0, 1] (the
last requirement is a consequence of the fact that for any initial data the solution u becomes
non-negative over (0, 1] for some time t and thus, with an appropriate redefinition of t, we
can always make this assumption [13, 15]).

The corresponding steady problem to (1.1) is

w′ = λ
f(w)

(

∫ 1

0
f(w) dx

)2 , 0 < x < 1, w(0) = 0, (1.3)

where w = w(x) = w(x; λ), (see [6, 8, 13, 14, 15]). For example in the case that f(s) = e−s,
w(x) = ln (λx/µ2 + 1) for µ > 0 being the root of the equation

√
µ ln (λ/µ2 + 1) = λ.

Under the assumptions (1.2), problem (1.3) has at least one classical (regular) steady
solution ([15, 17]) w∗ = w(x; λ∗), (more than one w∗ may exist). In the following, we
assume that w∗ is unique, and that the pair (w, w) at λ < λ∗ (λ close to λ∗) has the
property: w = w1 is stable while w = w2 is unstable, (since without loss of generality it can
be required only the existence of at least one w∗ at λ∗ and that w(x) < w(x) for x in (0, 1]
where w is the next steady solution greater than w(x) at λ < λ∗).

It is known that if (1.2b) holds, then there exists a critical value of the parameter λ,
which can be identified, amongst other things, with the square (is actually proportional) of
the applied potential difference V , say λ∗ < ∞, such that for λ > λ∗, the solution u(x, t; λ)
to problem (1.1), blows up globally in finite time t∗ (u → ∞ for all x ∈ (0, 1] as t → t∗−,
[15]) and problem (1.3) has no solutions (of any kind). For a fixed λ ∈ (0, λ∗) there exist
at least two solutions w(x; λ) and a unique u(x, t; λ); u(x, t; λ) may either exist for all time
or blow up globally depending on the initial data (for the blow-up, u0 must be greater than
the greatest steady solution w(x; λ) and (1.2) holds) [13, 14, 15].

A numerical computation of problem (1.1), by using the upwind scheme has already
been presented in [17]. Although it has not appear yet in the bibliography a theoretical
analysis of finite difference schemes that can be applied for the numerical solution of non-
local problems having similar form as problem (1.1). In this work we study initially two
explicit finite difference schemes: upwind and Lax -Wendroff, regarding their consistency,
stability and convergence. Initially the upwind scheme is applied to problem (1.1) and it
is shown that this is first order convergent, if we apply an appropriate discretization to the
nonlocal source term. As a next step we apply the Lax - Wendroff scheme in order to get
a more accurate numerical approximation. This scheme is of second order accuracy. This
accuracy is obtained by the addition of extra correction terms in the discretization of the
nonlocal source term. The analysis for both methods holds in the case that f is a decreasing
function, if (1.2b) holds for λ < λ∗, and for small initial data, or if

∫∞

0
f(s) ds = ∞, so that
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the solution to problem (1.1) exists for all times. In addition it should be mentioned that
the results stated in this work are valid, with minor modifications in the proofs, if we also
consider an increasing f . Moreover, a high resolution method combining the above methods
is presented and it is shown that it is total-variation-stable.

An interesting aspect in the study of a numerical solution of such a non-local problem
is to investigate the effect of the non-local term in the numerical approximation of the
solution. The present analysis for these two methods indicates that other standard methods
applied for first order homogeneous hyperbolic equation should result in the same order of
convergence for this non-local problem. This can be done if the nonlocal source term is
discretized appropriately, if necessary, with the addition of extra correction terms, and the
integration method, used to approximate the non-local term, is of the same order. Moreover,
as it is apparent from the application of the Lax-Wendroff method to this problem, additional
correction terms, related with the derivatives of the non-local source term, must be included
in the scheme in order to obtain second order accuracy in both space and time. Similar
analysis for other non-local problems exist in the bibliography (e.g [1, 7]). More specifically
in [1] an approach based on the method of characteristics is followed. This in principle can be

applied also for the solution of problem (1.1). For s = x + t equation (1.1b) becomes du(s)
ds

=

λf(u(s))/
[

∫ 1+t

t
f(u(s))ds

]2

. Then this equation can be integrated along the characteristics

resulting, e.g in a numerical scheme of the form Un+1
j+1 = Un

j + hλf(Un
j )/I2

h(Un), where h is a
time step. The analysis in [1], indicates that in our case, due to the fact that the non local

term
∫ 1

0
f(u)dx, is a function of time, extra care should be needed to obtain and analyze a

method of higher order accuracy by the method of characteristics. In addition the upwind
and the Lax-Wendroff method can be generalized in a more natural way to problems of
the form ut + (g(u))x = λF (u). Thus in the present work we will not consider further this
method.

Note also that error estimates for a method approximating the solution of the problem
in the case of blow-up are important in order to investigate characteristics of the blow-up
phenomenon, e.g. the blow-up time, useful for the point of view of applications. Similar
works that investigate the convergence of a numerical solution during blow-up have been
done, for a parabolic problem, in [2, 3, 11]. In our case, for example, for f being an increasing
function a discontinuity in the initial data may cause blow-up of the solution [15]. Aiming
to apply a similar approach as in [2, 3] for a non-local problem such as problem (1.1), a high
resolution method based on a combination of an upwind and a Lax-Wendroff method, which
is also introduced and analyzed in this work, would be useful (see [16], Chapter 6).

In section 2 we present the appropriate notations and definitions and we consider the
upwind method regarding its consistency, stability and convergence. In section 3 we establish
similar results for the Lax-Wendroff method and we introduce a high resolution method which
is shown to be TV-stable. Finally in section 4 we present some numerical experiments in
support of the results obtained in the previous sections and in section 5 we present the
conclusions and some open problems regarding the continuation of this work.
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2. The Upwind Scheme

2.1. Notations

We introduce a spatial grid xj = j∆x, j = 0, 1, . . . , J , where ∆x = 1/J is the mesh size and
J is a positive integer. We also consider a fixed time interval 0 6 t 6 T . The step length in
time is denoted by ∆t and tn = n∆t, n = 0, 1, 2, . . . , N , with N = [T/∆t], are the discrete
time levels. Also r = ∆t

∆x
.

We consider the set H = {∆x > 0 : ∆x = 1/J, J ∈ N} and for ∆x ∈ H we define
the vector spaces : X = Y = (RJ+1)N+1. Also if V = (V0, V1, . . . , VJ) ∈ R

J+1 we define

||V ||∞ := max06j6J |Vj| and ||V ||1 :=
∑J ′′

j=0 ∆x|Vj |, where the ′′ means that the first and last

terms of the sum are halved, i.e. the trapezoidal rule is used. For V = (V 0, V 1, . . . , V N) ∈ X,
with V n ∈ R

J+1 we define the following norm on X, ||V ||X := max06n6N ||V n||1. In addition
if V ∈ Y then we define the norm ||V ||Y := ||V 0||1 +

∑N
n=1 ∆t||V n||1. Let R be a fixed

positive constant and denote by B(uh, R) the open ball with center uh and radius R of the
space X endowed with the norm of X as it is defined above.

For a time step ∆t and ∆x ∈ H we consider the element uh ∈ X, uh = (u0, u1, . . . , uN) ∈
X, with un = (un

0 , u
n
1 , . . . , u

n
J) ∈ R

J+1 and un
j = u(xj, tn) where u is the exact solution of the

problem (1.1). In a similar way we denote by Uh ∈ X the approximate numerical solution
of problem (1.1), with Un

j being the approximation of the solution at the point (xj , tn).

Also we use the notations I(un) =
∫ 1

0
u(x, tn)dx and F (un

j ) =
f(un

j )

I2(un)
. By Ih we denote

the numerical approximation of I, i.e. Ih(u
n) =

∑J ′′

j=0 ∆xun
j . In this case we have

∣

∣Ih(u
n) − I(un)

∣

∣ = O(∆x2).

Finally we set Fh(u
n
j ) =

f(un
j )

I2
h
(un)

.

Note that C, c, ci, Mi, i = 1, 2, . . . will denote positive constants independent of ∆x, ∆t, n
(0 6 n 6 N) and j, (0 6 j 6 J) having possibly different values at different places.

2.2. Formulation and Analysis of the Numerical Method

An upwind scheme applied to problem (1.1) gives:
Un+1

0 = 0, (2.1a)

Un+1
j = Un

j − r
(

Un
j − Un

j−1

)

+ λ∆tFh(U
n
j ), j = 1, . . . , J, (2.1b)

for 0 6 n 6 N − 1 and with U0 = (U0
0 , U0

1 , . . . , U0
J ) known.

Next we introduce the mapping φh : B(uh, R) ⊂ X → Y defined by the equations

φh(V
0, V 1, . . . , V N) = (Z0, Z1, . . . , ZN),

Z0 = V 0 − U0,

Zn+1
0 = 0,

Zn+1
j =

1

∆t

(

V n
j − ∆t

∆x
(V n

j − V n
j−1) + ∆tλ

f(V n
j )

I2
h(V n)

− V n+1
j

)

1 6 j 6 J,

for 0 6 n 6 N − 1. Then Uh = (U0, U1, . . . , UN) is a solution of the scheme (2.1) if and only
if φh(Uh) = (R0, R1, . . . , RN), with Rn = 0 ∈ R

J+1, 0 6 n 6 N .
In the following we study the consistency, the stability and the convergence of the scheme

(2.1).
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Consistency

We define the local descretization error as lh = φh(uh) ∈ Y and we say that the descritization
is consistent if as ∆x, ∆t → 0, lim∆x, ∆t→0 ||φh(uh)||Y = lim∆x, ∆t→0 ||lh||Y = 0.

Proposition 1. Assuming that f satisfies condition (1.2a) and u is C2 global bounded
solution of problem (1.1) (i.e. the initial data are smooth enough and λ 6 λ∗, u0(x) < w2(x)
if (1.2b) holds or

∫∞

0
ds/f(s) = ∞) then if for u0(xj) = u0

j , j = 0, 1, . . . , J , we have
||u0 − U0||1 = o(1) the local discretization error satisfies the condition

||φh(uh)||Y = O(∆t + ∆x).

Proof. We denote φh(uh) = (u0 − U0, τ 1, τ 2, . . . , τN ), where τn, 1 6 n 6 N are the local
truncation errors to be bounded. Indeed for j = 1, . . . , J we have

|τn+1
j | =

1

∆t

∣

∣un
j − ∆t

∆x

(

un
j − un

j−1

)

+ ∆t λFh(u
n
j ) − un+1

j

∣

∣

=
1

∆t

∣

∣un
j − ∆t

∆x

(

un
j − un

j + ∆xux
n
j − 1

2
∆x2 uxx

n
j + · · ·

)

+∆tλFh(u
n
j ) − un

j − ∆t ut
n
j − 1

2
∆t2 utt

n
j + · · ·

∣

∣

=
∣

∣− ux
n
j − ut

n
j + λFh(u

n
j ) − 1

2
∆t utt

n
j − 1

2
∆xuxx

n
j

∣

∣+ · · ·

or |τn+1
j | 6

1

2
∆t|utt

n
j | +

1

2
∆x|uxx

n
j | + λf(un

j )
∣

∣

1

I2
h(un)

− 1

I2(un)

∣

∣. (2.2)

Regarding the third term in equation (2.2) we have that

λf(un
j )
∣

∣

1

I2
h(un)

− 1

I2(un)

∣

∣ = λf(un
j )

[Ih(u
n) + I(un)]

I2
h(un) I2(un)

∣

∣Ih(u
n) − I(un)

∣

∣.

Since u is bounded in [0, 1] × [0, T ] there exists a constant Mu such that u(x, tn) 6 Mu,
0 6 n 6 N . Therefore f(un) > f(Mu) > 0 and 1

I2
h
(un)

= 1

[
∑J′′

j=0 ∆xf(un
j )]2

6 1
f(Mu)2

. Similarly

1
I2(un)

= 1

[
∫

1

0
f(un)dx]2

6 1
f(Mu)2

. Also for f decreasing and f(0) > 0 we have, f(un
j ) 6 f(0),

Ih(u
n) =

∑J ′′

j=1 ∆xf(un
j ) 6 f(0) and I(un) =

∫ 1

0
f(un)dx 6 f(0). Therefore due to the fact

that
∣

∣Ih(u
n) − I(un)

∣

∣ = O(∆x2) we deduce that

λf(un
j )
∣

∣

1

I2
h(un)

− 1

I(un)2

∣

∣ 6
2λf(0)2

f(Mu)4

∣

∣Ih(u
n) − I(un)

∣

∣ = O(∆x2). (2.3)

We have τn
0 = 0, for 1 6 n 6 N . Therefore combining also equations (2.2) and (2.3) we have

that
|τn

j | = O(∆t + ∆x), 0 6 j 6 J, 1 6 n 6 N,

and hence, using the assumption that ||u0−U0||1 = o(1), we deduce that lim∆x, ∆t→0 ||φh(uh)||Y
= lim∆x, ∆t→0 ||lh||Y = 0 and that the scheme is consistent. �

Remark The previous proposition can be easily modified to include also the case that f is
an increasing function. Indeed if f(s) > 0, f ′(s) > 0, for s > 0 and problem (1.1) attains a C2

bounded global in time solution, u(x, t), then we have 0 < f(0) < f(u(x, t)) < f(Mu), where
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Mu is an upper bound of u for 0 6 x 6 1 and t > 0. Therefore 1
I2
h
(un)

= 1

[
∑J′′

j=0
∆xf(un

j )]2
6 1

f(0)2

and 1
I2(un)

= 1

[
∫ 1

0
f(un)dx]2

6 1
f(0)2

. Also, f(un
j ) 6 f(Mu), Ih(u

n) =
∑J ′′

j=1 ∆xf(un
j ) 6 f(Mu)

and I(un) =
∫ 1

0
f(un)dx 6 f(Mu). Hence

λf(un
j )
∣

∣

1

I2
h(un)

− 1

I(un)2

∣

∣ 6
2λf(Mu)

2

f(0)4

∣

∣Ih(u
n) − I(un)

∣

∣ = O(∆x2).

Likewise the rest of the propositions in this work can be modified in a similar manner to
include the case where f is increasing.

Stability

In the following we show that the scheme is stable. For each ∆x and ∆t let Mh > 0 a constant.
We say that the discretization (2.1) is stable for uh restricted to the thresholds Mh if there
exist two positive constants r0 and S such that for r = ∆t

∆x
6 r0, B(uh, Mh) is contained in

the domain of φh and for every V, W ∈ B(uh, Mh), ‖V − W‖X 6 S‖φh(V ) − φh(W )‖Y .

Proposition 2. Under the hypotheses of proposition (1) the discretization (2.1) is stable
for r = ∆t

∆x
6 1.

Proof. Let V, W ∈ B(uh, Mh) of X with φh(V ) = Z and φh(W ) = S. We set En =
V n − W n ∈ R

J+1, 0 6 n 6 N . We have En
0 = 0, for 1 6 n 6 N and for 0 6 n 6 N − 1,

1 6 j 6 J , that
∣

∣En+1
j

∣

∣ =
∣

∣V n+1
j − W n+1

j

∣

∣

=
∣

∣V n
j − ∆t

∆x
(V n

j − V n
j−1) + ∆t λFh(V

n
j )

−W n
j +

∆t

∆x
(W n

j − W n
j−1) − ∆tλFh(W

n
j ) − ∆t(Zn+1

j − Sn+1
j )

∣

∣

6 (1 − r)|V n
j − W n

j | + r|V n
j−1 − W n

j−1| + λ∆t
∣

∣Fh(V
n
j ) − Fh(W

n
j )
∣

∣

−∆t
∣

∣Zn+1
j − Sn+1

j

∣

∣.

By the assumptions on f we have that f is locally Lipschitz, i.e. |f(V n
j ) − f(W n

j )| 6

L|V n
j − W n

j | for a constant L > 0. In addition 0 < f(V n
j ) 6 f(0) for f decreasing and

for V, W ∈ B(uh, Mh) we have that 1
Ih(V n)2

6 1
f(Mh)2

, 1
Ih(W n)2

6 1
f(Mh)2

and Ih(V
n) 6 f(0),

Ih(W
n) 6 f(0). Also |Ih(V

n) − Ih(W
n)| 6

∑J ′′

j=0 ∆x|f(V n
j ) − f(W n

j )| 6 L
∑J ′′

j=0 ∆x|V n
j −

W n
j | = L||En||1. Thus

∣

∣Fh(V
n
j ) − Fh(W

n
j )
∣

∣ =
∣

∣

f(V n
j )

Ih(V n)
−

f(W n
j )

Ih(W n)

∣

∣

6
∣

∣

f(V n
j )

Ih(V n)
−

f(V n
j )

Ih(W n)

∣

∣+
∣

∣

f(V n
j )

Ih(W n)
−

f(W n
j )

Ih(W n)

∣

∣

6
∣

∣f(V n
j )
∣

∣

∣

∣Ih(V
n) + Ih(W

n)
∣

∣

I2
h(V n) I2

h(W n)

∣

∣Ih(V
n) − Ih(W

n)
∣

∣

+
1

I2
h(W n)

∣

∣f(V n
j ) − f(W n

j )
∣

∣

6
2f 2(0)

f 4(Mh)

∣

∣Ih(V
n) − Ih(W

n)
∣

∣ +
L

f 2(Mh)

∣

∣V n
j − W n

j

∣

∣. (2.4)
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Therefore for 0 < r < 1, c1 = λL
f2(Mh)

and c2 = 2λLf2(0)
f4(Mh)

we obtain

|En+1
j | 6 [(1 − r) + c1∆t]|En

j | + r|En
j−1| + c2||En||1 + ∆t|Zn+1

j − Sn+1
j |.

For c = max(c1, c2) we deduce that

||En+1||1 6 [(1 − r) + c∆t]||En||1 + r||En||1 + ∆t||Zn+1
j − Sn+1

j ||1
6 (1 + c∆t)||En||1 + ∆t||Zn+1 − Sn+1||1.

Applying the above relation recursively we have

||En+1||1 6 C

(

||E0||1 + ∆t

n+1
∑

m=1

||Sm − Zm||1
)

,

for some constant C. Therefore by the discrete Gronwall lemma we get

max
06n6N

||En||1 6 C

(

||E0||1 + ∆t

N
∑

n=1

||Sn − Zn||1
)

= C||φh(V ) − φh(W )||Y ,

and thus ||V − W ||X 6 C||φh(V ) − φh(W )||Y . �

Convergence

Regarding the convergence of the scheme we have the following proposition:

Proposition 3. Assuming that the hypotheses of proposition (1) hold and that U0 is
such that ||u0 − U0||1 = O(∆x), as ∆x → 0 then the numerical solution of the scheme Uh

satisfies
||Uh − uh||X = O(∆t + ∆x),

and
||Uh − uh||∞ = O(∆t + ∆x),

as ∆x, ∆t → 0.

Proof. We have that φh is continuous and stable on B(uh, Mh). Hence (see [21], [1])
there exist the inverse φ−1

h defined on B(uh, Mh/S) for S being the stability constant. We
consider the vector R = (R0, R1, . . . , RN) ∈ X such that φh(Uh) = R with Rn = 0 ∈ R

J+1,
0 6 n 6 N . Then Uh exists and is the unique solution of the scheme.

By the consistency property and by the fact that ||U0 − u0||1 = O(∆x) we have that
||φh(uh)−R||Y = ||φh(uh)||Y = O(∆t+∆x). Thus for ∆x, ∆t small enough Uh ∈ B(uh, Mh)
and by the stability property, i.e. the relation ||Uh −uh||X 6 C||φh(uh)−φh(Uh)||Y , we have
that

||Uh − uh||X 6 C||φh(uh) − φh(Uh)||Y = C||φh(uh) − R||Y = O(∆t + ∆x).

It remains to prove that ||Uh − uh||∞ = O(∆t + ∆x).
We set en := Un − un and L(V n

j ) := V n
j − ∆t

∆x
(V n

j − V n
j−1) + ∆t λF (V n

j ). Then en
0 = 0 for

1 6 n 6 N and for 1 6 j 6 J we have

en+1
j = Un+1

j − un+1
j = L(Un

j ) − un+1
j =

(

L(Un
j ) − L(un

j )
)

+
(

L(un
j ) − un+1

j

)

= L(Un
j ) − L(un

j ) + ∆t τn+1
j ,
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where |τn+1
j | = O(∆t + ∆x). Also

|L(Un
j ) − L(un

j )| 6 (1 − r)|en
j | + r|en

j−1| + λ∆t|Fh(U
n
j ) − Fh(u

n
j )|,

and for ∆x, ∆t small enough Uh ∈ B(uh, Mh), so as it is stated in relation (2.4) we have
|Fh(U

n
j ) − Fh(u

n
j )| 6 c1|en

j | + c2||en||1. Therefore

∣

∣L(V n
j ) − L(W n

j )
∣

∣ 6 (1 + c∆t)||en||1,

and

|en+1
j | 6 (1 + c∆t)||en||1 + ∆t |τn+1

j |, j = 1, . . . , J. (2.5)

Thus

||en||∞ = max
06j6J

|en| 6 (1 + c∆t)||en||1 + O(∆t + ∆x) (2.6)

and in addition from equation (2.5) we have that

||en+1||1 6 (1 + c∆t)||en||1 + O(∆t + ∆x). (2.7)

Therefore by the relations (2.6) and (2.7) recursively we obtain

||en||∞ 6 C||e0||1 + O(∆t + ∆x),

for some constant C and for every n, 1 6 n 6 N . Finally we deduce that

max
06n6N

||en||∞ = max
06n6N

||Un − un||∞ 6 C||e0||1 + O(∆t + ∆x),

and taking also into account that ||e0||1 = ||U0 − u0||1 = O(∆x) we get the required result

max
06n6N

||en||∞ = max
06n6N

||Un − un||∞ = O(∆t + ∆x).

�

3. The Lax - Wendroff Scheme

For the following analysis we will use the notations stated in the previous section. Also
for convenience we will denote by I1(u) :=

∫ 1

0
f ′(u)f(u)dx and accordingly I1h(U

n) :=
∑J ′′

j=0 f ′(Un
j )f(Un

j ). In the following f ′ is assumed to be locally Lipschitz, with constant
L′ and bounded i.e. |f ′(s)| 6 M1 for s > 0 and some constant M1.

In order to derive a Lax - Wendroff Scheme for problem (1.1) we note that ut = −ux +
λF (u) and utt = uxx + λ(Ft(u) − Fx(u)). Thus by expanding u(x, t + ∆t) about the point
(x, t) we obtain

u(x, t + ∆t) = u(x, t) − ∆tux(x, t) +
∆t2

2
uxx(x, t) + λ∆tF (u(x, t))

+ λ
∆t2

2
(Ft(u(x, t)) − Fx(u(x, t))) + O(∆t3).
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Note also that by using the fact that ut = −ux + λF (u) we have G(u) := Ft(u) − Fx(u) =

G1(u) + G2(u)ux + G3(u) where the expressions for Gi, i = 1, 2, 3 are G1(u) = λf ′(u)f(u)
I4(u)

,

G2(u) = −2 f ′(u)
I2(u)

, and G3(u) = −2 f(u)
I3(u)

(

λ I1(u)
I2(u))

− (f(u(1, t)) − f(u(0, t))
)

. By taking central

differences for the approximation of ux and uxx we can derive the following Lax - Wendroff
scheme
Un+1

0 = 0, (3.1a)

Un+1
j =

r

2
(1 + r)Un

j−1 + (1 − r2)Un
j − r

2
(1 − r)Un

j+1 + λ∆tFh(U
n
j ) + λ

∆t2

2
Gh(U

n
j ), (3.1b)

Un+1
J = (1− 3r

2
+

r2

2
)Un

J +(2r−r2)Un
J−1−

r

2
(1−r)Un

J−2+λ∆tFh(U
n
J )+λ

∆t2

2
Gh(U

n
J ), (3.1c)

for j = 1, . . . , J − 1, 0 6 n 6 N − 1 and U0 known. Also

Gh(U
n
j ) = G1h(U

n
j ) + G2h(U

n
j )(

Un
j+1 − Un

j−1

2∆x
) + G3h(U

n
j ), j = 1, . . . , J − 1,

Gh(U
n
J ) = G1h(U

n
J ) + G2h(U

n
J )(

3Un
J − 4Un

J−1 + Un
J−2

2∆x
) + G3h(U

n
J ),

Where

G1h(U
n
j ) = λ

f ′(Un
j )f(Un

j )

I4
h(Un)

, G2h(U
n
j ) = −2

f ′(Un
j )

I2
h(Un

j )
,

G3h(U
n
j ) = −2

f(Un
j )

I3
h(Un

j )

(

λ
I1h(U

n)

I2
h(Un))

− (f(Un
J ) − f(Un

0 )

)

.

Note that for the approximation of the solution at the Jth point is used one sided, second
order approximations, i.e. the Beam Warming method, of the derivatives ux

n
J and uxx

n
J , in

order to maintain the O(∆x2) accuracy of the scheme.
This scheme can give a more accurate approximation of the solution of order O(∆t2 +

∆x2), subject to the fact that for the integral of the source term a second order approximation
rule is used.

Consistency

In the present case we redefine the mapping φh : B(uh, R) ⊂ X → Y in the appropriate, for
the Lax-Wendroff scheme, way

φh(V
0, V 1, . . . , V N) = (Z0, Z1, . . . , ZN),

Z0 = V 0 − U0,

Zn+1
0 = 0,

Zn+1
j =

1

∆t

(r

2
(1 + r)V n

j−1 + (1 − r2)V n
j − r

2
(1 − r)V n

j+1 + λ∆tFh(V
n
j )

+ λ
∆t2

2
Gh(V

n
j ) − V n+1

j

)

,

Zn+1
J =

1

∆t

(

(1 − 3r

2
+

r2

2
)V n

J + (2r − r2)V n
J−1 −

r

2
(1 − r)V n

J−2 + λ∆tFh(V
n
J )

+ λ
∆t2

2
Gh(V

n
J ) − V n+1

J

)

,

for j = 1, . . . , J − 1 and 0 6 n 6 N − 1.
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Proposition 4. Assuming that f satisfies (1.2a), with f ′ being locally Lipschitz, and u
is C3 global bounded solution of problem (1.1) (i.e. the initial data are smooth enough and
λ 6 λ∗, u0(x) < w2(x) if (1.2b) holds or

∫∞

0
ds/f(s) = ∞) then if ||u0(x)−U0||1 = o(1) the

local discretization error for the scheme (3.1b-3.1c) satisfies the relation

||φh(uh)||Y = O(∆t2 + ∆x2).

Proof. We have τn
0 = 0, for 1 6 n 6 N and for 0 6 n 6 N − 1, 1 6 j 6 J − 1 that

|τn+1
j | =

1

∆t

∣

∣

r

2
(1 + r)un

j−1 + (1 − r2)un
j − r

2
(1 − r)un

j+1 + λ∆tFh(u
n
j )

+ λ
∆t2

2
Gh(u

n
j ) − un+1

j

∣

∣.

Therefore

|τn+1
j | =

1

∆t

∣

∣

r

2
(1 + r)

(

un
j − ∆xux

n
j +

∆x2

2
uxx

n
j − ∆x3

6
uxxx

n
j + · · ·

)

+ (1 − r2)un
j

− r

2
(1 − r)

(

un
j + ∆xux

n
j +

∆x2

2
uxx

n
j +

∆x3

6
uxxx

n
j + · · ·

)

+ λ∆tFh(u
n
j ) + λ

∆t2

2
Gh(u

n
j )

−
(

un
j + ∆tut

n
j +

∆t2

2
utt

n
j +

∆t3

6
uttt

n
j + · · ·

)

∣

∣.

or

|τn+1
j | =

1

∆t

∣

∣− ∆t(ut
n
j + ux

n
j ) + λ∆tFh(u

n
j ) +

∆t2

2
(uxx

n
j − utt

n
j + λGh(u

n
j ))

−∆t∆x2

6
uxxx

n
j +

∆t3

6
uttt

n
j + · · ·

∣

∣

6
∣

∣λ
(

Fh(u
n
j ) − F (un

j )
)
∣

∣+
∆t

2

(
∣

∣uxx
n
j − utt

n
j + λGh(u

n
j ))
∣

∣

)

+
∆x2

6

∣

∣uxxx
n
j

∣

∣+
∆t2

6

∣

∣uttt
n
j

∣

∣ + · · ·

As it is shown in Proposition 1 we have that |Fh(u
n
j ) − F (un

j )| = O(∆x2). Also utt =
uxx + λ(Ft(u)− Fx(u)) = uxx + λG(u), and uxx

n
j − utt

n
j + λGh(u

n
j ) = λG(un

j )− λGh(u
n
j ) and

in a similar way we have

∣

∣G1(u
n
j ) − G1h(u

n
j )
∣

∣ = λ
∣

∣

f ′(un
j )f(un

j )

I4(un)
−

f ′(un
j )f(un

j )

I4
h(un)

∣

∣ 6 c1

∣

∣

1

I4(un)
− 1

I4
h(un)

∣

∣ 6 O(∆x2),

for some constant c1 = 4λf4(0)M1

f8(Mu)
. Also

∣

∣G2(u
n
j )ux

n
j − G2h(u

n
j )

un
j+1 − un

j−1

2∆x

∣

∣ =
∣

∣G2(u
n
j )ux

n
j − G2h(u

n
j )(ux

n
j +

∆x2

6
uxxx

n
j + · · · )

∣

∣

=
∣

∣

2f ′(un
j )

I2(un)
ux

n
j −

2f ′(un
j )

I2
h(un)

ux
n
j

∣

∣+ O(∆x2)

6 c2

∣

∣

1

I2(un)
− 1

I2
h(un)

∣

∣+ O(∆x2) 6 O(∆x2),
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for some constant c2 = 2M1M2, with M2 = sup ux, x ∈ [0, 1]. Finally

∣

∣G3(u
n
j ) − G3h(u

n
j )
∣

∣ =
∣

∣2
f(un

j )

I3(Un
j )

(

λ
I1(u

n)

I2(un))
− (f(un

J) − f(un
0)

)

−2
f(un

j )

I3
h(un

j )

(

λ
I1h(u

n)

I2
h(un))

− (f(un
J) − f(un

0)

)

∣

∣,

6 c3

(

∣

∣

1

I2
h(un)

− 1

I2(un)

∣

∣+
∣

∣I1(u
n) − I1h(u

n)
∣

∣+
∣

∣I(un) − Ih(u
n)
∣

∣

)

6 O(∆x2)

for c3 = max{2λf(0)(1+M1f(0)f2(Mu))
f5(Mu)

, 6λf4(0)M1(1+f(0)f2(Mu))
f8(Mu)

}. The last inequality comes by

adding and subtracting the term 2
f(un

j )

I3(un
j )

(

λ I1h(un)
I2
h
(un))

− (f(un
J) − f(un

0)
)

, the fact that
∣

∣

f(un
j )

I3(Un
j )

−
f(un

j )

I3
h
(Un

j )

∣

∣ 6 O(∆x2) and that
∣

∣

I1(un)
I2(un))

− I1h(un)

I2
h
(un))

∣

∣ 6 O(∆x2). Therefore
∣

∣G(un
j ) − Gh(u

n
j )
∣

∣ 6

O(∆x2). Thus we obtain that for 1 6 n 6 N , |τn
j | = O(∆t2 + ∆x2). In addition

|τn+1
J | =

1

∆t

∣

∣(1 − 3r

2
+

r2

2
)un

J + (2r − r2)un
J−1 −

r

2
(1 − r)un

J−2 + λ∆tFh(u
n
J)

+λ
∆t2

2
G(un

J) − un+1
J

∣

∣

=
1

∆t

∣

∣(1 − 3r

2
+

r2

2
)un

J

+ (2r − r2)

(

un
J − ∆xux

n
J +

∆x2

2
uxx

n
J − ∆x3

6
uxxx

n
j + · · ·

)

− r

2
(1 − r)

(

un
J − 2∆xux

n
J + 2∆x2uxx

n
J − 4∆x3

3
uxxx

n
J + · · ·

)

+ λ∆tFh(u
n
J) + λ

∆t2

2
G(un

J)

−
(

un
J + ∆t ut

n
J +

∆t2

2
utt

n
J +

∆t3

6
uttt

n
J + · · ·

)

∣

∣.

or in a similar way as before

|τn+1
J | =

1

∆t

∣

∣− ∆t(ut
n
J + ux

n
J) + λ∆tFh(u

n
J) + λ

∆t2

2
G(un

J) − ∆t2

2
utt

n
J

+
∆t2

2
uxx

n
J +

∆t∆x2

3
uxxx

n
J +

∆t3

6
uttt

n
J + · · ·

∣

∣

6 λ
∣

∣Fh(u
n
J) − F (un

J)
∣

∣+ λ
∣

∣G(un
J) − Gh(u

n
J)
∣

∣

+
∆x2

3

∣

∣uxxx
n
J

∣

∣+
∆t2

6

∣

∣uttt
n
J

∣

∣ + · · ·
= O(∆t2 + ∆x2).

Therefore we have that |τn
j | = O(∆t2 + ∆x2), for j = 0, . . . , J, n = 1, . . . , N and hence,

using also the assumption on the initial condition, that the scheme is consistent and
lim∆x, ∆t→0 ||φh(uh)||Y = lim∆x, ∆t→0 ||lh||Y = 0. �



12 C. V. Nikolopoulos

Stability

Proposition 5. Under the hypotheses of proposition (4) the discretization (2.1) is stable
for r = ∆t

∆x
6 1.

Proof. Let V, W ∈ B(uh, Mh) of X with φh(V ) = Z and φh(W ) = S. We set En =
V n − W n ∈ R

J+1, 0 6 n 6 N . We have for j = 1, . . . , J − 1 that

|En+1
j | =

∣

∣

r

2
(1 + r)V n

j−1 + (1 − r2)V n
j − r

2
(1 − r)V n

j+1 + λ∆tFh(V
n
j )

+λ
∆t2

2
G(V n

j )

−r

2
(1 + r)W n

j−1 − (1 − r2)W n
j +

r

2
(1 − r)W n

j+1 − λ∆tFh(W
n
j )

−λ
∆t2

2
G(W n

j ) − ∆t(Zn+1
j − Sn+1

j )
∣

∣

6
r

2
(1 + r)|En

j−1| + (1 − r2)|En
j | +

r

2
(1 − r)|En

j+1|

+λ∆t
∣

∣Fh(V
n
j ) − Fh(W

n
j )
∣

∣ + λ
∆t2

2

∣

∣Gh(V
n
j ) − Gh(W

n
j )
∣

∣

+∆t
∣

∣(Zn+1
j − Sn+1

j )
∣

∣.

We have, as it is shown in proposition (2), that
∣

∣Fh(V
n
j ) − Fh(W

n
j )
∣

∣ 6 c1|En
j | + c2||En||1,

j = 1, . . . , J . Then regarding the term
∣

∣Gh(V
n
j ) − Gh(W

n
j )
∣

∣ we obtain

∣

∣G1h(V
n
j ) − G1h(W

n
j )
∣

∣ = λ
∣

∣

f ′(V n
j )f(V n

j )

I4
h(V n)

−
f ′(W n

j )f(W n
j )

I4
h(W n)

∣

∣

6 λ
∣

∣

f ′(V n
j )

I2
h(V n)

(

Fh(V
n
j ) − Fh(W

n
j )
)
∣

∣

+λ
∣

∣

f ′(W n
j )

I2
h(W n

j )

[

1

Ih(V n)

(

f ′(V n
j ) − f ′(W n

j )
)

+ f ′(W n
j )

(

1

I2
h(V n

j )
− 1

I2
h(W n

j )

)]

∣

∣

6 c3|En
j | + c4

∣

∣

∣

∣En
∣

∣

∣

∣

1
,

where here c3 = max{ λM1L
f4(Mh)

, λf(0)L′

f4(Mh)
} and c4 = 2λM1f2(0)L

f6(Mh)
. Also

∣

∣G2h(V
n
j )

V n
j+1 − V n

j−1

2∆x
− G2h(W

n
j )

W n
j+1 − W n

j−1

2∆x

∣

∣

=
1

2∆x

∣

∣G2h(V
n
j )(En

j+1 − En
j−1) + (W n

j+1 − W n
j−1)

(

G2(V
n
j ) − V2(W

n
j )
)
∣

∣

6
1

2∆x

[

c5

(
∣

∣En
j+1

∣

∣+
∣

∣En
j

∣

∣ +
∣

∣En
j−1

∣

∣

)

+ c6

∣

∣

∣

∣En
∣

∣

∣

∣

1

]

,

where here c5 = max 2M1

f2(Mh)
, 4L′Mh

f2(Mh)
, c6 = 8MhM1f(0)L

f4(Mh)
. Finally

∣

∣G3h(V
n
j ) − G3h(W

n
j )
∣

∣ =
∣

∣− 2
f(V n

j )

I3
h(V n)

(

λ
I1h(V

n)

I2
h(V n)

− f(V n
J ) + f(V n

0 )

)

+2
f(W n

j )

I3
h(W n)

(

λ
I1h(W

n)

I2
h(W n)

− f(W n
J ) + f(W n

0 )

)

6 c7|En
j | + c8

∣

∣

∣

∣En
∣

∣

∣

∣

1
) 6 c7|En

j | + c8

∣

∣

∣

∣En
∣

∣

∣

∣

1
.
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In this case c8 = max{4λf3(0)M1L
f7(Mh)

, 2λf(0)L
f3(Mh)

, 2λf(0)L(M1L+f(0)L′)
f5(Mh)

, 6λf4(0)M1L
f8(Mh)

, 6f4(0)L
f6(Mh)

, } and c7 =
2Lf(0)
f3(Mh)

( λM1

f2(Mh)
+ 1). Note also that here was used the fact that

∣

∣I1h(V
n)) − I1h(W

n)
∣

∣ 6

(M1L + f(0)L′)
∣

∣

∣

∣En
∣

∣

∣

∣

1
and that |En

J | 6 ||En||1.
Thus, by denoting C ′

1 = max{c1, c2,
λ
4
rc5,

λ
4
rc6}, C2 = λ

2
max{c3, c4, c7, c8} and given that

r 6 1 we obtain

|En+1
j | 6 [

r

2
(1 + r) + C ′

1∆t]|En
j−1| + [(1 − r2) + C ′

1∆t + C2∆t2]|En
j | +

+[
r

2
(1 − r) + C ′

1∆t]|En
j+1| + [C ′

1∆t + C2∆t2]||En||1 + ∆t
∣

∣(Zn+1
j − Sn+1

j )
∣

∣.

for 1 6 j 6 J − 1. In a similar way we deduce that

|En+1
J | 6 (1 − 3r

2
+

r2

2
)
∣

∣En
J

∣

∣+ (2r − r2)
∣

∣En
J−1

∣

∣+
r

2
(1 − r)|En

J−2| + λ∆t
∣

∣Fh(V
n
J ) − Fh(W

n
J )
∣

∣

+λ
∆t2

2

∣

∣Gh(V
n
J ) − Gh(W

n
J )
∣

∣+ ∆t
∣

∣(Zn+1
J − Sn+1

J )
∣

∣,

or

|En+1
J | 6 [(1 − 3r

2
+

r2

2
) + C ′′

1 ∆t + C2∆t2]|En
J | + [(2r − r2) + C ′′

1 ∆t]|En
J−1|

+[
r

2
(1 − r) + C ′′

1∆t]|En
J−2|

+[C ′′
1∆t + C2∆t2]||En||1 + ∆t

∣

∣(Zn+1
J − Sn+1

J )
∣

∣, (3.2)

where C ′′
1 = max{c1, c2, c9, c10}, c9 = max{ 8M1

f2(Mh)
, 64M1L′

f2(Mh)
}, c10 = 32f(0)MhM1L

f4(Mh)
.

Note that the terms |En
j |, j = 1, . . . , J − 1 can be bounded in the following way

|En+1
j | 6 2r|En

j−1| + [(1 − r2) + C ′
1∆t + C2∆t2]|En

j | + [
r

2
(1 − r) + C ′

1∆t]|En
j+1|

+[C ′
1∆t + C2∆t2]||En||1 + ∆t

∣

∣(Zn+1
j − Sn+1

j )
∣

∣. (3.3)

Then observing that :
r
2
(1 + r)|En

J−2| + (2r − r2)|En
J−1| + r

2
(1 − r2)|En

J−2| = r|En
J−2| + (2r − r2)|En

J−1|
6 2r(|En

J−2|+|En
J−1|+|En

J |) and that (1−r2)|En
J−1|+(1− 3r

2
+ r2

2
)|En

J | 6 (1−r2)(|En
J−1|+|En

J |),
we can combine equations (3.2) and (3.3), with C1 = max{C ′

1, C
′′
1}, in order to obtain

||En+1||1 6 [2r + C1∆t]||En||1 + [(1 − r2) + C1∆t + C2∆t2]||En||1
+[

r

2
(1 − r) + C1∆t]||En||1 + ∆t

∣

∣

∣

∣(Zn+1 − Sn+1)
∣

∣

∣

∣

1
.

or

||En+1||1 6

[(

1 +
5r

2
− 3r2

2

)

+ C1∆t + C2∆t2
]

||En||1 + ∆t
∣

∣

∣

∣(Zn+1 − Sn+1)
∣

∣

∣

∣

1
.

Therefore by a standard recursive argument we obtain

max
06n6N

||En||1 6 C

(

||E0||1 + ∆t

N
∑

n=1

∣

∣

∣

∣(Zn − Sn)
∣

∣

∣

∣

1

)

= C
∣

∣

∣

∣φh(V ) − φh(W )
∣

∣

∣

∣

Y
,

for some constant C. Thus ‖V −W‖X 6 C‖φh(V )− φh(W )‖Y , and the scheme is stable. �
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Convergence

Regarding the convergence of the scheme we have the following proposition:

Proposition 6. Assuming that the hypotheses of proposition (4) hold and that U0 is
such that ||U0 − u0||1 = O(∆x2) as ∆x → 0, then the numerical solution of the scheme Uh

satisfies
||Uh − uh||X = O(∆t2 + ∆x2),

and
||Uh − uh||∞ = O(∆t2 + ∆x2),

as ∆x, ∆t → 0.

Proof. Given that ||U0−u0||1 = O(∆x2) and using the same arguments as in proposition
(3) we have that ||Uh − uh||X = O(∆t2 + ∆x2).

The relation
||Uh − uh||∞ = max

06n6N
||en||∞ = O(∆t2 + ∆x2),

also holds. Indeed for en = Uh
n − uh

n we have |en
0 | = 0, for 1 6 n 6 N and

en+1
j = Un+1

j − un+1
j = L(Un

j ) − L(un
j ) + L(un

j ) − un+1
j ,

for 0 6 n 6 N − 1, where

L(Un
j ) :=

r

2
(1 + r)Un

j−1 + (1 − r2)Un
j − r

2
(1 − r)Un

j+1

+λ∆tFh(U
n
j ) + λ

∆t2

2
Gh(U

n
j ), j = 1, . . . , J − 1,

L(Un
J ) := (1 − 3r

2
+

r2

2
)Un

J + (2r − r2)Un
J−1 −

r

2
(1 − r)Un

J−2

+λ∆tFh(U
n
J ) + λ

∆t2

2
Gh(U

n
J ).

Hence

|en+1
j | 6 |L(Un

j ) − L(un
j )| + ∆t|τn+1

j | (3.4)

for j = 1, . . . , J . Then following a similar procedure as for the derivation of equations
(3.2-3.3) we obtain

∣

∣L(Un
j ) − L(un

j )
∣

∣ 6
r

2
(1 + r)|en

j−1| + [(1 − r2)]|en
j | −

r

2
(1 − r)|en

j+1|

+λ∆t
∣

∣Fh(U
n
j ) − Fh(u

n
j )
∣

∣ + λ
∆t2

2

∣

∣Gh(U
n
j ) − Gh(u

n
j )
∣

∣, j = 1, . . . , J − 1,

∣

∣L(Un
J ) − L(un

J)
∣

∣ 6 (1 − 3r

2
+

r2

2
)|en

J | + (2r − r2)|en
J−1| −

r

2
(1 − r)|en

J−2|

+λ∆t
∣

∣Fh(U
n
J ) − Fh(u

n
J)
∣

∣+ λ
∆t2

2

∣

∣Gh(U
n
J ) − Gh(u

n
J)
∣

∣.

Thus for a constant C0 > (1 + 5r
2
− 3r2

2
) we have

∣

∣L(Un
j ) − L(un

j )
∣

∣ 6 (C0 + C1∆t + C2∆t2)||en||1, j = 1, . . . , J.
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Hence by equation (3.4) we obtain

||en||∞ 6 (C0 + C1∆t + C2∆t2)||en||1 + O(∆t2 + ∆x2). (3.5)

On the other hand we can also derive the relation

||en+1||1 6 (C0 + C1∆t + C2∆t2)||en||1 + O(∆t2 + ∆x2). (3.6)

By the relations (3.5) and (3.6) we deduce that, for some constant C,

||en||∞ 6 C||e0||1 + O(∆t2 + ∆x2),

for every n, 1 6 n 6 N and

max
O6n6N

||en||∞ 6 C||e0||1 + O(∆t2 + ∆x2).

Finally, provided that ||e0||1 = O(∆x2), we have

max
O6n6N

||en||∞ = O(∆t2 + ∆x2).

�

Remark Note that in the above Lax-Wendroff scheme omitting the term λ∆t2

2
G(u) will

result in a scheme that is of order O(∆t + ∆x2). This can be easily seen if in the relevant
proofs is set G(u) = 0. Moreover, a modification of the scheme (3.1) can be obtained by using
the Beam Warming approximation for j = 2, . . . , J and the Lax-Wendroff approximation for
j = 1. Such a scheme will have the same stability properties as (3.1).

A high Resolution Scheme

In the following, motivated by the analysis in [18], we will introduce a high resolution method.
This method will allow for better behaviour of the numerical solution near discontinuities by
the use of the upwind method and higher order of accuracy in smooth parts of the solution by
the use of the Lax-Wendroff or the Beam-Warming method. For simplicity we will consider
the Lax-Wendroff approach only for the linear part of the equation (i.e. setting G = 0 in
(3.1) ) which gives accuracy O(∆t + ∆x2) for the smooth parts of the solution.

We can construct a finite volume scheme by integrating equation (1.1a) over the set
[xj− 1

2

, xj+ 1

2

] × [tn, tn+1], where xj+a := xj + a∆x. Indeed in such a way we obtain

∫ x
j+1

2

x
j− 1

2

(u(x, tn+1) − u(x, tn))dx = −
∫ tn+1

tn

(u(xj+ 1

2

, t) − u(xj− 1

2

, t))dt

+ λ

∫ tn+1

tn

∫ x
j+ 1

2

x
j− 1

2

F (u(x, t))dxdt. (3.7)

Equation (3.7) defines a weak solution for problem (1.1). As a next step we consider numer-
ical methods of the form

Un+1
j = Un

j − r[Φ(Un; j) − Φ(Un; j − 1)] + λ∆tFh(U
n
j ), (3.8)

where Φ(un; j) := Φ(Un
j−2, U

n
j−2, U

n
j−1, U

n
j , Un

j+1). Φ(Un; j) = Un
j for the upwind method,

Φ(Un; j) = 1
2
(Un

j+1 + Un
j ) − r

2
(Un

j+1 − Un
j ) for the Lax-Wendroff method and for the Beam
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Warming method Φ(Un; j) = Un
j + 1

2
(1 − r)(Un

j − Un
j−1). Then method (3.8) is consistent

with equation (3.7) if Φ reduces to the true homogeneous flux for constant flow.
In order to investigate the stability of this method we need the following definitions. For

a grid function Un ∈ R
J+1 we define the total variation by TV (Un) :=

∑J
j=1 |Un

j − Un
j−1|.

We can also extend the grid function Uh ∈ X by defining a piecewise constant function
uh(x, t) := Un

j for (x, t) ∈ [xj− 1

2

, xj+ 1

2

)×[tn, tn+1), for r fixed. In this case, for uh(x, tn) = un
h ,

TV (un
h) = TV (Un). Also we define the total variation TVT (Uh), of Uh ∈ X in both space and

time, in the following way : TVT (Uh) :=
∑[T/∆t]

n=0

∑J
j=1

[

∆t|Un
j − Un

j−1| + ∆x|Un+1
j − Un

j |
]

=
∑[T/∆t]

n=0 (∆t TV (Un) + ‖Un+1 − Un‖1), and TVT (uh) = TVT (U). Note that the set KT :=
{v ∈ L1,T ([0, 1]) : TVT (v) 6 R, R > 0} is a compact subset of L1 T ([0, 1]) := {v, [0, 1] → R, :

‖v‖1 T :=
∫ T

0

∫ 1

0
v(x, t)dxdt < ∞}.

Proposition 7. For a method of the general form (3.8) if the numerical homogeneous
flux Φ is Lipschitz continuous, r < 1 and for the initial data U0 we have TV (U0) < ∞, then
the method is TV-stable.

Proof. We know (Theorem 12.2 in [16]) that for a numerical method with Lipschitz con-
tinuous numerical flux, if for any initial data u0 there exist some ∆t0 and R > 0 such that
TV (Un) < R for every n and ∆t with ∆t < ∆t0, n∆t 6 T , then the method is TV -stable.

In our case initially we have to show that the relation TV (Un) 6 R (and consequently
|Un| 6 R

2
) implies that ‖Un+1 − Un‖1 6 c∆t. By equation (3.8) we have

‖Un+1 − Un‖1 = ∆t

[

J
∑

j=1

|Φn
j+ 1

2

− Φn
j− 1

2

| + λ∆xFh(U
n
j )

]

6 ∆t

[

K

J
∑

j=1

1
∑

i=−2

|Φn
j+ 1

2

− Φn
j− 1

2

| + λ

J
∑

j=1

∆xFh(U
n
j )

]

6 c∆t,

for c = 4KR + λf(0)
f2(R/2)

.

Thus now it is sufficient to show that TV (Un) 6 R which can be implied by the relation
TV (Un+1) < (c1 + c2∆t)TV (Un) for some constants c1, c2 independent of ∆t. Note also
that according to [15] discontinuities in the initial condition are simply propagate along the
characteristics and even in this case the solution remains bounded if u0 is bounded. Thus
we may assume, by consistency, that Un is also bounded by some constant M. We have

J
∑

j=1

|Un+1
j − Un+1

j−1 | =
J
∑

j=1

∣

∣Un
j − r[Φ(Un; j) − Φ(Un; j − 1)] + λ∆tFh(U

n
j )

−Un
j−1 + r[Φ(Un; j − 1) − Φ(Un; j − 2)] − λ∆tFh(U

n
j−1)

∣

∣

6

J
∑

j=1

[

|Un
j − Un

j−1| + rc1

1
∑

i=−2

|Un
j+i − Un

j+i−1| + c2|Un
j − Un

j−1|
]

6 (c3 + c2∆t)
J
∑

j=1

|Un
j − Un

j−1|,

for some constant c1, c2 = λL
f2(M)

, and c3 = 1 + 4rc2. Hence method (3.8) is TV -stable. �
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Therefore a method of the form (3.8), which generates a numerical solution Uh, consistent
with the conservation law (3.7) is convergent to an element w ∈ KT . By the Lax-Wendroff
theorem we know that w is also a weak solution of (3.7) ([16]). The method converges
in the sense that dist(U,W) → 0 as ∆t → 0 for W = {w, w is a weak solution of (3.7)},
dist(U,W) := infw∈W ‖U − w‖ (Theorem 12.3 in [16]).

In the following we can introduce a high resolution method by specifying the form of Φ
with the use of appropriate limiters. We consider a specific form of (3.8) :

Un+1
j = Un

j − r(Un
j − Un

j−1) + λ∆tfh(U
n
j )

−1

2
r(1 − r)

[

φ(θj+ 1

2

)(Un
j+1 − Un

j ) + φ(θj− 1

2

)(Un
j − Un

j−1)
]

. (3.9)

The limiter φ(θj) is defined for the minmod method in the following way

φ(θ) = minmod(1, θ) =







1, for 1 < |θ|, θ > 0,
θ, for |θ| < 1, θ > 0,
0 for θ 6 0,

for j = 2, . . . , J − 2 and θn
j :=

Un
j−1

−Un
j−2

Un
j −Un

j−1

. Note that for φ(θ) = 1 we take the Lax-Wendroff

method, for φ(θ) = θ the Beam Warming method and for φ(θ) = 0 the upwind method.
To ensure that for j = 2 we have the Lax-Wendroff approximation and that for j = J the
Beam Warming approximation we set φ(θ1+ 1

2

) = φ(θ 1

2

) = max{0, sgn(θ)} and φ(θJ− 1

2

) =

φ(θJ−1− 1

2

) = max{0, θ}. Different choices of limiters ([16],[18]) can be treated in a similar
way. For simplicity here we consider only the minimod method.

Such a method, as it is stated by Harten’s theorem ([10]), is TV-stable if r < 1 and
0 6 φ(θ) 6 minmod(2, 2θ). These conditions are clearly satisfied by the scheme (3.9).

4. Numerical Results and Comparison

In this section we present the results of numerical experiments by means of the upwind
(UWM), the Lax-Wendroff (LWM) and the high resolution method. All methods were
implemented in MATLAB programs using double precision arithmetic.

We present the numerical solution of the problem for f(s) = e−s. The problem was solved
numerically on a uniform grid consisting of J = 20, 40, 80, or 160 subintervals, for r = 1

2
,

λ = 0.5476 = λ∗ − 0.1 < λ∗ = 0.6476 (the value of λ∗ is for this specific form of f , [17]),
and in a time interval [0, T ] with T = 10. The time T is chosen in such a way so that, in all
of the following simulations, ||UN −UN−1||∞ < 10−7, to assure that the numerical solutions
reach the steady state. Also the initial condition was taken to be u0(x) = u(x, 0) = 0.

We compare the solution at the time level tN = T with the steady state solution w(x)
which is known. More specifically the smaller positive root, µ of the equation

√
µ ln (λ/µ2 + 1) =

λ will determine w(x) = w(x) = ln (λx/µ2 + 1) the lower stable solution of the steady prob-
lem in which, starting with zero initial data, we know that the solution of problem (1.1)
converges ([15]). We set ||eN ||∞ = ||UN − w(x)||∞ where w(x) is evaluated at the points
0 = x0, x1, . . . , xJ = 1.

Initially we present in Table (T1) the values of the calculated numerical solution at
the time T with both methods together with the exact solution and their error. In this
experiment J = 160, r = 1

2
and ∆t = 0.0031.
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Table (T1)
Calculated values of Uh together with the exact solution for J = 160.
x Exact Upwind UWM error Lax-Wendroff LWM error

0.1 0.13112200724761 0.12982943696673 1.2926(-3) 0.13111091697485 1.1090(-5)
0.2 0.24702705481565 0.24477407267762 2.2530(-3) 0.24700780161837 1.9253(-5)
0.3 0.35088263653835 0.34789418183696 2.9885(-3) 0.35085713563715 2.5501(-5)
0.4 0.44495981994690 0.44139433305167 3.5655(-3) 0.44492938370692 3.0436(-5)
0.5 0.53094253734067 0.52691523080510 4.0273(-3) 0.53090809842761 3.4439(-5)
0.6 0.61011401350040 0.60571090144046 4.4031(-3) 0.61007625426600 3.7759(-5)
0.7 0.68347461117119 0.67876134637587 4.7133(-3) 0.68343404251149 4.0569(-5)
0.8 0.75181930597843 0.74684695435876 4.9724(-3) 0.75177631742049 4.2989(-5)
0.9 0.81579032767599 0.81059926081556 5.1911(-3) 0.81574522030464 4.5107(-5)
1 0.87591394710144 0.87053653743357 5.3774(-3) 0.87586696953442 4.6978(-5)

Note that the error of both methods increases as x increases and attains its maximum value
at the point x = 1.

In addition in Figure (1) the numerical solution of the problem with the Lax - Wendroff
method, u(x, t), 0 6 x 6 1, 0 6 t 6 T , is plotted against space and time. In this figure
J = 20.

0
0.2

0.4
0.6

0.8
1

0

5

10
0

0.2

0.4

0.6

0.8

1

 

xt
 

u

Figure 1. Numerical solution of problem (1.1) with the Lax - Wendroff method, against space and time.

Also in Figure (2a) the maximum in space of the numerical solution, i.e. u(1, t), with
both the upwind and Lax - Wendroff method, is plotted against time and in Figure (2b)
the profile of the numerical solution at time T , again with both methods, is plotted against
space, together with the steady state w(x), 0 6 x 6 1.

In Table (T2) we present the error, the CPU time, in the brackets the relative CPU time,
and the rate of convergence for these two methods. We see that the rate converges to 1
for the upwind method and to 2 for the Lax-Wendrof method. The maximum error of the
Lax-Wendroff method is much smaller while the CPU time for the upwind method is lower.

Table (T2).
Rates of convergence of the Upwind and Lax- Wendroff methods.

J ||Un − wh||
UP
∞

Rate CPU time (sec) ||Un − wh||
LW
∞

Rate CPU time (sec)
20 3.9975(-2) 0.0492 (1) 2.6903(-3) 0.1886 (3.8338)
40 2.0816(-2) 0.9414 0.0739 (1.5009) 6.9895(-4) 1.9445 0.5815 ( 11.8187)
80 1.0635(-2) 0.9689 0.1370 (2.7827) 1.7930(-4) 1.9628 3.9824 (80.9441)
160 5.3774(-3) 0.9838 0.4757 ( 9.6614) 4.6978(-5) 1.9324 27.5828 (560.6251)

In Figure (3) the problem is solved by both the high resolution, with the minimod limiter,
method defined by equation (3.8) in (3a) and the Lax-Wendroff method, in (3b). The values
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Figure 2. Profiles of the numerical solution of problem (1.1) by the upwind and Lax - Wendroff methods

plotted together with the steady state solution. a) u(1, t), 0 6 t 6 T , b) u(x, T ), 0 6 x 6 1.

of the parameters are the same as for the previous simulations but as an initial condition it
was taken u(x, 0) = 0 for 0 < x < 1

4
and x > 1

2
and u(x, 0) = 1 for 1

4
6 x < 1

2
, r = .8 and

∆t = 0.005. As it is also stated in [15] discontinuities of the initial condition propagate along
characteristics. This can be seen in both Figure (3a) and (3b). More specifically in Figure
(3a) produced by the Lax-Wendroff method it can be seen that oscillations appear at the
discontinuities, in the direction of characteristics while the high resolution method has much
better behaviour with no oscillations. This is more clear in Figure (4) where a profile of

Figure 3. Numerical solution of problem (1.1) with the Lax - Wendroff method (3(a)) and with the high

resolution method (3(a)), against space and time for a discontinuous initial condition.

the numerical solutions presented in Figure (3) is plotted with both methods against space
at time t0 = 0.045.
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Figure 4. Profiles of the numerical solution of problem (1.1) with both the high resolution (solid line) and

the Lax - Wendroff method (dashed line) for t0 = 0.045.

5. Conclusions

In the present work an upwind and a Lax - Wendroff scheme are introduced for the solution
of a one dimensional non-local problem modelling Ohmic heating of foods. These numerical
schemes are studied regarding their consistency, stability and rate of convergence for the
cases in which the problem attains a global solution in time. It is found that the upwind
scheme is of order O(∆t + ∆x) while the Lax - Wendroff scheme is of order O(∆t2 + ∆x2).
Also a high resolution method is introduced which is shown that is total-variation-stable and
some numerical experiments are presented in support of the theoretical results.

This work indicates that other finite difference methods can be adapted to this problem
having the same order of convergence as for the relevant linear problem, with the absence of
source term, as far as an appropriate discretization is used for the non-local term. Moreover,
in order to obtain higher order accuracy, higher order terms related with the derivatives
of the non-local source term should be included. These numerical methods can serve as a
tool for investigating the behaviour of the solution of the problem during blow-up which
is a characteristic for many non-local problems as problem (1.1). It is possible that a high
resolution method as the one introduced here, together with the relevant theoretical analysis,
will give more accurate results in the cases that singularities can be developed during blow-
up. It is also interesting to investigate similar numerical schemes for generalizations of
problem (1.1) such as ut + (G(u))x = λF (u) where the function G may depend on u also
in a non-local way ([12, 23]) as well as in parabolic problems of the form ut = uxx + λF (u)
([13, 14]).

Acknowledgements. The author wants to thank Dr. K. Housiadas for having various dis-
cussions regarding this work.
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