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Abstract. In this work we study a non-local hyperbolic equation of the form

utt = uxx + λ
1

(1− u)2
(
1 + α

∫ 1

0
1

1−udx
)2 ,

with homogeneous Dirichlet boundary conditions and appropriate initial conditions. The
problem models an idealised electrostatically actuated MEMS (Micro-Electro-Mechanical
System) device. Initially we present the derivation of the model. Then we prove local
existence of solutions for λ > 0 and global existence for 0 < λ < λ∗− for some positive λ∗−,
with zero initial conditions; similar results are obtained for other initial data. For larger
values of the parameter λ, i.e. when λ > λ∗+ for some constant λ∗+ ≥ λ∗−, and with zero
initial conditions, it is proved that the solution of the problem quenches in finite time;
again similar results are obtained for other initial data. Finally the problem is solved
numerically with a finite difference scheme. Various simulations of the solution of the
problem are presented, illustrating the relevant theoretical results.

1. Introduction

The aim is to study the problem

utt = uxx +
λ

(1− u)2
(
1 + α

∫ 1

0
1

1−u
dx

)2 , 0 < x < 1, t > 0, (1.1a)

u(0, t) = 0, u(1, t) = 0, t > 0, (1.1b)

u(x, 0) = u0(x), ut(x, 0) = v0(x), 0 < x < 1 , (1.1c)

in the case where λ, α are positive parameters. When α = 0 problem (1.1) reduces to the
local hyperbolic problem

utt = uxx + λ/(1− u)2, 0 < x < 1, t > 0, (1.2a)

u(0, t) = 0, u(1, t) = 0, t > 0, (1.2b)

u(x, 0) = u0(x), ut(x, 0) = v0(x), 0 < x < 1 , (1.2c)

which has been studied in [3, 4, 14, 22]. For α > 0 we obtain a non-local hyperbolic problem
which, to our knowledge, has not been previously studied.

The equation describes the operation of an idealised electrostatically actuated MEMS
(Micro-Electro-Mechanical System) device, which consists of a membrane and a rigid plate
placed in a parallel position, and connected in series with a capacitor. The membrane is
taken to be rectangular with two fixed parallel sides, while the other sides are free. A
potential difference applied between the membrane and the plate causes the membrane to
be deformed.
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The deformation u satisfies equation (1.1a) assuming that dissipation, which might result
from either an electric current flowing through a resistance or viscous effects on the moving
membrane, can be neglected. The parameter α represents the ratio of a reference capac-
itance to the fixed capacitance, in particular, the reference will be the capacitance of the
device when its displacement vanishes, while λ is a control parameter proportional to the
square of the applied voltage. A deformation of u = 1 at some point (x, t), represents the
membrane having been moved so that it touches the plate (the zero-potential equilibrium
separation is 1, in dimensionless variables).

More specifically in the derivation of the model, [9, 24], it is possible to consider a
dissipative, ut, term which can possibly dominate the acceleration, utt, term. In this case
the version of equation (1.1a) is parabolic:

ut = uxx +
λ

(1− u)2
(
1 + α

∫ 1

0
1

1−u
dx

)2 , 0 < x < 1, t > 0 , (1.3a)

u(0, t) = 0, u(1, t) = 0, t > 0, (1.3b)

u(x, 0) = u0(x), 0 < x < 1 . (1.3c)

This problem has been extensively studied ([15, 16, 20, 24, 25], etc.), although there are
still a number of open questions.

Including both the dissipative and inertial terms we would get equation (1.1a) but with
an additional term εut, for some constant ε, on the left-hand side. For ε small, i.e. negligible
dissipation, equation (1.1a) is obtained as an approximation of the model.

Note that for the non-local problem (1.1) there are no results regarding the behaviour
of the solution. However, there are some results for the local version of the problem in [3],
for the one-dimensional case, and in [27] for the two- and three-dimensional cases.

The local parabolic problem

ut = ∆u + λf(x)/(1− u)2, x ∈ Ω, t > 0, (1.4a)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (1.4b)

u(x, 0) = u0(x), x ∈ Ω, (1.4c)

where Ω is a smooth domain of RN , N ≥ 1, also describes the operation of a MEMS
device for a simpler regime. Here the positive parameter λ is again proportional to the
square of a fixed applied voltage, while f(x) represents spatial variation of the electrical
permittivity of the elastic membrane; by the physics of the problem, f is a non-negative
function. A dielectric profile which is often encountered in applications is f(x) = |x|p,
p > 0. For such a case, there exists a critical value of λ, λ∗, [12, 21], usually called pull-in
voltage in MEMS literature, such that the steady-state problem corresponding to (1.4)
has no solution for λ > λ∗. Moreover, for such values of λ, the solution u(x, t) of (1.4)
“quenches” in finite time, i.e. minx{1 − u(x, t)} → 0 as t → T− < ∞, see [13, 17, 21].
The quenching behaviour physically corresponds to the phenomenon of “touch-down”, i.e.
the elastic membrane touches the rigid plate. For a thorough study of the structure of the
solutions of the steady-state problem corresponding to (1.4), see [7, 12, 21], while for a
further study of (1.4) see [18, 19].

Regarding problem (1.3), it has also been proved that quenching occurs for large enough
values of the parameter λ, [15, 20], as well as for big enough initial datum u0(x), see [16].
Furthermore, some estimates of the pull-in voltage λ∗ as well as the study of the stability,
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through the Morse index, of the steady states of (1.3) for higher dimensions are presented
in [16]. Note that finite time of existence has been more frequently studied for blow-up in
equations such as ut = uxx + λf(u)/(

∫
f(u) dx)p, where now ||u||∞ → ∞ as t → T < ∞;

such equations can model Ohmic heating or shear-band formation, see for example [1] and
[2].

The present paper is organized as follows. In Section 2 we present the derivation of the
model. The local existence of (1.1) is studied in Section 3. The corresponding steady-state
problem is studied in Section 4, while global existence of (1.1) is established for small
enough values of the parameter λ in Section 5. Section 6 is devoted to the study of the
quenching of solutions of problem (1.1). More precisely, quenching of solution u(x, t) is
proved for a large enough value of the parameter λ first in the case of zero initial data, and
second for non-zero data. Finally in Section 7 a numerical solution of the problem is given
via a finite difference (two-step Crank-Nicolson) scheme and some simulations illustrating
the theoretical results of this work are presented.

The study of the local behaviour near quenching will be investigated in a subsequent
paper, using a self-similar approach as has been done for the blow-up behaviour of standard
semilinear wave equations, see [5, 6, 10].

2. Derivation of the Model

We consider an idealised electrostatically actuated MEMS device. It consists of a mem-
brane and a rigid plate which are placed parallel to each other. The membrane has two
parallel sides fixed, while the other sides are free. For simplicity we only look at the
homogeneous case, f ≡ 1.

A potential difference, not a-priori known, is applied between the top surface (the mem-
brane) and the rigid plate. Both membrane and plate have width w and length L, and
in the undeformed state (for the membrane) the distance between the membrane and the
plate is l.

We assume here that the gap between the plate and membrane, typically of order l, is
small, l ¿ L and l ¿ w, and is occupied by some inviscid material with dielectric constant
one, so permittivity is that of free space, ε0.

Taking the potential difference across the device to be V , and assuming that the plate
is earthed, the small aspect ratio of the gap gives potential, φ, to leading order,

φ = V (l − z′)/(l − u′) (2.1)

where u′ is the displacement of the membrane towards the plate (u′ = l corresponds to
touch-down) and z′ is the distance measured from the undisturbed membrane position to-
wards the plate. The electrostatic force per unit area on the membrane (in the z′ direction)
is then

1
2
× surface charge density× electic field = 1

2
ε0φ

2
z′ = 1

2
ε0V

2/(l − u′)2 .

Taking the sides of length w, say x′ = 0 and x′ = L, to be fixed, with those of length L, say
y′ = 0 and y′ = w, to be free, there to be no variation in the y′ direction, so u′ = u′(x′, z′, t′)
for time t′, the surface density of the membrane to be ρ, and there to be a constant surface
tension Tm in the membrane, its displacement satisfies the forced wave equation

ρu′t′t′ = Tmu′x′x′ +
1

2
ε0V

2/(l − u′)2 . (2.2)
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The boundary conditions
u′(0, t′) = u′(L, t′) = 0 (2.3)

also hold.
Partially scaling variables, u′ = lu, x′ = Lx, t′ = L

√
ρ/Tm t, these become

utt = uxx + (ε0V
2L2/Tml2)/(1− u)2 , (2.4)

and
u(0, t) = u(1, t) = 0 . (2.5)

Now we suppose that the MEMS device, which will have a capacitance C depending on
displacement, is connected in series with a capacitor of fixed capacitance Cf and a source

of fixed voltage Vs. Then Vs = Q
Cc

= Q
(

1
C

+ 1
Cf

)
, where Q is the charge on the device and

fixed capacitor, and Cc the series capacitance of the two. Thus the potential difference, V ,
across the MEMS device will be

V =
Vs

1 + C/Cf

. (2.6)

In addition

Q = ε0

∫ w

0

∫ L

0

φz′(x, y, 0) dx′ dy′ = V
wLε0

l

∫ 1

0

1

1− u
dx ,

using (2.1),

so C = C0

∫ 1

0

1

1− u
dx ,

where C0 = wLε0/l is the capacitance of the undeflected device.
Substituting this into (2.6) and the result into (2.4) leads to

utt = uxx + λ
1

(1− u)2
(
1 + α

∫ 1

0
1

1−u
dx

)2 , (2.7)

with λ = ε0V
2
s L2/Tml2 and α = wLε0/lCf . Conditions (2.5) continue to apply.

Cases of interest often have vanishing initial conditions,

u(x, 0) = ut(x, 0) = 0 ,

but we shall also look at cases with more general conditions u0(x), v0(x).

3. Local Existence of Solutions

In this section we establish local existence of the solution of problem

utt = uxx + λ
1

(1− u)2
(
1 + α

∫ 1

0
1

1−u
dx

)2 , 0 < x < 1, t > 0 (3.1a)

u(0, t) = 0, u(1, t) = 0, t > 0, (3.1b)

u(x, 0) = u0(x), ut(x, 0) = v0(x), 0 < x < 1. (3.1c)

where u0, v0 ∈ C1
(
(0, 1)

)
and u0(0) = u0(1) = 0, by modifying appropriately the proof

given for the local problem in [3], see also [11].

Definition 3.1. We say that u is a weak solution of (3.1) in QT ≡ (0, 1)× (0, T ) if:
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• (i) u is continuous in Q̄T and satisfies the initial and boundary conditions.

• (ii) There exists some δ > 0 such that |u| ≤ 1− δ in Q̄T .

• (iii) u has weak derivatives ux, ut in Q̄T and for all t ∈ (0, T ), ux, ut ∈ L2
(
(0, 1)

)
.

• (iv) For any function ζ(x, t) ∈ C2(Q̄T ) satisfying the boundary conditions and for
0 ≤ t ≤ T ,

∫ 1

0

ζ(x, t)ut(x, t) dx =

∫ t

0

∫ 1

0

[ζτ (x, τ)uτ (x, τ)− ζx(x, τ)ux(x, τ)] dx dτ

+ λ

∫ t

0

∫ 1

0

ζ(x, τ) dx dτ

(1− u(x, τ))2
(
1 + α

∫ 1

0
1

1−u(y,τ)
dy

)2 . (3.2)

• (v) The total energy associated with (3.1) is preserved (see also Section 5), i.e.

ET (t) =
1

2

∫ 1

0

(u2
x + u2

t ) dx +
λ

α

1(
1 + α

∫ 1

0
1

1−u
dx

) = ET (0) := E0. (3.3)

We consider a fixed δ ∈ (0, 1) and assume that the initial data satisfy the condition

||u0||∞ + T ||v0||∞ < 1− 2δ (3.4)

for a positive T. Define the odd periodic (with period two) extensions with respect to x on
R× [0, T ] of u, u0, v0 which are denoted, without any confusion, again as u, u0, v0.

We also define the function Gp : R× [0, +∞)× (−1, 1) → R, as

Gp(x, t, u) =

{
F (u), x ∈ [2n, 2n + 1),

F (−u), x ∈ [2n− 1, 2n),
(3.5)

for n = 0,±1,±2, . . ., where

F (u) =
1

(1− u)2
(
1 + α

∫ 1

0
1

1−u
dx

)2 .

Then by standard arguments applied to wave equations, we have that u is a solution of
(3.1) if and only if u solves in R× [0, T ] the integral equation

u(x, t) = u1(x, t) +
λ

2

∫ t

0

∫ x+t+τ

x−t+τ

Gp(y, τ, u(y, τ)) dy dτ, (3.6)

where

u1(x, t) =
1

2
[u0(x + t) + u0(x− t)] +

1

2

∫ x+t

x−t

v0(z) dz.

Note that (3.4) implies that

||u1||T = sup
t∈[0,T ]

||u1(t)||∞ < 1− 2δ. (3.7)

Let BT be the Banach space of continuous odd periodic (with period two) functions with
respect to x, defined in R× [0, T ], vanishing on x = n, n ∈ Z, with the norm ||(·)||T . Also
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let B̄(u1, δ) be the closed ball of radius δ centred on u1 in BT . Consider the operator

T [u(x, t)] = u1(x, t) +
λ

2

∫ t

0

∫ x+t+τ

x−t+τ

Gp(y, τ, u(y, τ)) dy dτ,

which, due to the definition of the function Gp, is well-defined.
In order to show that (3.1), or equivalently (3.6), has a local-in-time solution, it is enough

to show that the operator T is a contraction from B̄(u1, δ) to B̄(u1, δ). (Note that u1 ∈ BT .)
In particular, we have to show that∥∥T u− u1

∥∥
T

< δ ,
∥∥T u− T v

∥∥
T

< K
∥∥u− v

∥∥
T

,

for u, v ∈ B̄(u1, δ) and 0 < K < 1.

In the following, for convenience, we write f(u) := 1
1−u

and I(u) :=
∫ 1

0
f(u)dx, hence

F (u) := f2(u)
[1+αI(u)]2

. Then we have

∥∥T v(x, t)− T u(x, t)
∥∥

T
=

λ

2

∥∥∥
∫ t

0

∫ x+t+τ

x−t+τ

[Gp(y, τ, v(y, τ))−Gp(y, τ, u(y, τ))] dy dτ
∥∥∥

T
,

where for x− t + τ > 0

[Gp(y, τ, v(y, τ))−Gp(y, τ, u(y, τ))] =
f 2(v)

[1 + αI(v)]2
− f 2(u)

[1 + αI(u)]2

= f 2(v)

(
1

[1 + αI(v)]2
− 1

[1 + αI(u)]2

)
+

1

[1 + αI(u)]2
(
f 2(v)− f 2(u)

)
.

Note that f 2(v)− f 2(u) = (f(v) + f(u))(f(u)− f(v)) and ‖f(u)− f(v)‖T

≤ |f ′(1−δ)| ‖u−v‖T , by taking into account (3.7) and the fact that f is a convex function.
Moreover we have

1

[1 + αI(v)]2
− 1

[1 + αI(u)]2
=

[1 + αI(u)]2 − [1 + αI(v)]2

[1 + αI(v)]2 [1 + αI(v)]2

< α[2 + α(I(u) + I(v))][I(u)− I(v)] .

since I(u), I(v) > 0. Using again (3.7) and the fact that f is an increasing and convex
function we derive ‖I(u) − I(v)‖T ≤ f ′(1 − δ)‖u − v‖T and ‖2 + α(I(u) + I(v))‖T ≤
2[1 + αf(1− δ)]. Thus finally∣∣Gp(y, τ, v(y, τ))−Gp(y, τ, u(y, τ))

∣∣ ≤ 2 αf 2(1− δ)f ′(1− δ)[1 + αf(1− δ)]
∥∥u− v

∥∥
T

+2f(1− δ)f ′(1− δ)
∥∥u− v

∥∥
T
,

or
∣∣Gp(y, τ, v(y, τ))−Gp(y, τ, u(y, τ))

∣∣ ≤ C(f, δ)‖u− v‖T ,

for C(f, δ) = 2αf 2(1− δ)f ′(1− δ)[1 + αf(1− δ)] + 2f(1− δ)f ′(1− δ). The same final
estimate also holds when x− t + τ < 0.

Therefore
∥∥T v(x, t)− T u(x, t)

∥∥
T

=
λ

2

∥∥
∫ t

0

∫ x+t+τ

x−t+τ

[
Gp(y, τ, v(y, τ))−Gp(y, τ, u(y, τ))

)]
dydτ

∥∥
T

≤ λ

2
t2C(f, δ)‖u− v‖T ≤ λ

2
σ2C(f, δ)

∥∥u− v
∥∥

T
, (3.8)

for 0 ≤ t ≤ σ. Note that K = λ
2
σ2C(f, δ) < 1 if σ <

√
2
λ

1√
C(f,δ)

.
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It remains to show that ‖T u− u1‖T < δ. We have again for x− t + τ > 0,

‖T u(x, t)− u1‖T =
λ

2

∥∥∥
∫ t

0

∫ x+t+τ

x−t+τ

Gp(y, τ, u(y, τ))dy dτ
∥∥∥

T

≤
∥∥∥λ

2

∫ t

0

∫ x+t+τ

x−t+τ

f 2(u)

[1 + αI(u)]2
dy dτ

∥∥∥
T

≤ λ

2
f 2(1− δ)

∥∥∥
∫ t

0

∫ x+t+τ

x−t+τ

dydτ
∥∥∥

T

≤ λ

2
t2f 2(1− δ) ≤ λ

2
σ2f 2(1− δ).

Since the same final estimate is obtained for x − t + τ < 0 (when the first inequality in
(3.8) becomes strict), we end up with ‖T u(x, t) − u1‖T ≤ δ as long as λ

2
σ2f 2(1 − δ) ≤ δ,

i.e. if σ ≤
√

2
λ

√
δ

f2(1−δ)
.

Thus finally, if we choose σ such that

σ < min

{
T,

√
2

λ

(
δ

f 2(1− δ)

) 1
2

,

√
2

λ

(
1

C(f, δ)

) 1
2

}
,

we conclude that the operator T : B(u1, δ) → B(u1, δ) is a contraction and hence the
Banach fixed point theorem guarantees the existence of a unique fixed point for T .

We have thus established local existence of solution of problem (1.1) in an interval [0, σ].
In particular:

Theorem 3.2. If the initial data u0(x), v0(x) ∈ C1((0, 1)) satisfy condition (3.4), then, for
any λ > 0, problem (3.1) has a unique weak C1−solution on QT = (0, 1) × [0, T ] if T is
sufficiently small.

Remark 3.3. By the proof of the above theorem we also obtain that the solution u to (3.1)
is piecewise C2 in QT . Furthermore, the solution of (3.1) could be extended to any interval
of the form [0, T + τ ] for τ sufficiently small and positive as long as |u| < 1 on Q̄T .

Remark 3.4. In the case of zero initial datum we could obtain, by differentiating relation
(3.6), that u(x, t) is a regular solution to (3.1) except on the point set

{(x, t) ∈ R× [0, T ]|x, x− t, x + t are integers},
see also [3].

Definition 3.5. The solution u(x, t) of problem (1.1) quenches at point x∗ ∈ (0, 1) in
finite time 0 < T < ∞ if there exist sequences {xn}∞n=1 ∈ (0, 1) and {tn}∞n=1 ∈ (0,∞) with
xn → x∗, tn → T− and u(xn, tn) → 1− as n → ∞. In the case where T = ∞ we say that
u(x, t) quenches in infinite time at x∗.

By Remark 3.3 we conclude that the solution u(x, t) to problem (1.1) ceases to exist
only by quenching. In MEMS terminology quenching is usually called touch-down since
it describes the phenomenon when the elastic membrane touches the rigid plate on the
bottom of the MEMS device. In the physical problem this is usually followed by destruction
of the MEMS device. The study of the quenching phenomenon is also important from
mathematical point of view, because when it occurs there is singular behaviour of u(x, t).
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4. The Steady State

The steady-state problem corresponding to (3.1) is

w′′ +
λ

(1− w)2
(
1 + α

∫ 1

0
1

1−w
dx

)2 = 0 , 0 < x < 1 ; w(0) = 0 , w(1) = 0 . (4.1)

If we set W = 1− w then (4.1) becomes

W ′′ = µ/W 2 , 0 < x < 1 ; W (0) = 1 , W (1) = 1 , (4.2)

where

µ = λ

/(
1 + α

∫ 1

0

1

W
dx

)2

. (4.3)

Then multiplying both sides by W ′ and integrating from m = min{W (x), x ∈ [0, 1]} =
W (1/2) to W we derive

∫ W ′

0

W ′dW ′ =
∫ x

1
2

W ′′W ′dx = µ

∫ x

1
2

W ′

W 2
dx = µ

∫ W

m

dW

W 2
,

hence
1

2
(W ′)2

= µ

(
1

m
− 1

W

)
.

This gives equivalently
dx

dW
=

√
m

2µ

√
W

W −m
,

which implies

x− 1
2

=

√
m

2µ

[√
W (W −m)− 1

2
m ln(m) + m ln

(√
W +

√
W −m

)]
.

This yields, on setting x = 1 so that W = 1,

µ = 2m

[√
1−m− 1

2
m ln(m) + m ln

(
1 +

√
1−m

)]2

.

Furthermore we have∫ 1

0

1

W
dx =

∫ 1

0

dx

dW

dW

W
=

√
2m

µ

∫ 1

m

1√
W (W −m)

dW

=
1√

1−m− 1
2
m ln(m) + m ln

(
1 +

√
1−m

)
∫ 1

m

1√
W (W −m)

dW

=
1√

1−m− 1
2
m ln(m) + m ln

(
1 +

√
1−m

) ln

(
2−m + 2

√
1−m

m

)
.

On using (4.3), we finally establish the following relation between λ and m,

λ = 2m

[
√

1−m + m ln

((
1 +

√
1−m

)
√

m

)
+ α ln

(
2−m + 2

√
1−m

m

)]2

. (4.4)

From the above relation, we can obtain the response (bifurcation) diagram of problem (4.1),
see Figure 1 for the case of α = 1. In particular, (4.4) implies that λ ∼ 2α2m(ln m)2 as
m → 0.



ON A NON-LOCAL HYPERBOLIC MEMS EQUATION 9

Note that the numerical results in Section 7 indicate that the long-time behaviour of
the solution, when it exists for all times, is periodic and the relevant steady-state solution
is, from stability point of view, a centre. This means that although we have existence
of steady-state solutions for every λ < λ∗, it may happen that for λ quite close but less
than λ∗ the solution of the evolutionary problem could oscillate around the steady solution
and approach 1, i.e. it retains significant deformation and speed, and therefore it is more
likely to quench. In conclusion, the critical value for the parameter λ, say λ∗−, for which
the solution of the hyperbolic problem exists for all times (with vanishing initial data), is
expected to be lower than λ∗.

For a thorough study of the structure of the set of the steady-state solutions to (1.1) in
higher dimensions see [16].

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

 ||
w

(x
)|

| ∞

Figure 1. Bifurcation diagram for problem (4.1) with α = 1. Note that for
this case, λ∗ ≈ 8.533.

5. Global Existence

In order to prove global existence of problem (1.1), we need as a first step to determine
the corresponding energy functional, see also Section 3. Unless otherwise stated, || · || now
denotes || · ||2.

To find the energy, we multiply equation (1.1a) by ut and integrate over [0, 1]. Thus we
obtain

∫ 1

0

(ututt − utuxx) dx = λ

∫ 1

0

ut dx

(1− u)2

1

(1 + α
∫ 1

0
1

1−u
dx)2

,
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or

1

2

d

dt

(∫ 1

0

(
u2

t + u2
x

)
dx

)
= λ

d

dt

(∫ 1

0

1

1− u
dx

)
1

(1 + α
∫ 1

0
1

1−u
dx)2

= −λ

α

d

dt

(
1

1 + α
∫ 1

0
1

1−u
dx

)
.

Thus finally we get

1

2

∫ 1

0

(
u2

t + u2
x

)
dx +

λ

α

(
1

1 + α
∫ 1

0
1

1−u
dx

)
= E0 , (5.1)

where E0 is a constant representing the initial energy of the system which is conserved and
is given by

E0 =
1

2

∫ 1

0

(
v2

0 + u0x
2
)
dx +

λ

α

(
1

1 + α
∫ 1

0
1

1−u0
dx

)
. (5.2)

From equation (5.1) we deduce that

‖ut‖2 + ‖ux‖2 +
2λ

α

(
1

1 + α
∫ 1

0
1

1−u
dx

)
= 2E0 ,

where ‖ut‖ = ‖ut(·, t)‖, ‖ux‖ = ‖ux(·, t)‖, and that

‖ux‖2 +
2λ

α

(
1

1 + α
∫ 1

0
1

1−u
dx

)
≤ 2E0 . (5.3)

At this point we can use the one-dimensional Sobolev embedding and the Poincaré in-
equality to obtain

4u2(x, t) ≤ ‖ux‖2 , for (x, t) ∈ [0, 1]× [0, T ]. (5.4)

We also define M , M := max{u(x, t), (x, t) ∈ [0, 1] × [0, T ]}. For cases where M < 1
irrespective of the value of T , the maximal time of existence of u is infinite.

Therefore we have that u ≤ M , 1− u ≥ 1−M , 1 + α
∫ 1

0
1

1−u
dx ≤ 1 + α

1−M
, and that

1

1 + α
∫ 1

0
1

1−u
dx

≥ 1

1 + α
1−M

.

Thus we obtain by (5.3)

‖ux‖2 +
2λ

α

(
1

1 + α/(1−M)

)
≤ 2E0

and due to (5.4) we conclude that

4u2(x, t) +
2λ

α

(
1

1 + α/(1−M)

)
≤ 2E0 for (x, t) ∈ [0, 1]× [0, T ]. (5.5)

Considering the simplest case where u0 = 0, v0 = 0 we have that E0 = λ/α(α + 1). For
simplicity in the following we take α = 1 so E0 = λ/2.

Note that the solution u ceases to exist if M = 1, while for α = 1 the inequality (5.5)
yields

h(M) = h(M ; λ) := 2M2 + λ(1−M)/(2−M) ≤ E0 . (5.6)
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We have that h(1) = 2 and h(0) = λ
2
, hence for λ < 4 we have that h(1) > h(0). Also

h′(M) = 4M − λ/(2−M)2 with h′(1) = 4− λ > 0 for λ < 4.
Hence we have the following global-in-time existence result.

Theorem 5.1. Problem (1.1) with zero initial data has a global-in-time solution, i.e. 0 <
u(x, t) < 1 for all (x, t) ∈ [0, 1]× [0,∞), provided that λ < 4.

With λ∗− the largest possible for every λ < λ∗− to give a global solution of (1.1), in other
words λ∗− is the infimum of those λ which produce quenching, λ∗− ≥ 4.

Now consider the case of non-zero initial data, i.e. u0 6= 0 or v0 6= 0. In this case the
initial energy is given by the expression

E0 = E0(λ, u0, v0) =
1

2
‖v0‖2 +

1

2
‖u0x‖2 +

λ

α

(
1

1 + α
∫ 1

0
1

1−u0
dx

)
.

Following the above, for u to exist it would then be enough to show that

4M2 +
2λ

α

(
1−M

1 + α−M

)
≤ ‖v0‖2 + ‖u0x‖2 +

2λ

α
F (u0), (5.7)

for F (u0) = 1/(1 + α
∫ 1

0
1

1−u0
dx), guarantees that M < 1. Clearly inequality (5.7) fails at

M = 1 if

4 > ‖v0‖2 + ‖u0x‖2 + 2λ/α (5.8)

since F (u0) ≤ 1. Thus the solution exists for all time as long as λ < α
(
2− 1

2
(‖v0‖2 + ‖u0x‖2)

)
.

(N.B. With u0 = 0, F (u0) = 1/(1+α), and a stronger estimate, as of Thm. 5.1, is achieved.)

6. Quenching

6.1. Quenching for zero initial conditions. In the first part of this section we impose
zero initial conditions, i.e. we consider the following problem

utt = uxx +
λ

(1− u)2
(
1 + α

∫ 1

0
1

1−u
dx

)2 , 0 < x < 1, t > 0 , (6.1a)

u(0, t) = 0, u(1, t) = 0, t > 0, (6.1b)

u(x, 0) = 0, ut(x, 0) = 0, 0 < x < 1. (6.1c)

Our purpose is to show that there exists a critical value λ∗+ ≥ λ∗− of λ such that the solution
of problem (6.1) quenches in finite time for any λ ≥ λ∗+. Thus λ∗+ is the supremum of those
λ for which (6.1) has a global solution.1

For convenience and due to the expected symmetry of the solution u(x, t) at the point
x = 1

2
we will consider the equivalent problem

utt = uxx +
λ

(1− u)2
(
1 + 2α

∫ 1
2

0
1

1−u
dx

)2 , 0 < x <
1

2
, t > 0 , (6.2a)

u(0, t) = 0, ux

(1

2
, t

)
= 0, t > 0, u(x, 0) = 0, ut(x, 0) = 0, 0 < x <

1

2
. (6.2b)

We restrict our analysis for times 0 < t < 1/2 so that the characteristic line t = x remains
in the strip 0 < x < 1/2.

1Because (6.1) lacks clear monotonicity properties, it is not obvious that λ∗+ = λ∗−.
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Initially we consider the general problem

utt − uxx = g(t), 0 < x <
1

2
, t > 0, (6.3a)

u(0, t) = 0, ux

(1

2
, t

)
= 0, t > 0, u(x, 0) = 0, ut(x, 0) = 0, 0 < x <

1

2
, (6.3b)

with g(t) > 0 and continuous. For x ≥ t, the solution of (6.3) is given by

u(x, t) =
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

g(s) dξ ds =
1

2

∫ t

0

g(t) [x + (t− s)− x + (t− s)] ds

=

∫ t

0

(t− s)g(s) ds := G(t), (6.4)

since in that case the domain of dependence of the point (x, t) is the triangle
D = {(ξ, s)| x− (t− s) < ξ < x + (t− s) and 0 < s < t}. On the other hand, for x ≤ t
we have to subtract the contribution coming from x < 0 so we get

u(x, t) = G(t)−G(t− x) =

∫ t

0

(t− s)g(s) ds−
∫ t−x

0

(t− x− s)g(s) ds . (6.5)

Note that in this case the domain of dependence is no longer a triangular but is instead
split into two parts D1 = {(ξ, s)| x − (t − s) < ξ < x + (t − s) and t − x < s < t} and
D2 = {(ξ, s)| t− x− s < ξ < x + (t− s) and 0 < s < t− x}.

From the above analysis we bear in mind that the solution of (6.3) in the area x ≥ t is
only a function of time, u(x, t) = G(t). In addition for t ≤ 1/2 by the form of the solution

we can easily deduce that ux ≥ 0 (= 0 for x ≥ t, =
∫ t−x

0
g(s) ds > 0 for x ≤ t). Finally for

every 0 < x < 1/2, 0 < t < 1/2 we have 0 ≤ u(x, t) ≤ G(t) = maxx∈[0,1/2] u(x, t).
In the following we consider the more general problem

utt − uxx = h(x, t), 0 < x <
1

2
, t > 0, (6.6a)

u(0, t) = 0, ux

(1

2
, t

)
= 0, t > 0, u(x, 0) = 0, ut(x, 0) = 0, 0 < x <

1

2
, (6.6b)

with h(x, t) > 0, hx(x, t) > 0 and continuous.
Using the same reasoning as above we easily obtain that the solution of problem (6.6) is

given by

u(x, t) =
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

h(y, s) dξ ds, (6.7)

for x ≥ t, and

u(x, t) =
1

2

∫ t

t−x

∫ x+(t−s)

x−(t−s)

h(y, s) dξ ds +
1

2

∫ t−x

0

∫ x+(t−s)

t−s−x

h(y, s) dξ ds ,

for x ≤ t. Due to the fact that h(x, t) > 0 and hx(x, t) > 0 we have ux(x, t) ≥ 0 and hence
maxx∈[0,1/2] u(x, t) is given by (6.7).

In our case, going back to our original problem (6.2), the function h has the specific form
h(x, t) = f(u)g(t) where f(u) = 1

(1−u)2
and g(t) = λ

(1+2α
R 1/2
0

1
1−u

dx)
2 . Note also that the

function f is such that f(0) = 1 and f ′(s) > 0 for 0 < s < 1.
We shall show that for x ≥ t the solution of problem (6.2) is purely a function of time,

i.e. u(x, t) = U(t) = maxx∈[0,1/2] u(x, t), by applying a Picard iteration.
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Initially we define u0 to be the solution of the problem

u0tt − u0xx = g(t), 0 < x <
1

2
, 0 < t <

1

2
,

with the boundary and initial conditions as defined above. As we have already stated, by the
analysis of the problem (6.3), u0(x, t) = U0(t) for x ≥ t, u0x ≥ 0 and 0 ≤ u0(x, t) ≤ U0(t)
where U0(t) = maxx∈[0,1/2] u0(x, t) coincides with G(t) given by (6.4).

We inductively define the function un(x, t) to be the solution of the problem

untt − unxx = f(un−1)g(t), 0 < x <
1

2
, 0 < t <

1

2
,

with the standard initial and boundary conditions. By the analysis of problem (6.6) we
have, since h(x, t) = f(un−1)g(t) > 0 and hx(x, t) = f ′(un−1)u(n−1)x

g(t) > 0 (f ′ > 0 and
(un−1)x > 0 by the induction hypothesis), that un has the required property unx > 0. By
the induction hypothesis we also have that un−1(x, t) is purely a function of time in the
area x ≥ t hence f(un−1)g(t) is also, implying that un(x, t) = Un(t) = maxx∈[0,1/2] un(x, t)
for any n ∈ N and x ≥ t and Un(t) is given by

Un(t) =
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

f(Un−1(s))g(s) dξ ds , (6.8)

which implies that the sequence {Un(t)}∞n=1 is increasing, recalling that f(s) > 1 and
f ′(s) > 0 for 0 < s < 1. Moreover, we have that 0 < Un(t) < 1 for every 0 < t < t0
for some t0 ≤ 1/2 hence {Un(t)}∞n=1 converges as n → ∞ to a function U(t) which is
actually the maximum value of the unique solution u(x, t) of (6.2) achieved for x ≥ t, i.e.
u(x, t) = U(t) = maxx∈[0,1/2] u(x, t) for x ≥ t.

The latter implies that the solution of problem (6.2) satisfies for x ≥ t the equation

Utt = f(U)g(t),

and since

g(t) ≥ λ/ [1 + α/(1− U)]2 ,

U(t) finally satisfies the differential inequality

Utt ≥ λ/ [1 + α− U ]2 , (6.9)

with U(0) = 0 and Ut(0) = 0.
Therefore we obtain that the following inequality is satisfied

√
2λt ≤ (1 + α)

3
2

[
sin−1

(√
U

1 + α

)
+

√
U(1 + α− U)

1 + α

]
,

and we deduce that U(t) reaches 1 before time t = 1/2, provided that

λ ≥ 2(1 + α)

[
(1 + α) sin−1

(
1√

1 + α

)
+
√

α

]2

= λ+(α). (6.10)

Finally we have proved the following result:

Theorem 6.1. If λ ≥ λ+(α), where λ+(α) is given by (6.10), then the solution u(x, t) to
problem (6.2) quenches in finite time T ≤ 1/2, i.e. ||u(·, t)||∞ → 1− as t → T ≤ 1/2.

The least upper bound for global existence, λ∗+, then satisfies λ∗+ ≤ λ+(α).

Remark 6.2. Note that for α = 1 we have that the above relation gives λ ≥ λ+ = 26.43596.
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Remark 6.3. For the local problem, i.e. when α = 0, differential inequality (6.9) implies
that ||utt(·, t)||∞ blows up at the quenching time, i.e. ||utt(·, t)||∞ → +∞ as t → T, which
is in agreement with the result in [4].

A result similar to Theorem 6.1 can be deduced when the initial data are non-zero and
this is the subject of the next subsection.

6.2. Quenching depending on the initial data. We now prove quenching for λ large
enough, depending on the initial data u0 and v0, using some of the arguments developed
in the previous subsection. We consider problem (1.1) and we assume that u0 is bounded
away from one.

Let w be the solution of the problem

wtt − wxx = 0, 0 < x < 1, t > 0, (6.11a)

w(0, t) = w(1, t) = 0, t > 0, w(x, 0) = u0(x), wt(x, 0) = v0(x), 0 < x < 1. (6.11b)

We also define the function v as the difference v = u−w hence v(x, 0) = 0 and vt(x, 0) = 0;
moreover v satisfies homogeneous Dirichlet boundary conditions v(0, t) = 0 = v(1, t).

Now we assume that u0(x) and v0(x) are smooth enough so that wt(x, t) is bounded
below for x ∈ (1/4, 3/4) and t ∈ (0, 1/4). Then for some t0 < 1/4 there exists ε > 0 such
that sup(1/4,3/4)×(0,t0) w(x, t) < 1 − 2ε. Note that t0 and ε can be taken independent of λ,
and, having fixed t0, ε can be arbitrarily small. We define C0, independent of λ and of ε,
by C0 = inf [0,1]×[0,t0]{w} ≤ 0.

Now take t1(ε, λ) ≤ t0 such that ||v(., t)||∞ < ε for 0 ≤ t < t1. Then

C0 − ε ≤ u = w + v ≤ 1− 2ε + ε for 0 ≤ t ≤ t1 .

Hence, for 0 < t < t1,

ε < 1− u < 1 + C0 − ε , 1 + α/(1 + C0 − ε) < 1 + α

∫ 1

0

(1− u)−1dx < 1 + α/ε

and λ/ ((1 + C0 − ε) (1 + α/ε))2 < vtt − vxx < λ

/(
ε

[
1 +

α

1 + C0 − ε

])2

.

In particular, following the previous subsection, since t ≤ x ≤ 1 − t for 1/4 ≤ x ≤ 3/4,
0 ≤ t ≤ 1/4, for 0 < t < t1 ≤ t0 ≤ 1/4,

v(x, t) = V (t) for 1
4
≤ x ≤ 3

4
, with 0 ≤ v(x, t) ≤ V (t) for x ≤ 1

4
and for x ≥ 3

4
,

where

0 < λ/ ((1 + C0 − ε) (1 + α/ε))2 < d2V/dt2 < λ

/(
ε

[
1 +

α

1 + C0 − ε

])2

.

Then, at t = t1(ε, λ),

vt =
dV

dt
≥ λt1

((1 + C0 − ε) (1 + α/ε))2 and

λt21
2 ((1 + C0 − ε) (1 + α/ε))2 < v = V <

λt21

2
(
ε
[
1 + α

1+C0−ε

])2 ,

for 1/4 < x < 3/4.
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Additionally, v ≤ V ≤ ε is guaranteed in 0 ≤ t ≤ t1 by taking λt21 ≤ 2ε3
[
1 + α

1+C0−ε

]2

,

for example by

t1 =

√
2

λ

[
1 +

α

1 + C0 − ε

]
ε

3
2 . (6.12)

In t1 < t < t0, 1/4 ≤ x ≤ 3/4, we still have v(x, t) = V (t) with d2V/dt2 > 0, as long as the
solutions u and v exist. It follows that

v

(
1

2
, t

)
= V (t) >

λt21
2 ((1 + C0 − ε) (1 + α/ε))2 +

λt1(t− t1)

((1 + C0 − ε) (1 + α/ε))2 .

Assuming the solution exists up to t0, i.e. T ≥ t0,

u

(
1

2
, t

)
= v

(
1

2
, t

)
+ w

(
1

2
, t

)
> C0 +

λt1(t0 − t1/2)

((1 + C0 − ε) (1 + α/ε))2 ≥ 1

if
λt1(t0 − t1/2) ≥ ((1 + C0 − ε) (1 + α/ε))2 . (6.13)

Therefore, taking t1 to be given by (6.12), quenching before t = t0 will be guaranteed on
choosing λ large enough to satisfy

√
2λt1

(
t0 −

[
1 +

α

1 + C0 − ε

]
ε

3
2 /

√
2λt1

)
≥ ((1 + C0 − ε) (1 + α/ε))2 . (6.14)

Note that, for restricted regions of smoothness for the initial data, different intervals of
x and smaller values of t0 could be used.

7. Numerical Solution

We now carry out a brief numerical study of problem (1.1), with a variety of initial
conditions. A three-step Crank-Nicolson scheme (Richtmayer’s method) is used, indicating
unconditional stability.

Taking a partition of M + 1 points in [0, 1], 0 = x0, x0 + δx = x1, · · · , xM = 1 and using
a time step δt for a partition in the time interval [0, T ], with ti = iδt, i = 0, . . . , N = T

δt
,

we have for the approximation of the solution u, ui
j ' u(ti, xj) the following scheme

ui+1
j − 2ui

j + ui−1
j

δt2
=

1

2

ui+1
j+1 − 2ui+1

j + ui+1
j−1

δx2
+

1

2

ui−1
j+1 − 2ui−1

j + ui−1
j−1

δx2

+ λ
1

(1− ui
j)

2
(
1 + α

∫ 1

0
1

1−ui dx
)2 . (7.1)

The integral
∫ 1

0
1

1−ui dx, where ui = (ui
1, u

i
2, · · · , ui

M)T , is evaluated in each time step by
Simpson’s rule.

Taking into account the Dirichlet boundary conditions, the numerical scheme takes the
form

−R2

2
ui+1

j−1 + (1 + R2)ui+1
j − R2

2
ui+1

j+1 =
R2

2
ui−1

j−1 − (1 + R2)ui−1
j +

R2

2
ui−1

j+1

+ δt2F (ui
j), (7.2)

for j = 2, . . . , M − 2,

(1 + R2)ui+1
1 − R2

2
ui+1

2 = −(1 + R2)ui−1
1 +

R2

2
ui−1

2 + δt2F (ui
1),
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for j = 2,

−R2

2
ui+1

M−2 + (1 + R2)ui+1
M−1 =

R2

2
ui−1

M−2 − (1 + R2)ui−1
M−1 + δt2F (ui

M−1),

for j = M − 1, where R = δt
δx

, ui
0 = 0, ui

M = 0 and

F (ui
j) = λ

1

(1− ui
j)

2
(
1 + α

∫ 1

0
1

1−ui dx
)2 . (7.3)

This results in the algebraic system

Aui+1 = Bui−1 − bui

or

ui+1 = A−1Bui−1 − A−1bui,

where A,B are (M − 2)× (M − 2) matrices and b is a 1× (M − 2) vector.
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λ=4.1

Figure 2. The numerical solution of problem against space and time for λ = 4.1.

In the figures of this section, the results of various numerical simulations are presented.
The parameters that were used are α = 1, M = 21, and R = 0.005. In the first two figures,
λ = 4.1; this value is chosen to be slightly greater than the value 4 found, Theorem 5.1, to
guarantee global existence.

In Figure 2, u(x, t) is plotted against x ∈ [0, 1] and t ∈ [0, T ] for T = 1.5. In the next plot,
Figure 3, u(x, t) is plotted against x for various times. The uppermost line corresponds to
the solution of the problem near quenching. These numerical results indicate that for zero
initial data, λ∗− ≤ 4.1 and suggest that Theorem 5.1 is close to best possible.

The remaining three figures show solutions for λ = 1 < 4 ≤ λ∗−. In Figure 4, we consider
a situation where the solution does not quench but instead oscillates. Additionally, in
Figure 5, the solution at the mid point, x = 1/2, is plotted against time.

Finally, Figure 6 shows quenching of the solution for large enough initial data. In this
example, u0 = 0, v0 = 2, still with λ = 1.
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Figure 3. Profile of the numerical solution of problem (6.1), for various
times and for λ = 4.1.

0
0.2

0.4
0.6

0.8
1

0

2

4

6

8
−0.05

0

0.05

0.1

0.15

xt

u(
x,

t)

λ=1

Figure 4. The numerical solution of problem (6.1), for λ = 1.
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