
Application of an age-structured model to better
understand the fishing effects on a fish population: the
case of anchovy fishery in north Aegean waters (E.

Mediterranean)

Abstract

Anchovy (Engraulis encrasicolus) is an important commercial small pelagic fish-
eries resource in the northern Aegean sea (easterm Mediterranean). The objec-
tives of the paper are to improve our understanding of anchovy population
variability under the current harvesting regulations applied for anchovy fishery
and explore the impacts of alternate fishing strategies on anchovy survival and
annual catches. The model simulates the anchovy biomass by combining a con-
tinuous McKendrick-Von Foerster age-structured population dynamics model
and an age-specific growth equation which describes anchovy weight. Model
results were generally consistent within the field biomass ranges and annual
reported catches for the period 2003-2006 and 2008. Fishing scenarios results
indicated that: i) the scenario of closing the fishing period during spring can be
an alternate management option that could contribute to increase of anchovy
biomass without significant change in catches, ii) the imposition of an extra
month closure especially in spring is a favorable measure on anchovy variability,
iii) measures based on fishing selectivity are time consuming to induce posi-
tive results but the protection of older individuals compared to younger ones as
applied now, could have a positive effects on the structure of the population.
Finally, as a criterion of population survival, we have considered the notation
of persistence. The theoretical and numerical consideration of persistence - un-
der the specific model assumptions - indicated that anchovy population can be
thought as a viable population, although a different modelling approach would
require its reconsideration.

Keywords: age structured model, McKendrick-Von Foerster equation,
anchovy, Northern Aegean Sea

1. Introduction

Anchovy (E. encrasicolus) is an important pelagic fish for commercial fisheries in
Greece and one of the main target species in north Aegean sea [26]. In recent years,
anchovy stock production show signs of declining and highly fluctuating trend and it
is generally recognized that an integrated management system is required although
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several regulation measures (closed fishing season for purse-seine fleet, minimum legal
landing sizes, mesh size regulation etc) are implemented by policy makers [27].

Understanding population dynamics of fish stocks is essential in developing optimal
fisheries management strategies [6]. A task of high practical and ecological significance
is the estimation of a fish population reaction to changes in fishing strategy. Fishing
mortality can be changed through direct but also indirect methods, such as regulating
mesh size to make fish of certain age or size less vulnerable to the gear, area closures
and effort limits. The development and application of a harvesting model can serve as
a tool for quantitatively synthesize the current knowledge and explore these aspects.
In [7], the authors proposed measures for the stock recovery of Kuwait’s shrimp fishery,
while the effectiveness of closed fishing seasons as a management measure is examined
for Cymbula gratanina [2].

Several biological processes such as mortality rate and reproduction capacity show
significant interannual variations depending on the age structure of a population. The
study and application of an age-dependent model is a more realistic representation of
a fish population dynamics than simple production models [33].

In this work, we apply an age-structured model to simulate the evolution of an-
chovy biomass by combining an age-specific growth model which describes anchovy
weight and the continuous model of McKendrick-Von Foerster to study the population
abundance [15]. Several applications based on the McKendrick-Von Foerster equation
can be found in the literature; on fish population [3], on demography [1], on population
economics [10]. From these applications, it occurs that the applicability of this kind
of model on other species is acceptable.

The objective of this paper is the integration of existing biological and fishery
knowledge on anchovy into a unified modelling framework, contributing by this way
to better understanding of anchovy population dynamics under the different fishing
strategies. The model components are based on specific field data and specific char-
acteristics of anchovy biology and ecology. Using age-specific weight and the available
natural mortalities, fishing mortalities and fertilities data, we fitted an age-structured
model with available acoustic biomass estimates during the period 2003-2006 and 2008
and reported catches. Long-time series of data on mass and biological parameters of
anchovy throughout the Greek waters are incomplete [26]. Although we recognize that
the study period is short, we decided to work on this period as the available data are
the most recent and reliable.

2. Model set up

Fish biomass is a key quantity in stock assessment. Fisheries policy makers usually
set their management decisions by the total weight of catch [33]. The fish biomass
(Bf ) is calculated as the product of the mean weight of an individual fish weight (W)
and the population abundance (N),

Bf =W ·N. (2.1)

The importance of considering both growth and mortality functions that vary simulta-
neously with population density has been recognized [3]. In this section, we describe:
1) the components of the population model through the processes of natural, fishing
mortality and reproduction and 2) anchovy weight.
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2.1. Population model

Motivated by Sánchez [21], the age-structured continuous harvesting population
model adopted in this work is a modification of McKendrick model [15] by augment-
ing the death rate with a harvesting term. The population dynamics of anchovy is
described by the following problem:

∂n(a, t)

∂t
+
∂n(a, t)

∂a
= −m(a)n(a, t)− f(a, t)n(a, t), 0 < a < M, t > 0,(2.2a)

n(0, t) =

∫ M

0

B(a, t;N)n(a, t)da, t > 0, (2.2b)

n(a, 0) = n0(a), 0 ≤ a ≤M, (2.2c)

N(t) =

∫ M

0

n(a, t)da, t > 0, (2.2d)

where

• n(a, t) is the number of individuals of age a at a particular time t,

• m(a) is the natural mortality function following the property:

0 < m(a) ≤ m = max
a

m(a),

• f(a, t) is the fishing mortality function coefficient such that

f(a, t) = h(a)e(t),

which satisfy

0 ≤ h(a) ≤ h = max
a

h(a) and e = min
a
e(a) ≤ e(t) ≤ e = max

a
e(a),

• B(a, t;N) expresses the birth function assumed to be separable in the variables
a, t and N = N(t),

B(a, t;N) = b(t)β(a)β0(N),

such that 0 < b = inft b(t) ≤ b(t) ≤ b = supt b(t), β(a) has a compact
support on [0,∞] and β0(N(t)) is a decreasing and bounded function with
β
0
= inft β0(N) ≤ β0(N(t)) ≤ β0 = supt β0(N),

• n0(a) is the initial age distribution,

• M denotes the maximal age of the species and

• N(t) is the total population at time t.

2.1.1. Existence of solutions
The standard method to show existence for a first-order, linear partial differential

equation like (2.2), is to apply the method of characteristics, determine the charac-
teristics curves in the at-plane, along which equation (2.2) reduces to an ordinary
differential equation [4]. However, when this method is applied, the unknown function
n(a, t) is involved implicitly in the expression of the solution and by using the bound-
ary condition (2.2b) we result to an integral equation [12]. Thus, by specifying the
characteristic curves of (2.2), the solution is represented by the following expression

n(a, t) =

{
n(t− a, 0) exp

(
−
∫ t

0
(m(s+ t) + f(s+ a− t, s)) ds

)
, a ≥ t,

n(0, t− a) exp
(
−
∫ a

0
(m(s+ t− a) + f(s, s+ t− a)) ds

)
, a ≤ t.

(2.3)
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Substituting the two expressions of n(a, t) into the boundary condition (2.2b) we obtain
the integral form

n(0, t) =

∫ M

0

B(a, t;N)n(a, t)da =b(t)β0(N(t))

∫ t

0

β(a)n(0, t− a)G(a, t)da

+b(t)β0(N(t))

∫ M

t

β(a)n(t− a, 0)F (a, t)da,

(2.4)

where

G(a, t) = exp

(
−
∫ t

0

(m(s+ t) + f(s+ a− t, s)) ds

)
(2.5)

and

F (a, t) = exp

(
−
∫ a

0

(m(s+ t− a) + f(s, s+ t− a)) ds

)
. (2.6)

Thus, the solution of (2.2) lies to the solution of the integral equation (2.4) which
constitutes the basis for analytical results and some numerical methods. As the study
of stability in non autonomous problems, as (2.2), is quite complicated, we focus our
attention to a more biological stability aspect, called persistence.

2.1.2. Persistence
Persistence has emerged as a relevant stability concept for population models.

Although its questionable credibility, it is recognized as an indicator of a long term
population survival [4]. A brief mathematical definition of the persistence term is
illustrated below:

1. A population n(a, t) which is described by the system (2.2) is said to be persis-
tent if lim inft→∞ n(a, t) > 0,

2. If lim supt→∞ n(a, t) = 0, then we say that the population goes to extinction.

For the study of persistence for (2.2) we will recall the comparison technique applied
in [18].

We consider again the original system (2.2) and the two auxiliary ones (for com-
parison purposes).

∂n(a, t)

∂t
+
∂n(a, t)

∂a
= − (m(a) + h(a)e(t))n(a, t), 0 < a < M, t > 0, (2.7)

n(0, t) = b(t)β0(N)

∫ M

0

β(a)n(a, t)da, t > 0,

n(a, 0) = n0(a), 0 ≤ a ≤M.

∂n(a, t)

∂t
+
∂n(a, t)

∂a
= − (m(a) + e h(a))n(a, t), 0 < a < M, t > 0, (2.8)

n(0, t) = b β
0

∫ M

0

β(a)n(a, t)da, t > 0,

n(a, 0) = n0(a), 0 ≤ a ≤M, such that

n0(a) ≤ n0(a), 0 ≤ a ≤M.
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∂n(a, t)

∂t
+
∂n(a, t)

∂a
= − (m(a) + e h(a))n(a, t), 0 < a < M, t > 0, (2.9)

n(0, t) = b β0

∫ M

0

β(a)n(a, t)da, 0 ≤ a ≤M, t > 0,

n(a, 0) = n0(a), 0 ≤ a ≤M, such that

n0(a) ≤ n0(a), 0 ≤ a ≤M.

The two auxiliary systems constitute the lower and upper solution of the system
(2.7). By an upper (lower) solution to (2.7) we define a function n (n) which satisfies
(2.7) by substituting ≥ (≤) for the sign of =.

Concerning the relationship between the solutions of the three systems (2.7), (2.8)
and (2.9), the following theorem holds

Theorem. Let n(a, t), n(a, t) and n(a, t) be the solutions of the systems (2.7), (2.8)
and (2.9) respectively. Then, n is a lower solution, (n) is an upper solution to problem
(2.7) and hold:

n(a, t) ≤ n(a, t) ≤ n(a, t). (2.10)

The proof is a review of the steps proved by Li [18] with slight modifications
customized for the present study. For the proof of theorem, see Appendix A.1.

For the study of persistence we search for separate solution of the form n(a, t) =
A(a)T (t), following [4]. Substituting this form into equation (2.8) and dividing by
A(a)T (t) ̸= 0, we obtain

T ′(t)

T (t)
= −A

′(a)

A(a)
− (m(a) + e h(a)) = r. (2.11)

Because the left hand side of the equation is only a function of t while the right hand
depends only on a, each side is equal to a constant r. Using a known result from
Hoppensteadt [12], if we solve the two separate differential equations for T (t) and
A(t), then the solution n(a, t) = A(a)T (t) satisfies the boundary condition of problem
(2.8) which takes the form

b β
0

∫ M

0

b(a)e−ra exp

(
−
∫ a

0

(m(s) + e h(s))ds

)
da = 1. (2.12)

If we let

ϕ(r) = b β
0

∫ M

0

b(a)e−ra exp

(
−
∫ a

0

(m(s) + e h(s)) ds

)
da, (2.13)

we obtain the following properties: limr→∞ ϕ(r) = 0, limr→−∞ ϕ(r) = ∞ and ϕ(r) is
decreasing on (−∞,∞) since

ϕ′(r) = −a b β
0

∫ M

0

b(a)e−ra exp

(
−
∫ a

0

(m(s) + e h(s)) ds

)
da < 0.

From those properties we derive that the integral equation ϕ(r) = 1 has a unique
solution r. If the solution of (2.12) is r then n(a, t) has a separable solution of the
form

n(a, t) = Cer(t−a) exp

(
−
∫ a

0

(m(s) + e h(s)) ds

)
. (2.14)

In a similar way, we get the integral condition for n(a, t),

b β0

∫ M

0

b(a)e−ra exp

(
−
∫ a

0

(m(s) + e h(s)) ds

)
da = 1, (2.15)
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with upper solution

n(a, t) = C exp(rt) exp(−ra−
∫ a

0

(m(s) + eh(s)) ds), (2.16)

and

ϕ(r) = b β0

∫ M

0

b(a)e−ra exp

(
−
∫ a

0

(m(s) + e h(s)) ds

)
da. (2.17)

Combining (2.10) and the two expressions for the lower n(a, t) and upper solutions
n(a, t) of (2.7), we obtain

C er(t−a) exp

(
−
∫ a

0

(m(s) + e h(s)) ds

)
≤ n(a, t) ≤

≤ C er(t−a) exp

(
−
∫ a

0

(m(s) + e h(s)) ds

)
.

(2.18)

It is obvious that if r > 0 then from the left hand side of the inequality (2.18) it
follows that the population n(a, t) is persistent, while for r < 0 the right hand side of
inequality tends to zero which means that the population goes to extinction, provided
in both cases that t≫ 1. In section 4, we calculate numerically the values r and r.

2.2. Fish growth model

Growth of fish is a complex process that depends on density-dependent (via changes
of food availability, vital space) and environmental factors (i.e. temperature, oxygen
concentration of the water) [31]. Due to the lack of information of how anchovy weight
is affected by these factors, we adopt a simple growth function where the related
parameters for anchovy are available and well studied.

The fish growthW (a) is estimated using a widely applied model to describe growth
in length in fishery applications, the Von Bertalanffy growth equation [8]

L(a) = Lmax − (Lmax − L0)e
kn(a−a0), (2.19)

where L(a) is the length of fish age a, Lmax is the asymptotic length, L0 is the length
at birth, kn a curvature parameter and a0 is the hypothetical age at birth. Growth in
weight - assuming a stochastic variation in order to incorporate environmental effects-
can be derived from the power relation between fish weight and length,

W (a) = awL(a)
bw · eε, (2.20)

where ε is a multiplicative error with mean 0 and variance σ2 (set 0.01).
Substituting von Bertalanffy’s equation (2.19) into equation (2.20) the weight of

fish with age a is represented by the equation

W (a) = aw
(
Lmax − (Lmax − L0)e

−kn(a−ab)
)bw

· eε. (2.21)

The parameters Lmax = 180 mm, kn = 0.587 years−1, a0 = −0.846 years are
provided from Stergiou and Karachle [29]. The parameters aw and bw take the values
aw = 0.0000011 gr cm−1, bw = 3.364 (dimensionless) (unpublished data, 2007), L0 =
3.5 mm and ab = 0.013 years. For simplicity and due to no detailed data, we consider
the same equation for both sexes.
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3. Data function estimates

In this section, we define the data function forms for the population model (2.2):
natural mortality m(a), fishing mortality f(a, t), birth function B(a, t;N), initial dis-
tribution n0(a) and determine their parameters by fitting to the available data. In an
effort to handle the data for the period 2003-2008 we decided to work with average
values of the biological parameters (e.g fecundity, spawning frequency, natural and
fishing mortality) in order to be able to have a easier understanding of the importance
of each parameter. In case of incomplete data, parameter values from other areas or
related species were imposed.

3.1. Natural mortality function m(a)

Natural mortality is a significant factor in fish population dynamics. A qualitative
pattern of natural mortality (often called bathtub) indicates that natural mortality is
not constant throughout the life cycle of a fish, [5]. According to the bathtub pattern,
natural mortality of a fish is extremely high at its early stages. Afterwards, it starts
decreasing during the pre-adult stages while a stable death rate is noticed during
middle age. An increased death rate comes back at the older fish age. In the present
work, we follow the above concept as the available data verify this pattern.
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Figure 1: Piecewise fitted natural mortality function m(a) (continuous line) on the available
data (open circles). Age is in units of years.

The piecewise continuous function constructed to describe the natural mortality
rate of anchovy, m(a) as a function of age a is shown in Figure 1. An exponen-
tial fitting using the least square criterion is applied to the data of pre-adult stages:
embryonic stage (m = 89.49 year−1) (Pers. Commun. with S. Somarakis), larval
stage (m =43.8 year−1) (Somarakis and Nikolioudakis [28]), juvenile stage (m = 1.82
year−1) (Pertierra et al., [23]). For the adult stages from age 1 to 3, we assumed a
constant natural mortality rate (m = 1.20 year−1) (Giannoulaki et al., [11]) and an
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exponential fitting for ages 3 to 4 years is implemented. The mathematical formulation
of the mortality function m(a) is as follows,

m(a) =


m1e

−ℓ1a, 0 < a < 1,

m2, 1 ≤ a ≤ 3,

m3e
ℓ3a, 3 < a ≤ 4.

(3.22)

with m1 = 88.91 year−1, ℓ1 = 7.028 year−1, m2 = 1.2045 year−1, m3 = 1.833 · 10−7

year−1 and ℓ3 = 5.232 year−1.

3.2. Fishing mortality function f(a,t)

The fishing mortality f(a, t) is separated into an effect of age h(a) and time e(t)

f(a, t) = h(a) e(t), (3.23)

where the function h(a) represents the variation of fishing mortality due to age and
e(t) a function that incorporates the presence or not of a closed fishing season (set to
0 if the time is closed to fishing, set to 1 if fishing occurs in that time) following the
idea of [2].

For the construction of h(a), we use average fishing mortality values of the period
2003-2008 for the different age groups: for age-1 (d = 0.14 year−1), age-2 (d = 0.13
year−1), age-3 (d = 1.15 year−1) and a small value for age-3+ (d = 0.01 year−1)
provided by [11]. A quadratic polynomial least square fitting (R2 = 0.96) is applied
for these parameter values as shown in Figure 2. Anchovies with age less than 0.9 year
are not practically part of fishing stock due to no commercial interest, so harvesting
function h(a) is zero for these ages. Also, fishing mortality has no meaning for fishes
more than 4 years, as a maximum life span of M = 4 years is assumed for anchovy
[26]. Synoptically, h(a) has the form,

h(a) =

{
0, 0 < a < 0.9,

d1a
2 + d2a+ d3, 0.9 ≤ a ≤ 4,

(3.24)

with d1 = −0.575 year−3, d2 = 2.821 year−2 and d3 = −2.09 year−1.
In anchovy fishery, fishing activity shows a seasonal variation during the year.

Particulary, a fishing effort limitation is implemented from December to March for
purse seine fleet [26]. This means that the fishing mortality is zero during this period.
Thus, e(t) is set zero for December to March and 1 elsewhere:

e(t) =


0, 0 < t < t1,

1, t1 ≤ t ≤ t2,

0, t2 ≤ t ≤ 1,

where t1 = 0.25 year, t2 = 0.91 year.

3.3. Birth function B(a,t;N)

The birth function B(a, t;N) is modelled by the product of three functions sepa-
rable in the variables a, t and N ,

B(a, t;N) = β(a)b(t)β0(N), (3.25)
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Figure 2: Fitted fishing mortality function h(a) (continuous line) on the available data (open
circles). Age 0 to 0.9 year fish does not lie into fishing pressure due to no commercial interest.
Age is in units of years.

where β(a) characterizes the average number of eggs laid by a female during one batch,
b(t) express the daily spawning frequency (the ratio of spawning females to all females)
and β0(N) is a proportional term which describes the effect of the population density
on fertility.

Anchovy fecundity (number of eggs produced per female) is usually proportional
to its weight [25], i.e., if the eggs are of the same size, bigger fish are usually more
fecund than smaller ones. Sexual maturity is accomplished with the completion of its
first year of anchovy’s life [26]. This means that the age group from 0 to 1 is not a part
of the parental population. Therefore, taking into account the biological characteristic
of anchovy’s reproduction strategy, we assume that the number of eggs produced by
an individual female fish is implicitly related to its age a via its weight,

β(a) =

{
0, 0 < a < 1,

fec ·W (a), 1 ≤ a ≤ 4,
(3.26)

where fec is the batch fecundity (number of eggs produced per gr of female) andW (a)
the weight in gr of a mature female. We imposed the average value fec = 320 for the
batch fecundity from estimates in Somarakis et al [27].

Natural birth rates are often markedly seasonal due to several factors. These can
be due to such things as exposure to seasonal weather patterns, resource availabili-
ties and population interactions [9]. Anchovy exhibits an extended spawning activity
mainly from May to September with a variable reproductive rate which is closely
associated with prey-fields and environmental factors [26]. Estimates of spawning fre-
quency in June (the peak of reproductive period) indicated a range from 0.34 to 0.44
[27]. Choosing a value within this range as a peak value for June, we assumed a normal
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distributed function form to represent the proportion of active spawning population
that reproduces during a year,

b0(T ) = k1

(
1− (T − k2)

2

(T − k2)2 + k3

)
, T ∈ [0, 1], (3.27)

where k1 = 0.42, k2 = 0.5 year, k3 = 0.04 year−2 and b0(0) = b0(1). The fertility
function b(t) in (2.2b) is a continuous function composed by the function b0(t) ∈
C1([0, 1]). Particularly, b(t) = b0(t− k), k = 0, 1, 2, . . . . So, b ≤ b(t) ≤ b, t > 0. For
the needs of the numerical simulation the time dependent part of birth function is also
calculated as b(t) = b0(t), t = mod (T, 1). The graph form of b0(t) is represented in
Figure 3.
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Figure 3: The time dependent part of birth function during a year, b0(t).

Finally, we chose a decreasing function β0(N) of the total population density N(t)
inspired by Kostova and Chipev [16], to represent the proportion of birth rate variation
due to the density effects. More precisely,

β0(N) =
W ∗

k0 + (1− k0)e−kcN
, (3.28)

where k0, kc, W
∗ > 0 constants. Obviously as N → ∞, β0(N) saturates atW ∗/k0.

We allowed a variation of fertility by 10% due to population density interactions.
For this reason we set W ∗ = 1 and k0 = 1.1. The choice of parameter kc which
describes the convexity of the curve was manually chosen, kc = 0.2.

3.4. Initial distribution n0(a)

The determination of initial distribution n0(a) is based on population abundance
estimates for age-1, age-2 and age-3 groups during summer season as given in [11].
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By age-1 group, we define fish of age within 1-2 years old, age-2 group includes fishes
with age 2-3 years old and fish with age 3-4 years old are included in the age-3 group.
For reducing the great uncertainty on estimation of the initial values for age-0 group
(fish with age 0-1 years old) during June, we start the model run in January. Because
of no significant reproduction activity during winter, it is acceptable to impose an
indicative number of individuals for age 0-0.5 years old (n1) in January without great
error. Assuming a 6-month shift of the summer data, the age-1 group will shift to
age range 0.5-1.5 years old (n2), age-2 group to age range 1.5-2.5 years old (n3) and
age-3 to age range 2.5-3.5 years old (n4). For age 3.5-4.0 years (n5) we assumed an
indicative value as this group is considered negligible. Keeping a constant average
ratio of the most abundant population abundance (n2) with each other age range:
n1
n2

= n1,2,
n2
n2

= n2,2,
n3
n2

= n3,2,
n4
n2

= n4,2,
n5
n2

= n5,2 as estimated from the available
data (Giannoulaki et al. [11]), we calibrated the initial value of (n2) to fit with the
biomass estimates. The values of n1,2, n2,2, n3,2 n4,2 n5,2 are estimated n1,2 = 0.05,
n2,2 = 1, n3,2 = 0.46, n4,2 = 0.07, n5,2 = 0.0145, see [11].

We must note that one possible choice of determining the initial distribution could
be done by using the values of one year. This assumption would lead to misleading.
The reason is that there is great variability of available data from year to year. For
example, estimates for age-1 group range between 1148.1 · 106 for 2002 to 5524.9 · 106
individuals for 2006. The initial distribution for the problem is represented in Figure
4.
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Figure 4: Initial distribution n0(a).
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4. Design of simulations

Biomass and catch. The total biomass of anchovy B(t) at time t is calculated by
the product of weight W (a) and population abundance n(a, t) through the integral

B(t) =

∫ M

M0

W (a)n(a, t)da, a ≥M0. (4.29)

For comparison with the available biomass data we eliminate the first stages of anchovy
and the lower part of the integral starts from a middle-adult fish age, namelyM0 = 0.5
year.

Also, a generalized Baranov equation is used to simulate the anchovy catches in
number, see [24],

cn(a, t;∆t) =
f(a, t)

m(a) + f(a, t)
n(a, t)× (1− exp(−(m(a) + f(a, t))∆t) , (4.30)

where cn(a, t;∆t) is the catch in number of fish of age a at time t effected in a small
time interval [t, t+∆t] of length ∆t.

Yield (mass) for each age a at the time interval [t, t + ∆t] can be determined as
a product of the catch in numbers from equation (4.30) and the weight mass (2.20),
Y (a, t;∆t) = cn(a, t;∆t)W (a). The total yield Y (t;∆t) at the time interval [t, t+∆t]
is estimated by integrating the equation (4.30) with respect to a,

Y (t;∆t) =

∫ M

ao

cn(a, t;∆t)W (a)da. (4.31)

Normalization. In order to solve numerically the problem we proceed initially in the
nondimensionalization of it. We scale the variables of problem (2.2a) in the following
way: we normalize n, by setting u = n

nc
, for nc = max{n0(a), 0 < a < M}. Also we

set α = a
ac

and τ = t
tc

where α, τ are the dimensionless age and time respectively.
Then, problem (2.2) for τ > 0 takes the form

∂u(α, τ)

∂τ
+ c

∂u(α, τ)

∂α
= −µ(α)u(α, τ)− ψ(α, τ)u(α, τ), 0 < α < M, (4.32a)

u(0, τ) =

∫ M

0

γ(α, τ,N(τ))u(α, τ)dα, (4.32b)

u(α, 0) = u0(α), 0 < α < M, (4.32c)

N(τ) =

∫ M

0

u(α, τ)dα, (4.32d)

where µ, ψ are the dimensionless natural and fishing mortality respectively, c = tc/ac,
γ is the birth rate, N = N/(n0 ·M) the normalized total population and M = M/ac
the scaled upper age limit. Choosing ac = tc = 1year we have that c = 1 which we
will use in the rest of our analysis.

More specifically we have that

µ(α) =


µ1e

−λ1α, 0 < α < 1,

µ2, 1 ≤ α ≤ 3,

µ3e
λ3α, 3 < α ≤ 4,

(4.33)
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with µ1 = tc ·m1, µ2 = tc ·m2, µ3 = tc ·m3, λ1 = ac · ℓ1, λ3 = ac · ℓ3. Also regarding
the fishing mortality ψ(α, τ) = δ(α) · ε0(τ)we have

δ(α) =

{
0, 0 < α < 1,

−δ1a2 + δ2a− δ3, 1 ≤ α ≤ 4,
(4.34)

with δ1 = tc · d1 · a2c , δ2 = tc · d2 · ac and δ3 = tc · d3 and

ε0(τ) =


0, 0 ≤ τ ≤ τ1,

1, τ1 ≤ τ ≤ τ2,

0, τ2 ≤ τ ≤ 1,

(4.35)

with τ1 = t1/tc and τ2 = t2/tc. Regarding the dimensionless birth rate, Γ(α, τ ;N) =
γ1(α)γ2(τ)γ3(N), we have

γ1(a) =

{
0, 0 < α < 1,

β0 · w(α), 1 ≤ α ≤ 4,

with β0 = fec and

w(α) = aw
(
Lmax − (Lmax − L0)e

−κn(α−α0)
)bw

· eε,

for κn = kn · ac, α0 = a0/ac. Note also that

γ2(τ) = β1

(
1− (T − β2)

2

(T − β2)2 + β3

)
,

with β1 = k1, β2 = k2/tc, β3 = k3/t
2
c and T = mod (τ, 1). In addition,

γ3(N) =
W ∗

k0 + (1− k0)e−(kc·n0)N
.

Numerical scheme. We will apply an upwind scheme in order to obtain a numerical
solution for the problem. We introduce a spatial grid αj = j∆α, j = 0, 1, . . . , J , where
∆α = M/J is the mesh size and J is a positive integer. We also consider a fixed
time interval 0 ≤ τ ≤ Tf . The step length in time is denoted by ∆τ and ti = i∆τ ,
i = 0, 1, 2, . . . , Nf , with Nf = [Tf/∆τ ], are the discrete time levels. Also σ = ∆τ

∆α
.

For a time step ∆τ and a spatial step ∆α we consider the element:
ui = (ui

0, u
i
1, . . . , u

i
J) ∈ RJ+1 and ui

j ≃ u(αj , ti) is the approximation to the exact
solution u(αj , ti) of the problem (2.2) at the point (αj , ti). Also we use the notations

I(ui) :=
∫M

0
γ(α, ti)u(α, ti)dα. By Ih we denote the numerical approximation of I,

that is Ih(u
i) =

∑J′′

j=0 ∆αγ(αj , ti, Ni)u
i
j where the ′′ means that the first and last

terms of the sum are halved, i.e. the trapezoidal rule is used. An upwind scheme
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applied to problem (2.2a-2.2d), for i = 0, 1, 2, . . . , Nf and j = 1, . . . , J gives:

ui+1
j = ui

j − σ c
(
ui
j − ui

j−1

)
+ (∆τ) (µ(αj) + δ(αj)ε(τi))u

i
j), (4.36a)

ui+1
0 = Ih(u

i), (4.36b)

u0 = (u0(α1), . . . , u0(αj)), (4.36c)

N
i

=

J′′∑
j=0

(∆α)ui−1
j , (4.36d)

B
i

=

J′′∑
j=0

(∆α)ui−1
j w(aj), (4.36e)

Ci
∆τ = Ci−1

∆τ +

J′′∑
j=0

∆α
δ(αj)ε(τi)

δ(αj)ε(τi) + µ(αj)
ui−1
j ×

(1− exp(−δ(αj)ε(τi)− µ(αj))∆τ) . (4.36f)

Numerical Simulations. In the next section we present the results of numerical
experiments by means of the upwind method. The method was implemented in Matlab
programs using double precision arithmetic. The parameters for the various constants
appearing in the model are evaluated in the following way: µ1 = 88.91, µ2 = 1.2045,
µ3 = 1.833 · 10−7, λ1 = 7.028, λ2 = 5.232, δ1 = −0.575, δ2 = 2.821, δ3 = −2.09,
t1 = 0.25, t2 = 0.91, β1 = 0.42, β2 = 0.5, β3 = 0.04, κ0 = 0.5870, α0 = −0.8460
bw = 3.364, W ∗ = 1, k0 = 1.1, kc = 0.2, M = 4. Also it is taken that the normalized
initial distribution of the population is u0(α) = uc = 1 where uc is some constant,
i.e. we have initially a uniform distribution of the population regarding its age. The
upper age limit is taken to be M = 4. Additionally, it is taken p = dα

dτ
= .1, c = 1,

Tf = 8, ∆α = 0.1, ∆τ = 0.01.

4.1. Results

4.1.1. Base run
Figure 5 (upper panel) exhibits the simulated anchovy biomass of relationship

(4.29) compared to acoustic biomass estimates (•) during June of 2003, 2004, 2005,
2006 and 2008 [27]. The simulations demonstrated generally a satisfactory agreement
being within the estimate ranges with an exception for the year 2003 where we have
an overestimation.

The yearly additive estimated catches obtained from the model run are also com-
pared with the reported catches as shown in Figure 5 (lower panel). The model output
is close to the mean catches for the period 2003-2008 (dot line in Figure 5). The in-
terannual discrepancies between model and data can be imputed to the year to year
variations of the fishing mortality h(a) that it does not be accounted in this model
study as we adopted average values over years for each age group.

4.1.2. Numerical consideration of persistence-Calculation of r and r
The value r in which equation (2.12) holds, is calculated (for the calculus part see

Appendix (A.2)) taking the value r = 3.45 > 0, which means that the population is
persistent according to the left hand of inequality (2.18). Also, the corresponding value
r = 4.59 > 0 as solution of (2.15) is also positive which implies that the population
does not go to extinction following the right hand of inequality (2.18). The numerical

14



2002 2003 2004 2005 2006 2007 2008 2009 2010
20000

40000

60000

80000

100000

Time (year)

T
ot

al
 a

nc
ho

vy
 b

io
m

as
s 

(t
on

ne
s)

2002 2003 2004 2005 2006 2007 2008 2009 2010
0

10000

20000

30000

Time (year)A
nn

ua
l c

um
ul

at
iv

e 
ca

tc
h 

(t
on

ne
s)

Figure 5: Upper panel: simulated total anchovy biomass with correspondence to acoustic
biomass estimates (•) obtained in June of 2003, 2004, 2005, 2006 and 2008 [27]. Bars are
approximate 95% confidence intervals. Lower panel: simulated annual cumulative catches are
compared with the annual reported catches (anchovy biomass caught per year, (•)) [11]. Dot
line is the average catch level for the period 2003-2008.

approximations of r and r verify the theoretical consideration of persistence through
the double inequality (2.18). Graphically, the values r and r can be represented as the
intersections of the functions ϕ(r) (see 2.13) and ϕ(r) (see 2.17) with the line y = 1,
respectively. The corresponding graphs are shown in Figure 6.

4.1.3. Fishing closing periods
There is evidence that an appropriate fishing time closing period in which harvest-

ing is reduced or prohibited can be an effective means of assisting a depleted fishery to
recover [32]. Closed seasons are often imposed during the spawning period hoping that
this will increase the reproductive abundance [2]. In Aegean anchovy fishery, a fishing
restriction period is applied as mentioned from December to March. To test whether
the timing of closed fishing period is crucial for anchovy variability, we impose a closed
season of the same length (3 months) during and outside the spawning period. The
resultant runs are compared with the base run and the scenario of no closed fishing
season.

The change of anchovy biomass and annual catches under different monthly fishing
closing periods is shown in Figure 7. Firstly, the simulation results showed that fishing
restriction period is a favoring management measure for the protection of the anchovy
resources. Base run simulation (black line) show a notable differentiation especially
concerning biomass compared to simulation without imposed closing period (cyan
line). In case of the other three month closures, although there are no significant
variation in catches, the closing period from March to May seems to favor conditions
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Figure 6: The values r and r represented graphically as intersections of ϕ(r) (see 2.13) (upper

panel) and ϕ(r)(see 2.17) (lower panel) plots with the line, y=1.
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Figure 7: Simulated anchovy biomass (upper panel) and annual additive catches (lower panel)
under different fishing closing periods. Baseline run: black line, March to May closing period:
blue line, June to August closing period: red line, September to November closing period:
green line and no closing period: cyan line.

of increase on anchovy biomass. Furthermore, the closing period inside the spawning
activity (red line) did not have a strong impact on positive increase of biomass.

A second experiment examined the significance of duration of closing period on
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Figure 8: The simulated biomass in dimensionless form under extra monthly fishing closing
periods: black line: base run, red line: extra one month closure during summer, blue line: extra
two months closure during summer, green line: extra three month closures during summer.

anchovy biomass, by imposing an extra month closure. From the sensitivity runs, it
seems that the duration of closing period is more effective instead of the month selec-
tion (Figure 8). Overall, this measure seems to have important positive results after
the 4th year of implementation. In case of spring closure (April or May) the recovery
of the stock in terms of biomass was quite effective. Of course such a management
scenario would have to face the problem of law enforcement a controversial point be-
tween policy makers and fishermen. Actually, industry members will not “follow the
rules” if those rules seem to much of the time to violate their economical needs.

4.1.4. Selective fishing
Typically, the human predation is designed to harvest individuals that are larger

size and indirectly older and heavier [17]. Targeting large fish, which are more valu-
able, modifies the structure and functioning of fish population with consequences for
productivity and resilience of the stocks. For this reason, very often fishing regula-
tion based on mesh size thresholds because selective fishing results in increase in the
mean length and weight of fish landed. For the case of anchovy, length frequency
distribution records in Aegean anchovies, indicate that majority catches range from
122.5mm to 142.5mm [27]. As the length of a fish is directly connected with age via
length equation (2.19) we design some sensitivity runs based on fish length in order
to investigate the hypothesis of how the reduction of fishing mortality for specific
length ranges contribute to the variation of anchovy biomass. Some indicative length-
age range values that we are going to use are based on the length equation (2.19).
Particularly, the sensitivity runs are implemented following the pairs: (length, age):
(115mm, 1.27), (120mm, 1.37 year), (125mm, 1.48 year), (130mm, 1.6 year), (135mm,
1.74 year), (140mm, 1.89 year), (145mm, 2.08 year), (150mm, 2.27 year) and (155mm,
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Figure 9: The change of total biomass and biomass per age group under different management
strategies on younger individuals; black line: base run, blue line: fishing halved for individuals
of 115-125mm, red line: fishing halved for individuals 120-130mm and green line: fishing
halved for individuals 125-135mm.
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Figure 10: The change of total biomass and biomass per age group under different management
strategies on older individuals; black line: base run, green line: fishing halved for individuals
135-145mm, red line: fishing halved for individuals 140-150mm and cyan line: fishing halved
for individuals 145-155mm.

2.51 year). For each sensitivity run we reduced the fishing mortality in half. The
sensitivity results suggest that reducing the fishing mortality in half on younger age
groups (1-1.5 years) a considerable increase on the available anchovy biomass can be
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achieved after the fifth year of implementation (Figure 9). Furthermore, although the
management measure applies to smaller age-1 group, the effect is slightly positive for
age-2 abundance but negligible for older fish (age-3 group).

A worthy aspect that proposed by Hsieh et al. [13] is the possibility - contrary to
the traditional selectivity - of saving larger fish at the expense of smaller and indirectly
younger ones, part of which could be fished out. Testing this hypotheses we performed
sensitivity runs where the fishing on larger fish groups 135mm-145mm, 140mm-150mm
and 145-155mm is halved keeping the younger fishes vulnerable to standard fishing.
The corresponding results are illustrated in Figure 10. The results indicate that the
scenario of keeping the fishing pressure low on older fish can be also an effective
measure on the increase of older age groups. The positive effect on both age-1 and
age-2 group is visible. Comparing the two Figures 9 and 10, we notice that similar
results concerning the anchovy biomass are achieved, but in Figure 10 the presence
of older and consequently heavier fish in stock is more possible. We emphasize that
the selective fishing measure should be regarded as testable hypotheses monitoring the
length distribution of anchovy catches rather than prescribed decisions forced to be
implemented. Besides, the adaptive management can be a tool which can increase the
chance success in fisheries management [14].

5. Discussion

The overall study of the age-structured model indicated that model’s base run is
adequately consistent within the biomass data ranges. Model simulations lead to the
conclusion that the imposition of closed fishing season during the spawning activity
would not have an additional benefit on anchovy variability. On the contrary, we
propose to the managers the test the scenario of fishing closing period from March to
May.

We also recommend that an extra 1-2 month closure, especially during spring
season, would have a positive effect on the partial recovery of the stock. We recognize
that these kind of measures will have to face the local fisher’s objections but al least
can be tested every 1-2 years. Actually, every management scheme is measured not
only by its internal consistency and potential success but the extent to which fisheries
managers and fishermen keeping in mind to work together and share knowledge.

Also, we propose that it is worth to be studied a different approach concerning
the size-selective harvesting through the protection of older fish which is possible to
contribute on heavier fish as it is shown from the model sensitivity runs. Of course,
we emphasize that this management measure is time-consuming and need the incor-
poration of managers and fishermen for several years.

We emphasize the necessity to develop an improved model which would look for
an optimal pattern of the existing measures, as this could help to establish a more
effective management strategy. For this reason, the set of an optimal control problem
that would take into account these factors together would be a very useful task for
future work.

The theoretical and numerical consideration of population sustainability through
persistence is included in this study. The importance of considering the persistence
and extinction of populations has been recognized [18, 19]. Persistence study for
anchovy population demonstrated that the anchovy population does not face the risk
of extinction. Of course, it is important to note that the above argument is valid
under the specific model framework applied in this work. The incorporation of further
assumptions would demand a reassessment of this aspect.
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The model study indicated that also natural mortality especially for the first two
months of anchovy is an important component of the model having an effect on change
of biomass. Anchovy recruitment is characterized by important inter-annual variabil-
ity which can be attributed except to human-induced effects (fishery), also to environ-
mental factors (temperature, salinity, etc.), physical processes and intrinsic biological
attributes [20]. More realism could be added to this study by including real environ-
mental factors (e.g. temperature data series) and exploring information how these
factors affect reproduction, the survivability of newborn fishes and in extension the
dynamics of anchovy population.

Model fitting was exposed to several uncertainties. These uncertainties included
best fit to mortality and fertility functions, data accuracy and adequacy and proper
model equations. To avoid inaccuracies and obtain a reliable fitting we used the
period with the most updated and completed available data [27]. Average data were
used in order to avoid the complexity and potential of best fitting estimates. Despite
all these difficulties, the model fitting appeared to be fairly good as a first step in
understanding the population dynamics of anchovy integrating the available ecological
knowledge. It is profound that the inclusion of extra data information is needed in
order to reduce subjective uncertainties in parameter estimation and have more reliable
and informative model results.
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Appendix A

A.1 Proof of Theorem

Initially, we are going to use the following lemma which has been proved by Li
[18]:

Lemma. (see Li [18]). Let β(a) and u(a) be nonnegative functions satisfying

u(0) = λ

∫ ∞

0

β(a)u(a)da
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where λ > 0. Then, for any θ ≥ λ, there exists a continuous function υ(a) such that

υ(0) = θ

∫ ∞

0

β(a)υ(a)da

and
υ(a) ≥ u(a), a ≥ 0.

Proof of Theorem Applying the methods of characteristics for the system (2.7)
we obtain

n(a, t) =

{
n(t− a, 0) exp

(
−
∫ t

0
(m(s+ t) + e(s)h(s+ a− t)) ds

)
, a ≥ t,

n(0, t− a) exp
(
−
∫ a

0
(m(s+ t− a) + e(s+ a− t)h(s)) ds

)
, a ≤ t,

(5.37)
and the integral equation

n(0, t) = b(t) β0(N)

∫ t

0

β(a)n(0, t−a)G(a, t)da+b(t) β0(N)

∫ M

t

β(a)n(t−a, 0)F (a, t)da.

(5.38)
The lower solution n(a, t) of (2.7) which satisfies (2.8) is written as

n(a, t) =

{
n(t− a, 0) exp

(
−
∫ t

0
(m(s+ t) + e h(s+ a− t)) ds

)
, a ≥ t,

n(0, t− a) exp
(
−
∫ a

0
(m(s+ t− a) + e h(s)) ds

)
, a ≤ t,

(5.39)

and the integral equation is formulated as follows

n(0, t) = b β
0

∫ t

0

β(a)n(0, t− a)G(a, t)da+ b β
0

∫ M

t

β(a)n(t− a, 0)F (a, t)da. (5.40)

The upper solution n(a, t) of (2.7) which satisfies (2.9) is represented by

n(a, t) =

{
n(t− a, 0) exp

(
−
∫ t

0
(m(s+ t) + e h(s+ a− t)) ds

)
, a ≥ t,

n(0, t− a) exp
(
−
∫ a

0
(m(s+ t− a) + e h(s)) ds

)
, a ≤ t,

(5.41)

and the integral equation

n(0, t) = b β0

∫ t

0

β(a)n(0, t− a)G(a, t)da+ b β0

∫ M

t

β(a)n(t− a, 0)F (a, t)da. (5.42)

By the previous lemma and because of the inequalities F (a, t) ≤ F (a, t) ≤ F (a, t) and
G(a, t) ≤ G(a, t) ≤ G(a, t), where G(a, t), F (a, t) were defined in (2.5) and (2.6) and

F (a, t) = exp

(
−
∫ t

0

(m(s+ t) + e h(s+ a− t)) ds

)
,

F (a, t) = exp

(
−
∫ t

0

(m(s+ t) + e h(s+ a− t)) ds

)
,

G(a, t) = exp

(
−
∫ a

0

(m(s+ t− a) + e h(s)) ds

)
,

G(a, t) = exp

(
−
∫ a

0

(m(s+ t− a) + e h(s)) ds

)
,
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we conclude that
n(0, t) ≤ n(0, t) ≤ n(0, t). (5.43)

From the presentation of the solutions (5.37), (5.39), (5.41) and the inequality (5.43)
we get our result.

A.2 Calculation of r and r from integral equations (2.12) and (2.15).

Because of the piecewise form of the data functions m(a) and h(a) as expressed in
the equations (3.22) and (3.24) for the calculation of the left hand integral equation
(2.12), we need to split it into two other integrals as follows

ϕ(r) = b β
0

∫ M

0

b(a)e−ra exp{−
∫ a

0

(m(s) + e h(s)ds)}da = b β
0

∫ 3

1

fecW∞×

(1− ekn(a−a0))bwe−ra × exp{−(m2a+ e(d1
a3

3
+ d2

a2

2
+ d3a))}da+ b β

0

∫ 4

3

fecW∞×

(1− ekn(a−a0))bwe−ra× exp{−(
m3

l3
(el3 a−1)+ e(d1

a3

3
+d2

a2

2
+d3a))}da = 1. (5.44)

The part of the integral for 0 ≤ a ≤ 1 has not been incorporated in the calculation,
as b(a) is zero in this interval. For our problem, b = 0.42 β0 = 0.9808, b = 0.057
β
0
= 0.9742, e = 0.2 and e = 1. The numerical calculations of r and r where made

by using the Matlab program (specifically the commands are: [quad and fzero]). In
a similar way the upper solution r of (2.15) will satisfy

ϕ(r) = b β0

∫ M

0

b(a)e−ra exp

(
−
∫ a

0

(m(s) + e h(s)) ds

)
da = b β0

∫ 3

1

fecW∞×

(5.45)

(1− ekn(a−a0))bw × e−ra exp{−(m2 + e(d1
a3

3
+ d2

a2

2
+ d3a))}da+ b β0

∫ 4

3

fecW∞×

(1−ekn(a−a0))bwe−ra×exp{−[(
m3

l3
(el3 a−1)+e(d1

a3

3
+d2

a2

2
+d3a)]}da = 1. (5.46)
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