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a b s t r a c t

In this work we propose a model for optimal advertisement in new product diffusion
based on the Bass model and assuming that the effect of the environmental pressure in
the diffusion of the product is subject to a stochastic dependence. The optimal stopping
problem is reduced to a free boundary problem which is analyzed and solved numerically,
in order to determine an optimal stopping rule for the advertisement campaign. The
numerical solution is obtained through a policy iteration like contraction scheme, the
convergence properties of which are studied in detail. Furthermore, the expected time
until the optimal stopping of the campaign is estimated. Finally, a combined optimal
stopping and control problem for the optimization of the advertisement effectiveness is
also proposed and solved numerically. Our results are expected to provide useful guidelines
for campaign managers, for the choice of effectiveness and duration of an advertisement
campaign.

© 2009 Elsevier Ltd. All rights reserved.

1. The model

A very popular and successful model for new product diffusion in a market is the Bass model. According to the standard
Bass model, the adoption of a new product is associated with two different procedures [1]. The first is the adoption of the
product because of the effect of advertisement. This is assumed to be a processwhichmay bemodelled by a linear term, i.e. if
p(t) is the number of customers that have adopted the product up to time t , and N is the total market potential, then the
rate of change of p(t)with respect to time is likely to be proportional to the number of potential customers that have not yet
adopted the product,N−p(t). The proportionality factor A0 is ameasure of the effectiveness of the advertisement campaign
for the product. The second process that plays an important effect is the so calledword of mouth process which assumes that
the various potential adopters are affected, among other factors, by the peer pressure of those that have already adopted the
product. This is a second order effect and the rate of change of adopters due to this mechanism is likely to be proportional
to the number of adopters p(t)multiplied by the number of potential adopters N−p(t). Thus the rate of change of adopters
due to this mechanism will be of the form B0p(t)(N − p(t)). The proportionality factor B0 is a measure of the effectiveness
of the word of mouth mechanism.
According to this model, the evolution of the number of customers, p(t) that have adopted the product will follow the

differential equation

dp(t)
dt
= A0 (N − p(t))+ B0 p(t)(N − p(t)).

Working with the scaled variable x(t) = p(t)/N the equation becomes
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dx
dt
= a (1− x(t))+ b x(t)(1− x(t)),

where a = A0N and b = B0N2.
The Bass model has been used widely in the modelling of the diffusion of a wide range of products, with very good fit

to real data, and has been proved very successful as a model. However, it is a fairly simple model which has to be further
enhanced with realistic effects so as to provide a better understanding and approximation of the real world. One important
step towards this direction is to introduce some uncertainty in the various parameters of the model. This uncertainty for
the purpose of the present paper will be modelled with the use of white noise. The noise will model uncertainty concerning
the various model parameters, such as the effectiveness of the advertisement campaign or the effectiveness of the word of
mouth mechanism. The effectiveness of an advertisement campaign, which is related to the probability of a client adopting
the product because of the effect of advertising, depends on a number of factors such as the intensity of the campaign, the
quality and strategy adopted by the advertiser, the composition of the target group, the socio-economic circumstances etc.
All these factors are subject to uncertainty. We will then assume that a(t) = ad(t)+ as(t) where ad(t) is the deterministic
(average) part of the parameter a(t) and as(t) is the stochastic part which models the fluctuations around the deterministic
part. In order to keep the model as simple as possible, we will only consider the effectiveness a of the campaign in this
paper, and assume that in principle it depends in a monotonic fashion on the intensity of the campaign. A reasonable first
model for the fluctuating term would be to model them as a Gaussian process and a suitable model for that would be to
take as(t) to be given by an Itô integral. Reasons for the adoption of such a model can be based on considerations related
to the law of large numbers and central limit theorem type arguments. Generalization to other types of noise, for example
noise terms including jumps etc. is possible, under appropriate modifications of the modelling considerations and technical
assumptions.
Under the givenmodelling assumptions, and denoting ad(t) = a, and as(t) = σ0adWt , whereWt is aWiener process and

σ0 is a constant, the Bass model can be formulated as a stochastic differential equation of Itô type, of the form

dx(t) = {a (1− x(t))+ b x(t)(1− x(t))}dt + σ0a(1− x(t))dW (t), (1.1)

Remark 1. Of course one could use similar assumptions and introduce uncertainty in b(t) as well. This would lead to an
extra diffusion term of the form σ1bx(1− x) for some constant σ1.

Remark 2. The model, in the absence of uncertainty, has monotone trajectories, i.e. x(t) is an increasing function. For the
simple type of uncertainty we have introduced, we may lose the monotonicity of x(t) in t . However, for small σ0 the model
still presents reasonable results, which may be interpreted as some customers deciding to abandon the product. One may
introduce noise in such away thatmonotonicity is still guaranteed; however, thiswould complicate themodel considerably.
Such an extension is outside the scope of the present paper.

Remark 3. The model remains well defined in the case where uncertainty is absent (σ0 = 0). Then the dynamic
programming approach is still valid, and the variational inequality holds, where of course the operator A is now the first
order operator which is obtained by setting σ0 = 0. The concept of viscosity solutions is still applicable, and similar results
for the value function Φ(s, x) hold with necessary modifications (see e.g. [2] or [3]). Furthermore, results concerning the
time until the optimal stopping of the campaign may be formulated for the deterministic problem (see e.g. [3,12]).

We now assume that the effectiveness of advertising a as well as its total duration, can be controlled through an
advertising campaign for the product. Of course this is done at some cost. Let c(a, t) be the cost of advertising the product for
time t at intensity that guarantees effectiveness a. We shall consider the problem of determination of an optimal advertising
campaign for a product, such that the firm receives the maximum expected profit from the sales of the product but at the
minimum possible cost. Therefore, this problem can be redressed as an optimal stopping and control problem, the solution
of which will provide us with the optimal advertising policy.
Assume that the product starts at time swith sales x(s) = x. The cost functional of the problem, will be of the form

Θ(s, x; t) = J(a)

= E
[
e−r(t−s)f0(x(t))+

∫ t

s
e−r(t−s

′)f1(x(s′))ds′ − e−r(t−s)c(a, t − s) | Fs

]
,

where by Fs = σ(W (u), u ≤ s) we denote the σ -algebra which is generated by the Wiener process. We may consider
this σ -algebra as containing the information about the history of the product up to time s. The term e−r(t−s) is a discount
factor that allows us to compare values obtained at different times. The function f0 is a profit function that gives us the profit
obtained by sales x(t) at time t . The second term, which is expressed as an integral gives us the intertemporal profit from
all the sales of the product within the interval [s, t]. For the sake of simplicity in this paper we consider that f1(x) = 0,
i.e. the firm receives no intertemporal profit but is only interested in the final condition of the sales at time t . However,
our results are easily generalized to the case where f1(x) 6= 0. The functions f0(x) and f1(x)must be increasing functions of
their argument.
Wewill consider separately, the optimal stopping problemand the optimal stopping and control problem, in Sections 2–4

and Section 5 respectively.
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2. The optimal stopping problem and an associated variational inequality

In this section, we assume that the value of a is given, and constant during the period of the campaign and the campaign
manager may only choose the length of the campaign τ − s. From the form of the previous cost functional we see that as
time proceeds and the advertising campaign is still active, the firm derives increasing profit from the increasing sales of the
product. However, at all times shemust take into account the increasing cost of the advertisement campaign. At some point,
the cost of the campaign becomes so large that it is no longer worth pursuing it any more. This is the optimal stopping time
for the campaign. The purpose of this paper is to derive the optimal time when the firm should stop advertising the product
and leave the market.
We now formulate the optimal stopping problem that was described above:

Find a stopping time τ ∗ such that

Φ(s, x) = Θ(s, x; τ ∗) = sup
τ

Θ(s, x; τ)

where the supremum is taken over all stopping times τ (recall that a stopping time is a random time τ such that
{ω, τ ≤ t} ∈ Ft ).
The stopping time τ ∗ will be the optimal stopping time for the advertisement campaign.

This problem will be solved through the formulation of a free boundary value problem.
In the following we assume that the diffusion process Y = (t+ s, x(t)) takes values in the domain V ⊂ R2. Furthermore,

we assume that the optimal value of the cost functional Φ(s, x) is of the form Φ(s, x) = e−rsφ(s, x). Consider also the
generator of the diffusion process Y = (s+ t, x(t)) describing the sales of the product:

A =
∂

∂s
+ {a(1− x)+ bx(1− x)}

∂

∂x
+ σ 20 a

2(1− x)2
∂2

∂x2

and the reduced operator

A = {a(1− x)+ bx(1− x)}
∂

∂x
+ σ 20 a

2(1− x)2
∂2

∂x2
.

The following result is standard in the theory of optimal stopping problems [4].

Proposition 1. Under sufficient regularity conditions, the optimal value of the cost functional φ(s, x) satisfies the differential
inequality

Aφ − rφ = 0 in D = {(s, x) ∈ V , : φ > g}
Aφ − rφ ≤ 0 with φ = g in ∂D. (2.1)

where g(s, x) = f0(x)− c(a, s).
The continuation region D is determined by the solution of the free boundary value problem and the optimal stopping time is the
first time when the sales process x(t) hits the boundary D.

This problem will have to be completed with a final (initial) condition and a boundary condition. The final condition will be
of the form φ(T , x) = f0(x) (we omit the advertisement cost term, since the advertising campaign has had no time to run so
it does not cost anything).
Wehave some freedomconcerning the choice of boundary conditions. One possibility is to assume thatV = [0, 1]×[0, T ]

and that the stopping times over which we allow the selection of the optimal stopping time to be made are τ ≤ TV where
TV is the first exit time of the process Y (t) = (s + t, x(t)) from the region V . That means that we stop the campaign as
soon as the volume of the product which is sold hits either the boundary x = 0 or x = 1. This assumption is a reasonable
modelling assumption, in the sense that when x = 1 the product sales have reached the full market potential and no further
advertisement of the product is needed. On the other hand when x = 0, the product sales have reached 0 and therefore the
company decides to stop all advertising activity concerning the product. In this case, the right boundary conditions would
be non-homogeneous Dirichlet type boundary conditions of the form φ(s, 0) = f0(0) and φ(s, 1) = f0(1).
Another reasonable choice for the boundary condition may be Neumann type boundary conditions at x = 0 and x = 1.

Such types of conditions model the fact that for these limiting situations we will not have a significant change in the profit
by changing our initial position in the market x by a small amount.

Corollary 1. The free boundary value problem of Proposition 1 can be written in the equivalent form

H(s, x, φ,Dsφ,Dxφ,D2xφ) = min
[
rφ −

∂φ

∂s
− Aφ, φ(s, x)− g(s, x)

]
= 0, (2.2)

φ(x, T ) = f0(x), x ∈ [0, 1],

for g(s, x) = f0(x) − c(s), with either non-homogeneous Dirichlet boundary conditions or homogeneous Neumann boundary
conditions.
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Note also that a reasonable choice for the cost function c(s) = c(s; a)would be to assume that it is proportional to the time
s that the campaign has run and to the advertisement effectiveness a, i.e. c ∝ a s.

Remark 4. The above problem is a final value problem, which may be turned into an initial value problem by the use of
the time transformation z = T − s, which will change the sign of the time derivative and of course the function g to
g(z, x) = f0(x)− c(T − z).

Note that the boundary D is unknown and it is completely determined only when the solution φ of the problem is
determined. This is why problems of the above type are called free boundary value problems. Problems of this type are in
general very difficult and do not admit solutions using analytic techniques. It is therefore necessary to address the problem
using numerical methods. This is the aim of the following sections.
Before proceeding to the numerical solutionwe have to address an alternative formulation of the problem, and introduce

a notion of generalized solution for the above free boundary value problem, the viscosity solutions.
Often, the regularity needed for φ(s, x) for Proposition 1 to hold is not obtained. In this case, we need to use weaker

notions of the solution, which are called viscosity solutions.
We recall the definition of viscosity solution for a variational inequality.

Definition 1. Consider the variational inequality

max(Lφ(y)+ f (y), g(y)− φ(y)) = 0, y ∈ D (2.3)
φ(y) = g(y), y ∈ ∂D

where L is a second order parabolic operator, and let φ ∈ C(D̄). Then, we have the following definitions:
(i) φ is a viscosity subsolution of (2.3) if φ(y) = g(y) for y ∈ ∂D holds and for every h ∈ C2(Rk) and every y0 ∈ D such
that h ≥ φ on D and h(y0) = φ(y0)we have

max (Lh(y0)+ f (y0), g(y0)− φ(y0)) ≥ 0.

(ii) φ is a viscosity supersolution of (2.3) if φ(y) = g(y) holds for y ∈ ∂D and for every h ∈ C2(Rk) and every y0 ∈ D such
that h ≤ φ on D and h(y0) = φ(y0)we have

max (Lh(y0)+ f (y0), g(y0)− φ(y0)) ≤ 0.

(iii) φ is a viscosity solution of (2.3) if φ is both a viscosity subsolution and a viscosity supersolution of (2.3).

The solution of the optimal stopping problem is related to the viscosity solution of the variational inequality, through the
following proposition (see e.g. [5]):

Proposition 2. Assume that the value function is a continuous function of s, t. Thenφ(s, x) is a viscosity solution of the variational
inequality.

The continuity of the value function is guaranteed by the following lemma:

Lemma 1. The value functionΦ(s, x) is continuous.

Proof. The continuity of the value function follows by adaptation of general arguments of Krylov [6]. These are sketched
here for the sake of completeness of the paper.
We first need the following estimate: Consider two solutions of Eq. (1.1) one with ‘‘initial condition’’ x(s) = x and one

with initial condition x(s) = y. These will be denoted for ease of notation as x(t) and y(t) respectively. Also, on account
of the possible degeneracy of the equation at x = 0 or x = 1, consider the equation with a perturbed drift and diffusion
coefficient, by a factor of order ε which will remove the singularity. The solution of this equation will be denoted by x(t; ε)
or y(t; ε) where the choice of notation for the process is such as to remind us of the initial condition we started from. We
denote x(t; 0) = x(t).
We will show that these diffusion processes satisfy the estimate

E
[
sup
t≤τ0
e−M t |x(t)− y(t; ε)|p

]
≤ C(|x− y|p + εp) (2.4)

for every p ≥ 0, where τ0 is any stopping time which is smaller that the first exit time of either process from the interval
[0, 1], andM = M(p) > 0 is a positive constant that depends on the data of the problem.
To show estimate (2.4), following [6], apply Itô’s rule on the process e−Mt(|x(t)− y(t, ε)|p+ εp). Taking into account that

x(t) and y(t; ε) satisfy

x(t) = x+
∫ t

s
b(x(r))dr +

∫ t

s
σ(x(r))dW (r),

y(t; ε) = y+
∫ t

s
b(y(r; ε); ε)dr +

∫ t

s
σ(y(r; ε); ε)dW (r),
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respectively we see that

e−Mt(|x(t)− y(t; ε)|p + εp) = |x− y|p + εp +m(t)−M
∫ t

s
e−Mr(|x(r)− y(r; ε)|p + εp)dr

+ p
∫ t

s
e−M r |x(r)− y(r; ε)|p−1(b(x(r))− b(y(r; ε); ε))dr

+
p (p− 1)
2

∫ t

s
e−M r |x(r)− y(r; ε)|p−2|b(x(r))− b(y(r; ε); ε)|2 dr, (2.5)

where m(t) is a local martingale. The drift and diffusion coefficient in the interval [0, 1] satisfy the Lipschitz continuity
conditions

|b(x)− b(y; ε)| ≤ K(|x− y| + ε),
|σ(x)− σ(y; ε)|2 ≤ K(|x− y| + ε).

Substituting these estimates in (2.5) we obtain that

e−M tU(t) ≤ |x− y|p + εp +m(t)+ (−M + C)
∫ t

s
e−M r

′

U(r ′) dr ′,

where U(t) = |x(t) − y(t; ε)|p and C is constant depending on the Lipschitz constants and p. By the Gronwall inequality,
we see that choosingM large the following holds

e−M t (|x(t)− y(t; ε)|p + εp) ≤ |x− y|p + εp +m(t).

Using an inequality of Krylov (see Lemma 7.4 of [7]) we obtain the stated result, i.e estimate (2.4).
We are now in a position to obtain the continuity of the value function. By the definition ofΦ(s, x)we see that

|Φ(s, x)− Φ(s, y)| ≤ sup
τ

E
[∫ t

s
e−r(r

′
−s)
|f1(x(r ′))− f1(y(r ′))|dr ′ + e−r (τ−s) |f (x(τ ))− f (y(τ ))|

]
where in f we have included the cost term. We observe that

E
[∫ τ

s
e−r(r

′
−s)
|f1(x(r ′))− f1(y(r ′))|dr ′

]
≤ e−(r−M)(τ−s)

∫ τ

s
E[e−M(r

′
−s)
|f1(x(r ′))− f1(y(r ′))|dr ′]

whereM is the same as in the estimate above. Now, we use the Lipschitz continuity conditions on f and f1 and the estimate
(2.4) to obtain the stated result. The final time term is treated similarly.
The continuity with respect to time proceeds accordingly. �

3. The expected time until the optimal stopping of the campaign

The previous section provides an interesting stopping rule in terms of the stopping region D, whose boundary can be
parametrized as x∗(t, x), i.e. given that we start at time t with a given volume of sales x, it is optimal to stop when the sales
reach the level x∗. However, an interesting piece of information for the campaign manager would be an estimate of how
long it would take on average for this to happen, that is, an estimate of the expected duration of the campaign. This is of
course dependent on the parameters of the problem.
The theory of diffusion processes may be used to obtain an answer to this question.

Proposition 3. The expected exit time for the process, frompoint x∗, given that it has started at point x at time t, isE[T ] = t+T (x)
where T (x) is the solution to the boundary value problem

1
2
σ 20 a

2(1− x)2
d2T
dx2
+ {a (1− x)+ b x (1− x)}

dT (x)
dx
= −1, (3.1)

T (0) = T (x∗) = 0.

Proof. This can be proved by a direct application of the Feynman–Kac representation (see e.g. [4]). The boundary condition
at 0 reflects that we automatically stop the campaign if the customers of the product have reached the level 0. �

This ODE may be solved analytically by quadrature, as long as x∗ is known to provide an estimate for the expected life of
the campaign. To obtain this solution we define the new function R(x) := dT (x)

dx . In terms of this new function, the equation
is a first order equation, for which an integrating factor may be found. More specifically, it is of the form

dR
dx
+

{
λ1

1
1− x

+ λ2
x
1− x

}
R = λ3

1
(1− x)2
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where

λ1 =
2
σ 20 a

, λ2 =
2b
σ 20 a2

, λ3 = −
2

σ 20 a2
.

Thus we have

R(x) = C1(x− 1)λ1+λ2eλ2x − λ3(x− 1)λ1+λ2eλ2x
∫
(x− 1)−2−λ1−λ2e−λ2xdx,

and by direct integration we obtain

T (x) = −C1(x− 1)1+λ1+λ2
∫
∞

1

e−λ2(1−x)t

t1+λ1+λ2
dt + C2 + G(x), (3.2)

where, G(x) is, in terms of the Gamma function,

G(x) = λ1+λ1+λ22

∫
eλ2x(x− 1)Γ (−1− λ1 − λ2,−λ2(1− x))dx.

Then using the boundary conditions T (0) = T (x∗) = 0 we determine the constants C1, C2 to be

C1(λ1, λ2, x∗) =
(
G(0)− G(x∗)

) (−1)1+λ1+λ2λ1+λ1+λ22

eλ2 [Γ (1+ λ1 + λ2, λ2(1− x∗))− 1]
,

C2(λ1, λ2, x∗) =
(G(0)− G(x∗))Γ (1+ λ1 + λ2, λ2(1− x∗))

Γ (1+ λ1 + λ2, λ2)− Γ (1+ λ1 + λ2, λ2(1− x∗))
− G(x∗).

Therefore for x∗ determined by the solution of problem (2.2) we can have an estimate of the average time until the optimal
stopping of the campaign.

4. Formulation of the numerical method

The free boundary value problem that will provide us with the optimal stopping rule cannot admit an analytic solution,
therefore numerical treatment is necessary. In order to treat this problem numerically we will use a policy iteration-like
method motivated by [8].
Our analysis is valid for both Dirichlet and Neumann boundary conditions. We only present the slightly more complex

case of Neumann boundary conditions; the case of Dirichlet boundary conditions proceeds in a similar fashion.

4.1. A policy iteration scheme

The equations to be solved, in their complete form, can be written as follows

H(s, x, φ,Dsφ,Dxφ,D2xφ) = min
[
rφ −

∂φ

∂s
− α(x)

∂φ

∂x
−
σ 20

2
β2(x)

∂2φ

∂x2
, φ(s, x)− g(s, x)

]
= 0, (4.1)

∂φ

∂x
= 0, at x = 0 and x = 1, s ∈ [0, T ], (4.2)

φ(T , x) = f0(x), x ∈ [0, 1], (4.3)

where α(x) = a(1− x)+ bx(1− x), β(x) = a(1− x). In addition we have that g(s, x; a) = (f0(x)− c(a, s)).
A similar algorithm has been proposed and studied by Pem and Zhang [8] in the context of a model for optimal stock

liquidation. The problem studied by these authors involved a linear diffusion process, with the inclusion of regime switching.
Our analysis is inspired by their work, however, the problem studied here considers the optimal control of a nonlinear
diffusion, which degenerates on the boundary. This leads to a variable coefficient, degenerate variational inequality, a fact
which introduces several complications in the analysis.
Let B denote the space of continuous bounded functions φ(s, x) on [0, T ] × [0, 1], endowed with the usual supremum

norm (i.e. ‖φ‖∞ =: ‖φ‖) and the ball BM = {φ ∈ B | ‖φ‖ ≤ M} for some M > 0, and let h > 0 denote the spatial step
and k > 0 the time step. We consider the following discrete approximations for the derivatives:

∂φ

∂s
' δsφ(s, x) :=

φ(s+ k, x)− φ(s, x)
k

,

∂φ

∂x
' δxφ(s, x) :=

φ(s, x+ h)− φ(s, x)
h

,

∂2φ

∂x2
' δ2xφ(s, x) :=

φ(s, x+ h)− 2φ(s, x)+ φ(s, x− h)
h2

.
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Therefore the corresponding discrete version of Eq. (4.1), is

min
[
rφ(s, x)− δsφ(s, x)− α(x)δxφ(s, x)−

σ 20

2
β2(x)δ2xφ(s, x), φ(s, x)− g(s, x)

]
= 0,

for x ∈ [h, 1− h], or alternatively, including also the equations for the boundary points x = 0, 1,

min
[
φ(s, x)

(
r +

1
k
+
σ 20 β

2(x)
h2

+
α(x)
h

)
− φ(s, x+ h)

(
σ 20 β

2(x)
2h2

+
α(x)
h

)
−
1
k
φ(s+ k, x)− φ(s, x− h)

σ 20 β
2(x)
2h2

, φ(s, x)− g(s, x)
]
= 0, (4.4)

min
[
φ(s, 0)

(
r +

1
k
+
σ 20 β

2(0)
h2

+
α(0)
h

)
− φ(s, h)

(
σ 20 β

2(0)
h2

+
α(0)
h

)
−
1
k
φ(s+ k, 0), φ(s, 0)− g(s, 0)

]
= 0, (4.5)

for x = 0 and

min
[
φ(s, 1)

(
r +

1
k
+
σ 20 β

2(1)
h2

+
α(1)
h

)
− φ(s, 1− h)

(
σ 20 β

2(1)
h2

+
α(1)
h

)
−
1
k
φ(s+ k, 1), φ(s, 1)− g(s, 1)

]
= 0, (4.6)

for x = 1.
Then we can define the mapping S : R+ × R+ × [0, 1] × R×B → R

S(k, h, x, y, φ) = min
[
yh
(
r +

1
k
+
σ 20 β

2(x)
h2

+
α(x)
h

)
−
h
k
φ(s+ k, x)

− φ(s, x+ h)
(
σ 20 β

2(x)
2h

+ α(x)
)
− φ(s, x− h)

σ 20 β
2(x)
2h

, φ(s, x)− g(s, x)
]
= 0, (4.7)

for x ∈ [h, 1− h], while for x = 0, 1, the mapping S has the form of the left hand side of Eqs. (4.5) and (4.6) respectively.
Therefore Eq. (4.4) is equivalent to S(k, h, x, y, φ) = 0, and Eqs. (4.5) and (4.6) are equivalent to S(k, h, 0, y, φ) = 0 and

S(k, h, 1, y, φ) = 0 respectively.
It is also important to note that the scheme S is monotone. Indeed the coefficients of φ in Eq. (4.7) are all negative and

hence S is monotone, i.e. for all φ,ψ ∈ B, k, h ∈ R∗, x ∈ [0, 1], y ∈ Rwe have that the relation φ ≥ ψ implies that

S(k, h, x, y, φ) ≤ S(k, h, x, y, ψ).

The scheme S is said to be consistent if for every x ∈ [0, 1], s ∈ [0, T ] and for every w(·, ·) ∈ C1,2([0, T ] × [0, 1]) we
have

lim
z→x, k→0, h→0, ε→0

S(k, h, z, w(s, z)+ ε,w + ε)
h

= H(t, x, w,Dsw,Dxw,D2xw).

Lemma 2. The scheme S is consistent for w(·, ·) ∈ C1,2([0, T ] × [0, 1]).
Proof. Indeed we have for z ∈ [h, 1− h]

S(k, h, z, w(s, z), w)
h

= min
[
rw(s, z)−

w(s+ k, z)− w(s, z)
k

−
σ 20 β

2(z)
2

w(s, z + h)− 2w(s, z)+ w(s, z − h)
h2

− α(z)
w(s, z + h)− w(s, z)

k
, w(s, z)− g(s, z)

]
= 0.

Also at the point (s, z)we have

lim
s→0

δsw(s, z) = lim
s→0

w(s+ k, z)− w(s, z)
k

= ws(s, z),

lim
z→0

δzw(s, z) = lim
z→0

w(s, z + h)− w(s, z)
h

= wz(s, z),

lim
z→0

δ2zw(s, z) = limz→0
w(s, z + h)− 2w(s, z)+ w(s, z − h)

h2
= wzz(s, z),

forw(·, ·) ∈ C1,2([0, T ] × [0, 1]).

Please cite this article in press as: C.V. Nikolopoulos, A.N. Yannacopoulos, Amodel for optimal stopping in advertisement, Nonlinear Analysis: RealWorld
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Therefore for z → x, k→ 0, h→ 0, ε → 0 we have

S(k, h, z, w(s, z)+ ε,w + ε)
h

→ H(t, x, w,Dsw,Dxw,D2xw),

and it can be easily checked that the same holds for z = 0, 1. �

Note that the scheme S(k, h, z, w(s, z), w) = 0 can be rewritten in the form

w(s, z) = max
[
1
C(z)

(
hw(s+ k, z)

k
+ w(s, z + h)

(
σ 20 β

2(z)
2h

+ α(z)
)

+ w(s, z − h)
σ 20 β

2(z)
2h

)
, g(s, z)

]
, (4.8)

while

w(s, 0) = max
[
1
C(0)

(
hw(s+ k, 0)

k
+ w(s, h)

(
σ 20 β

2(0)
h

+ α(0)
))

, g(s, z)
]
, (4.9)

w(s, 1) = max
[
1
C(1)

(
hw(s+ k, 1)

k
+ w(s, 1− h)

(
σ 20 β

2(1)
h

+ α(1)
))

, g(s, z)
]
, (4.10)

where

C(z) =
1
h

(
rh+

h2

k
+ σ 20 β

2(z)+ hα(z)
)
.

We define the operator Th,k : B → B

Th,kw(s, z) := max
[
1
C(z)

(
hw(s+ k, z)

k
+ w(s, z + h)

(
σ 20 β

2(z)
2h

+ α(z)
)

+ w(s, z − h)
σ 20 β

2(z)
2h

)
, g(s, z)

]
,

where for z = 0, 1, Th,k has the form of the right hand side of Eqs. (4.9) and (4.10) respectively.

Lemma 3. The operator Th,k is a contraction for every k, h > 0.

Proof. Indeed, we have that

Th,kw(s, z)− Th,ku(s, z) = max
[
1
C(z)

(
hw(s+ k, z)

k
+ w(s, z + h)

(
σ 20 β

2(z)
2h

+ α(z)
)

+ w(s, z − h)
σ 20 β

2(z)
2h

)
, g(s, z)

]
− max

[
1
C(z)

(
hu(s+ k, z)

k
+ u(s, z + h)

(
σ 20 β

2(z)
2h

+ α(z)
)

+ u(s, z − h)
σ 20 β

2(z)
2h

)
, g(s, z)

]
.

Thus

|Th,kw(s, z)− Th,ku(s, z)| ≤
1
C(z)

[
h
k
|w(s+ k, z)− u(s+ k, z)|

+

(
σ 20 β

2(z)
2h

+ α(z)
)
|w(s, z + h)− u(s+ h, z)|

+
σ 20 β

2(z)
2h

|w(s, z − h)− u(s− h, z)|
]

≤
1
C(z)

(
h
k
+
σ 20 β

2(z)
h

+ α(z)
)
‖w − u‖,

while the same relation also holds for the boundary points z = 0, 1.
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It is easy to check that for every k, h and z ∈ [0, 1]

1
C(z)

(
h
k
+
σ 20 β

2(z)
h

+ α(z)
)
≤ c < 1,

for some c , and therefore the mapping Th,k is a contraction. �

We also need to show that the scheme is stable i.e. that there exist a bounded solution of the scheme φh ∈ BM to the
equation S(k, h, x, φ(s, x), φ) = 0.

Lemma 4. The scheme S is stable.

Proof. Ifw ∈ BM then ‖Th,kw‖ ≤ M for someM > 0. Indeed, we have

Th,kw(s, z) = max
[
h
k
w(s+ k, z)+ w(s, z + h)

(
σ 20 β

2(z)
2h

+ α(z)
)
+ w(s, z − h)

σ 20 β
2(z)
2h

, g(s, z)
]

and

Th,kw(s, z) ≤
1
C(z)

(
h
k
+
σ 20 β

2(z)
h

+ α(z)
)
×max(‖w‖, g(s, z)).

Thus

‖Th,kw‖ ≤ max(‖w‖, ‖g‖) ≤ M.

In addition the solution of the equation S(k, h, z, w(t, z), w) = 0 is the unique fixed point of the map Th,k due to the
contraction mapping theorem. Thus there is a unique solution φh of the scheme inBM with ‖φh‖ ≤ M . �

In the following we show that the scheme converges to the viscosity solution by applying the same steps as in [8].

Proposition 4. The numerical solution φh converges to the unique viscosity solution of Eqs. (4.1)–(4.3) as k→ 0 and h→ 0.

Proof. We define the function

ψh(s, x) :=
{
φh(s, x), s ∈ [0, T ),
g(s, x) s = T .

and in addition

ψ̄(s, x) := lim sup
y→x, k,h→0

ψh(s, y), ψ(s, x) := lim inf
y→x, k,h→0

ψh(s, y).

We want to prove that ψ̄ is a subsolution, and ψ is a supersolution of problem (4.1)–(4.3). For the function ψ̄ to be
subsolution of the problem it is enough to prove, according to the definition of a subsolution for the problem, that if for
every Ψ ∈ C2(R2) and every (s0, x0) ∈ D such that Ψ ≥ ψ̄ on D and Ψ (s0, x0) = ψ̄(s0, x0)we have

max
[
AΨ (s0, x0)− rψ̄(s0, x0), g(s0, x0)− ψ̄(s0, x0)

]
≥ 0.

This relation is equivalent to

H(s0, x0, ψ̄,DsΨ ,DxΨ ,D2xΨ ) = min
[
rψ̄ −AΨ , ψ̄(s, x)− g(s, x)

]
≤ 0

for every test function Ψ ∈ C1,2([0, T ] × [0, 1]) such that (s0, x0) is a strict local maximum of ψ̄(s, x)− Ψ (s, x).
We assume that we have a function, Ψ ∈ C2(R2) such that ψ̄(s0, x0) = Ψ (s0, x0) and that ψ̄(s, x) − Ψ (s, x) ≤ 0 in the

ball B((s0, x0), R0) for some R0 > 0.
Due to the fact that the scheme S is stable, i.e. that the solution of the scheme φh ∈ BM we may take Ψ so that

Ψ ≥ 2 supk,h ‖φh‖ outside the ball B((s0, x0), R0).
Therefore we can find a sequence kn > 0, hn > 0, (sn, yn) ∈ [0, T ] × [0, 1] such that for n → ∞, kn → 0, hn → 0,

(sn, yn)→ (s0, x0), and ψh(sn, yn)→ ψ̄(s0, y0) by the definition of ψ̄ .
In addition, the point (sn, yn) is a global maximum point of ψh − Ψ , by the definition of ψ̄ and the relations ψ̄(s, x) −

Ψ (s, x) ≤ 0 in B((s0, x0), R0) and Ψ ≥ 2 supk,h ‖φh‖ outside B((s0, x0), R0).
Thus for δn = ψh(sn, yn)− Ψ (sn, yn)we have δn → 0 and ψh(s, y) = Ψ (s, y)+ δn for every (s, x) ∈ [0, T ] × [0, 1].
Then by the monotonicity of S and the fact that Ψ (sn, yn)+ δn ≥ ψh(s, y)we have

S(kn, hn, yn,Ψ (sn, yn)+ δn,Ψ + δn) ≤ S(kn, hn, yn, ψh(s, y), ψh) = 0,

and that

lim
n→∞

S (kn, hn, yn,Ψ (sn, yn)+ δn,Ψ + δn)
hn

≤ 0.

Please cite this article in press as: C.V. Nikolopoulos, A.N. Yannacopoulos, Amodel for optimal stopping in advertisement, Nonlinear Analysis: RealWorld
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Fig. 1. The free boundary, x∗(s), plotted against time, arising by the numerical solution of problem (4.1)–(4.3) forMh = 81, h = 0.0125, k = 7.8× 10−5 ,
and accuracy ε = 10−6 .

Thus finally we have

H(s0, x0, ψ̄,DsΨ ,DxΨ ,D2xΨ ) = lim
y→x0,kn,δ,h→0

S(k, h, y,Ψ (sn, yn)+ δ,Ψ + δ)
h

≤ 0,

and therefore that ψ̄ is a viscosity subsolution.
Similarly we can deduce that ψ is a viscosity supersolution. By the uniqueness of the viscosity solution, we have that

ψ̄ = ψ = ψ and limh,k→0 φh → φ. �

4.2. Numerical simulations

We will demonstrate the numerical solution of the problem by choosing an arbitrary example. The numerical solution
is obtained by applying the iteration scheme (4.7) for Dirichlet boundary conditions (φ(s, 0) = 0, φ(s, 1) = f0(1)). For the
simulations shown in this section we assume that c(a, s) = c0(T − s), where the dependence of c0 on a, which is taken to
be a constant, is assumed to be absorbed in the constant c0 and that f0 has a simple linear form f0 = γ x, for γ constant. Note
that different forms of the functions c(a, s) and f0(x) can also be considered.
For the discretization we consider a partition of [0, T ] × [0, 1] consisting of points (sn xj, ), sn = nk, with n = 1, . . . ,Nh,

kNh = T and xj = (j− 1)h, j = 1, . . . ,Mh, h(Mh− 1) = 1 where h is the spatial step and k the time step. The iteration starts
with initial value of φ1h = 1 for each point (sn xj, ) of the partition, and it is stopped when ‖φ

n−1
h − φnh‖ ≤ ε for ε being the

accuracy we require.
The values of the parameters used are σ0 = 0.5, r = 0.1, a = 1, b = 1, T = 2, γ = 0.9, and c0 = 0.4. For the accuracy

we take ε = 10−6.
In Fig. 1 we plot the free boundary x∗(s) by solving the problem using the iteration method of Eq. (4.7). The optimal

stopping time for the campaign will be the first (random) time that a path of the process x(t), starting at x at time s (jagged
line in Fig. 1) hits the free boundary x∗ (smooth line in Fig. 1). Note that due to the linear form of the functions f0 and c(s)
we have also a linear form in the graph of the free boundary x∗(s).
We can have also a different choice of the cost function, e.g. c(s) = c0(T − s)m, 0 < m < 1 expressing the fact that

adverting a product for a longer time one is able to achieve better prices and thus lower cost. Note also that an alternative
choice would be c(s) = c0 ln(T − s), etc. and that similar forms of dependence can be taken also for the function f0. The
nonlinearity in the cost function has an effect on the form of the free boundary. In Fig. 2 we plot the free boundary x∗(s) by
taking c(s) = c0(T − s)m, form = 0.7.
Note that if instead of the nonhomogeneous Dirichlet Boundary conditions we pose Neumann boundary conditions at

the points x = 0 and x = 1, numerical simulations indicate that the form of the free boundary x∗(s) changes very little, if
at all. This is an interesting observation, since the change of boundary conditions implies different modelling assumptions
concerning the campaign policy and may be interpreted as some form of robustness of our results with respect to changes
in the model.
In addition, the expected time until the optimal stopping of the campaign, as this is determined by Eq. (3.1) can by

estimated by the use of the solution (3.2). This is done and the results are demonstrated for various times in Fig. 3. The
values used for this simulation are T = 2,m = 0.9, r = 0.1, c0 = 0.4, a = b = 1,Mh = 81.
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Fig. 2. The free boundary, x∗(s), plotted against time, arising by the numerical solution of problem (4.1)–(4.3) for c(s) = c0(T − s)m , m = 0.7, c0 = 0.4,
Mh = 81, h = 0.0125, k = 7.8125× 10−5 , and accuracy ε = 10−6 .

Fig. 3. Plot of the average time until stopping time, T (x) for different values of x∗ = x∗(s), s = 0.782, 0.3907, 0.7813, 1.5626. Also c(s) = c0(T − s)m ,
m = 0.9, c0 = 0.4,Mh = 81, h = 0.0125, k = 7.8125 · 10−5 , and accuracy 10−6 .

5. A combined optimal stopping and control problem: Optimization of the advertisement effectiveness a

In the previous model, we have focused on choosing the optimal time for stopping the advertising campaign while
keeping the advertising effectiveness parameter a at a steady state. This model gave us a feeling for how the campaign
effectiveness parameter a affects the decision of when to stop the campaign.
We now move to the next level of complication, where we allow the campaign manager to change the advertising

effectiveness parameter a, for example by increasing the intensity of advertising, i.e. we allow a to be a control variable.
Therefore, now the campaign manager has the discretion to stop the campaign whenever she thinks it is optimal to do so,
but while the campaign is running she is also free to change the effectiveness parameter in an optimal way. This turns the
problem into a combined optimal stopping and control problem.
The cost functional now depends explicitly on the advertising policy a, i.e.

Θ(s, x; t, a) = J(a) = E
[(
e−r(t−s)f0(x(t))−

∫ t

s
e−r(t−s

′)c(a(s′), s′)ds′
)
| Fs

]
,

Note, that in this problem we have introduced the cost of the advertisement campaign as an intertemporal term. This is a
reasonable modelling assumption, since we now allow the effectiveness of the campaign to be a control variable, so that it
is changing in time in an optimal way. Therefore, it does not make sense any longer to evaluate the cost of the campaign as
a terminal term, and the correct cost evaluation must be made as an intertemporal term.

Please cite this article in press as: C.V. Nikolopoulos, A.N. Yannacopoulos, Amodel for optimal stopping in advertisement, Nonlinear Analysis: RealWorld
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The problem now becomes:

Find a stopping time τ ∗ and an advertising policy a∗ ∈ U such that

Φ(s, x) = Θ(s, x; τ ∗, a∗) = supτ ,aΘ(s, x; τ , a ∈ U)

where the supremum is taken over all stopping times τ and all acceptable advertising policies a ∈ U . Of course the
controlled process x(t) is subject to the Bass model dynamics, i.e. it follows the stochastic differential equation (1.1).

The following proposition, relates the solution of this combined optimal stopping and control problem to the solution of
a variational inequality [9].

Proposition 5. The value of the optimal cost functional φ(s, x) is the solution of the variational inequality

max
[
sup
a∈U

(
AaΦ(s, x)− c(s, a)

)
, g − Φ(s, x)

]
= 0

whereAa is the generator of the diffusion process determined by (1.1) and g(x) = f0(x).

The operatorAa has the form

Aa := A =
∂

∂s
+ {a(1− x)+ bx(1− x)}

∂

∂x
+
σ 20

2
a2(1− x)2

∂2

∂x2
.

Thus forΦ(s, x) = e−r(t−s)φ(s, x) the variational inequality becomes

max
[
sup
a∈U

(
Aaφ(s, x)− rφ(s, x)− c(s, a)

)
, g − φ(s, x)

]
= 0. (5.1)

In the following, as a preliminary approach, we can consider U = [a1, a2] as a closed interval expressing the range of
acceptable advertising policies.

5.1. Numerical formulation

As an initial approach to solve problem (5.1) we will apply a simple discretization of the problem resulting in a finite
difference scheme similar to that for problem (4.1)–(4.3). Such a scheme can be considered as a generalization of standard
explicit finite difference schemes applied to optimal stopping problems (see [10]). More specificallywe have inD = {(s, x) ∈
V , : φ > g},

max
[
sup
a∈U

(
Aaφ(s, x)− rφ(s, x)− c(a, s)

)
, g − φ(s, x)

]
= 0,

with φ = g in ∂D,

or, given that U = [a1, a2], a1 > 0 is the interval of acceptable advertising policies we have

max
[
max
a∈[a1,a2]

(
φs(s, x)+ α(x; a)φx(s, x)+

σ 20

2
β2(x; a)φxx(s, x)− rφ(x, s)− c(a, s),

)
g(s, x)− φ(s, x)

]
= 0,

φ(s, 0) = 0, at x = 0, φ(s, 1) = f0(1), at x = 1,
φ(T , x) = f0(x), x ∈ [0, 1].

Therefore, applying a discretization in the interval [a1, a2], by taking the values ai, ai = (i − 1)δa + a1, i = 1, . . . , Ih,
aIh = a2, we derive an explicit finite difference scheme, for this problem

φnj = max

[
max
ai

(
φn+1j + kα(xj; ai)

φn+1j+1 − φ
n+1
j−1

2h
+
σ 20

2
β2(xj; ai)

φn+1j+1 − 2φ
n+1
j + φn+1j−1

h2

− rφn+1j − c(sn+1, ai)

)
, g(sn+1, xj)

]
, (5.2)

at the points (sn , xj), with sn = nk, n = 1, . . . ,Nh, kNh = T , xj = (j− 1)h, j = 1, . . . ,Mh and i = 1, . . . , Ih.
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Fig. 4. The free boundary, x∗(s), by the solution of the problem (5.1), plotted against time, for δa = 0.005,Mh = 81, h = 0.0125, k = 7.8× 10−5 .

Fig. 5. Profile of the optimized value, a∗ = a∗(x, s), taken by the solution of the problem (5.1), against space, for various times. Here a ∈ [a1, a2] with
a1 = .1, a2 = 2 forMh = 81, h = .0125, k = 7.8× 10−5 .

5.2. Numerical simulation

The numerical solution of the problem can be obtained by applying the finite difference scheme (5.2). We assume that
the cost function depends linearly on the advertising policy a. More specifically we take c(s; a) = c0 a (T − s)m, and that
f0(x) = γ x for some constantsm and γ .
In Fig. 4 we plot the free boundary x∗(s) by solving numerically the problem (5.1). The values taken for this simulation

are T = 1, σ0 = 0.5, r = 0.05, b = 0.5, c0 = 0.1,m = 0.9, γ = 0.5. Also the set U is taken to be U = [a1, a2], for a1 = 0.1
and a2 = 3.2.
Note that the process of optimizing the value of a (the effectiveness of advertising) results in a shift of the free boundary

to the right. Varying a in an optimal way means that the ability to lower a, and thus lowering the cost of the campaign,
allows for the product to be advertised longer to obtain more profit.
The form of the optimized value of the parameter a∗ = a∗(x, s) can be seen in Fig. 5 where the form of a∗ is plotted

against x for various times. The parameter values here are the same as for Fig. 4, but with U = [a1, a2], for a1 = 0.1 and
a2 = 2.
We refrain from presenting a detailed analysis for the combined optimal stopping and optimal control problem, as it

proceeds along similar lines as the optimal stopping problem.

Please cite this article in press as: C.V. Nikolopoulos, A.N. Yannacopoulos, Amodel for optimal stopping in advertisement, Nonlinear Analysis: RealWorld
Applications (2009), doi:10.1016/j.nonrwa.2009.02.012



ARTICLE  IN  PRESS
14 C.V. Nikolopoulos, A.N. Yannacopoulos / Nonlinear Analysis: Real World Applications ( ) –

6. Conclusions

In this work we have derived a model for the determination of the optimal stopping time in the advertisement of a
new product. A relevant free boundary problem, which attains a viscosity solution, is derived and an iteration algorithm
is proposed for the solution of the free boundary problem. This numerical scheme is analyzed regarding its consistency,
stability and convergence. In addition, the average time until the optimal stopping of the campaign is estimated. Finally the
behavior of the model with respect to the various parameters is illustrated through the use of numerical experiments.
Furthermore, a combined optimal stopping and control problem for the optimization of the advertising effectiveness is

also presented and solved numerically.
The parameters of the Bass model may be estimated using standard statistical tests from data readily available in the

market. Such statistical estimates will provide the campaignmanager with an idea of the effectiveness of the advertisement
a and the peer pressure parameter b. The estimation of the cost of the campaign c(a, t) is straightforward as well as the
profit function related to the sales of the product. The noise parameter σ0 can be related either to the errors involved in
the statistical estimation of the parameter a, which is readily available from the design of the statistical test, or intrinsic
uncertainty involved in the effectiveness of the campaign which can be modelled as noise and whose amplitude can be
estimated by expert opinion. Its introduction, therefore, makes the model more robust and allows it to model reality more
closely. When these parameters are estimated, the variational inequality and the approximation of the free boundary can
offer the campaign manager an easy way to decide when the campaign should terminate. The stopping criterion is very
simple: Given the exact shape of the free boundary all themanager has to do is to observewhen the sales reach the boundary
and then is the optimal time to terminate the campaign. The proposed numerical method can produce easy and fast results
for the free boundary for different parameter ranges. Therefore, our approach offers the campaign manager an easy to use
and effective decision tool, uponwhich different market scenarios can be generated and evaluated, and used to sharpen and
enforce the practitioners’ intuition and experience concerning the market and the effect that different mechanisms have on
the evolution of the process. Of course, we should always bear in mind that the present model, as any model, is an idealized
version of reality and at best can offer benchmarks concerning the situation.
It is also interesting, and a subject of future work, to examine the expansion of the model by including more general

models for the random perturbations of the model parameters such as, for instance (see [11]), jump diffusion models.
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