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Abstract. We model the melting of a pure material during Modulated Temperature Differential
Scanning Calorimetry (MTDSC) as a one-dimensional two-phase Stefan problem. For the case that
the latent heat is large, we obtain an analytical approximate solution using perturbation methods.
For latent heat small we solve numerically the problem by the enthalpy method. Also we analyse the
solution for small times. Finally the results are used to simulate MTDSC signal during the melting.
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1. Introduction. Modulated Temperature Differential Scanning Calorimetry or
MTDSC is a method introduced by Reading and collaborators for measuring thermal
properties of materials ( [15] - [18]). In this method, conventional DSC is used with
the modification that the usual programme of a linearly increasing temperature is
modulated by a periodic perturbation.

During an experiment, a sample of material under investigation is placed in one
of two pans, the other of which is empty but otherwise identical, and these pans are
positioned symmetrically within the calorimeter. Heat is supplied to (or removed
from) the calorimeter in a controlled (and spatially) symmetric way so that the sam-
ple’s temperature follows a preset programme. The temperature difference between
the sample and the reference pan is monitored. This gives a measure of the rate of
heat intake (or output) by the sample and allows quantities such as the heat capacity
to be determined. More precisely the furnace is heated so that the temperature rise
is linear with an addition of sinusoidal modulation (controlled in such a way so that
the sample’s temperature has the required form) and the response, i.e. the release
or absorption of heat due to temperature variation, of the sample and the reference
material (which the latter is of known heat capacity) to this heating rate is measured;
the heat flows are determined by the temperature difference between the two pans.
Measuring the temperature difference between the two pans enables to measure purely
the response, to the preset temperature program, of the sample. Then the sample’s
thermal properties can be deduced.

This measure of heat transfer is split into a slowly varying part, the ‘underlying
signal’, and an oscillatory part (or at least the first harmonic) the ‘cyclic signal’.
These two signals can both used in an experiment.

MTDSC measurements can be used to deduce both qualitative and quantitative
information about the sample’s nature, e.g. its consistency, measurements of specific
heat, latent heat, in general the behaviour of the sample under a transition etc. Also it
is useful for thermal characterization of the sample by identifying the sample’s thermal
response with already existing data. Therefore there is need of rigorous theoretical
analysis of MTDSC operation in order to optimize interpretation of the measurements.
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In standard MTDSC, heating/cooling is done sinusoidally. Provided the ampli-
tude is small enough, the sample to behaves linearly. This means that every quantity
f(Ty), depending on temperature Ts = bt + Bsin(wt), can be linearized and written
as f(Ts) = f(bt) + Bsin(wt)f'(bt). There will also be sinusoidal heat intake/output
and all temperatures can be thought of as consisting of an underlying and cyclic part,
the latter having negligible higher harmonics.

Both the underlying and cyclic parts of the temperature are fixed by controlling
heat supply. The amplitude B can be increased/reduced by varying the amplitude of
the heating. There will, in general, be a phase difference between the heat supply and
the temperature of the sample, and this phase will normally vary during the course
of an experiment. The actual phase of the temperature is not particularly important
for an analysis of the results, and we shall generally take the sample temperature
oscillations to be simply B sin(wt).

The simplest model for the calorimeter (see [9]) is given by neglecting its internal
heat capacity and, without loss of generality, a pair of ordinary differential equations
represents the heat flows into the pans with their associated changes of temperature:

Qs _ T, . N
(11) dt - (Cr + Cs) dt + f - KO(T’I“ Ts)a
dQ, _ ., dT, _ _
(12) or =0, = Ko(T, - T0).

Here K is the heat transfer coefficient between the pans and with the exterior of the
calorimeter, C). is the heat capacity of the pan, C; is the heat capacity of the actual
sample, and f is the rate of heat absorption by the sample by any chemical reaction,
phase transition, etc. The temperature of the furnace T has been eliminated because
of symmetry (see [9]).

The temperature difference of the reference and the sample, AT = (T, — T),
satisfies the equation

dAT dTs
CTT + KAT = CSE +f,
with K = 2Ky. For B small enough to allow linearization we have AT = AT + AT
and f = f+ f = f + Re{fexpiwt} so that

_ 1
AT = —(C,
K(Cb+f)
while
= Cs+if/Bw ,,,
AT—BwRe{ K +iwC, e .

During an MTDSC operation AT and AT are measured and experimental measure-
ments, of the underlying and cyclic heat capacity, are calculated by the formulas
C = KAT/band C = \/(K? + w?C%)|AT|/wB respectively, where by | - | we denote
the amplitude of a quantity (see [8], [9], [17], [23], [24] ). For an inert sample, f =0,
in an experiment, we have C = C' = (. Using now the above expressions for AT and
AT, we have finally that the underlying and cyclic measurements of heat capacity, C
and C respectively, will be simulated by the following formulas:

(1.3) C =Cs+ f/b.
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(1.4) C =|Cs + f/wB].

The main problem studied in this work, is the modeling of the melting process
inside the sample pan for the case of the sample being a pure material. In this way
we can determine the heat absorption f for this specific process. Then we can use
the ODE model, presented above, about the calorimeter as a whole, to simulate the
MTDSC signal for this case. Therefore to see how the melting of a pure material affects
the output from an MTDSC run, the underlying and cyclic rate of heat absorption f
and f have to be calculated. Knowledge of f and f allows to use formulas (1.3) and
(1.4) and to simulate underlying and cyclic measurements.

We first formulate the problem as a one-dimensional two-phase Stefan problem
and we find an approximate analytical solution for the case when the latent heat is
large. The relative sizes of dimensionless latent heat, 1/¢, and frequency, wp, have
an important role in the perturbation expansion as regards the cyclic output, and we
examine separately the cases € < 1/wp (part of this analysis as well as the formulation
of the problem can be found in [9] and it is presented here for completeness), and
where € ~ O(wp) or larger. For the case, the latent heat is not large (e ~ O(1)), we
cannot use an approximate analytical solution so we solve the problem numerically
using the enthalpy method. Using these solutions, we investigate the output of the
signal. Also we examine the behaviour of the interface in these cases for small times.
Conclusions and further work is presented in the discussion of this paper.

Similar problems have been treated also in [6], [22] and [26]. In [26] the
problem that it is studied is subject to radiative and convection boundary conditions.
A perturbation expansion is applied in terms of the dimensionless Stefan number.
In [22] a two phase Stefan problem is treated but with constant temperature or
heat flux at the boundary. A perturbation expansion is applied again in terms of
the dimensionless Stefan number. In both works quantities are scaled in a similar
way as in the present work and the quasi steady approximation is valid to leading
order terms. The same result is found here for the underlying part of temperature.
The major difference in the present work is the modulation added in the linear rise
in temperature and therefore there is a need to use multiple scales in order to have
a valid asymptotic solution for frequency very large. Also in section 4 we need to
investigate the problem for a short time scale due to the transient diffusion and a long
time scale due to the interface motion. Similar approach is applied in [22]. Finally
a more extended numerical treatment of the same problem , as the one in Section
5, can be found in [6]. Here we use a fairly simple approach by using the enthalpy
method in order to obtain the underlying part of temperature, and based on this, to
calculate the modulated part of temperature analytically.

2. Formulation of the problem. A model for the melting process inside the
pan should take into account a temperature gradient inside the sample. This can be
appropriate for modelling the melting of a pure material where experimental evidence
of a significant temperature gradient exists ( [14], [25]). The sample will be taken to
be a slab (such as a thin disc) and essentially one-dimensional. The disc is symmetric
so we need to study only one half of it. The surfaces of the disc are taken to have
temperature Ty which is controlled in the usual way, Tx = T, + bt + B sin(wt).

In real experiments the method of control is likely to be different. During a melting
run the control of the sample pan’s temperature is in practice difficult, because of the
existence of the significant temperature gradient inside the sample and instead the
reference pan’s temperature is programmed. This is controlled in the usual feed-back
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process i.e. by controlling the heat flow in the furnace so that the reference pan’s
temperature takes the required form. In the present work we assume for simplicity
that T is controlled to concentrate on the melting of the sample. For a more accurate
model the actual method of control in the experiments should be taken into account.

The centre of the disc is at the point £ = Lg, and, because of symmetry, here

there will be a zero temperature gradient, % =0.

<~ 2§ ———+

0 X=Ls

Fic. 2.1. Schematic representation of a sample

While the material is changing phase, there will be a free boundary, say at =
S(t), separating the solid phase, S < z < L, from the liquid phase, 0 < z < S. In
the two parts of the sample we have the heat equation

2
pca—T :k:a r

5 FrolE 0<xz<S and S<z<Ly,

with p the density, ¢ the specific heat and k the thermal conductivity. These are, in
the present work, assumed to be constant and the same for both parts of the sample.

Before the melting starts, heat is absorbed inside the sample only because of
the specific heat and this effect is small (compared with the heat needed to cause
melting). So at the instant that melting is about to start, at the time ¢t = %
(when T reaches T),, the phase-change temperature), the temperature inside the
sample, T' = Ty (z,t), comes from solving the heat equation. For simplicity we take
T, = Ty, so that at t = 0, Ty = T,,. We assume that 7} has the form Tj(z) =
Ty () + bt + BIm{Ty(x)e™"} for t < 0 (while the sample remains solid). This gives
that for ¢t = 0, T1(z) is approximately Ty (z) ~ —22 [L2 — (L, — 2)?]. Also S = 0
at t = 0, i.e the boundary of the two phases is at the edge of the disc when melting
begins.

On the free boundary, conservation of heat will give the Stefan condition

5+
T=T, at z=5 |, k[a—T] :pEdS

oz |, dt’

where L is the latent heat. Thus the full Stefan problem will be

T T
(2.1) pcaa—t = kZ? , 0<z<S and S<uz<Ls,
oT ds
22 T = TO; k; B — _ t — ,
(22) {8:&}5_ PL a T S

(2.3) T=T;=T,+bt+ Bsin(wt) at z=0,
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oT
(2.4) o 0 at z =L,
(2.5) T ~T () (: —’;—Ckb [L2— (L, —2)*] < 0) at t=0.

In order to identify the important terms of the problem, we scale the variables.
We scale distance with the obvious choice Ly, x = L,y, so y is the dimensionless space
variable, time with ¢,, t = t,7, so 7 is the dimensionless time, and temperature with
Tr, T =T7r0 + T,, where 6 is the dimensionless temperature. The values t, and T
are fixed below. Also we scale S with the length of the half disc, Lg, so that for the
dimensionless position of the moving boundary s we have the relation sLy; = S. The
Stefan condition then becomes

KTy {aor _ pLL, ds

L, |8y t, dr’

s—

The values of t, and T are chosen to get balances at the driving boundary (z = 0) and
at the free boundary (z = S). This ensures that constants can be eliminated for the

normalized versions of (2.2) and (2.3). The choices are t, = L; % ,ITr =Ly "TU’,

and the non-dimensional Stefan problem takes the form

06 0%
(26) EE:a—:’ﬂ s 0<y<8 and S<y<1,
+
001° ds

(2.7 0wt y=s . |5 =3

(2.8) 0 =0s=r1+1Isin(wor) at y =0,
00

2.9 — =0 at =1

(2.9) oy at y=1,
T

(2.10) 0 =0p(y)==—<0 at t=0.
Tr

Here ¢ = 12¢ = £ tCOL,; = cLg\/ £ is the Stefan number which for the sample sizes

of interest, is very small. Some typical numbers found in [10] are ¢ = 2 x 103 J
kg~19K~!, Ly = 10~*m, p = 103Kg m~3, k = 0.2W m~1°K~!, £ = 6 x 10*J kg™,
so then € = 10~2 which is indeed tiny. Also we have that the dimensionless frequency

is wg = wt, = wly % and the dimensionless amplitude, [ = % = L%, / %. These

quantities are very important for the analysis of the problem. The small size of | allows
linearization of quantities and separation of them to its underlying and modulated
part while the large size of wy, related to the size of 1/e, play an important role in the
perturbation expansion applied in the problem. Note also that for the initial condition

b
for we have : 6= 6,1 (y) = T = [y (L2 = (Le = 2)?) = =5 (1= (1= 9)%).
Now we will consider the case that WLO > € which indicates that the temperature
is approximately harmonic, even allowing for the sinusoidal forcing .

3. Case of WLO > e. Because of the small size of the Stefan number, we can drop
the time derivative in the heat equation, and this will indicate that to leading order 6 is
linear for both sides of the sample. Motivated by this we apply a regular perturbation
expansion in the problem employing the small Stefan number e. Therefore we seek
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solutions of the form 6 ~ 6y + €f; + €205 + . . . for the temperature § and s ~ so+€s1 +
€?sy + ... for the position of the moving boundary s. The initial condition, which
expresses only the effect of the specific heat, is of order € and so to order one we have
that T'(z,0) = T,, or 8(y,0) = 0. Now using the condition on y = 0, we have that
0o = [ + Lsin(wor)] (1 — Sl),
0

in the liquid part. In the solid part 89 = 0 at y = sg and %—9; =0aty=1thusfy =0
in sg < y < 1. This means that to leading-order the temperature in the solid is equal
to the melting temperature during the transition. Then, using the Stefan condition,
we have

_ [060 _ T +lsin(wor) _ dso
8y so— So dr’
Integrating this and using the fact that s = 0 at 7 = 0, we obtain

l
53 =77+ — [1 — cos(woT)],

Wo
which gives, as long as [ is sufficiently small for us to be able to linearize the above
expression,

(3.1) So = \/72 + L [1—cos(wor)] ~ T+

1-— )
m Sonr [1 — cos(wpT)]

Returning to dimensional variables, we get that the temperature is simply 7' = T},

for S<z < Lgand

T

S

while the position of the free boundary, to leading-order, is given by

T =Ty, + bt + Bsin(wt) (bt + Bsin(wt)) in 0<xz<S,

(3.2) S~ j—z {t + % (1 —cos(wt))]| -

For the linearization to be valid, we need B “small”. (Also for the time derivative to
be negligible, we need ewy to be small as well. Note that for w = 0.1s! we have that

ewp = 22Li = 1072 < 1).

In Figure (3.1) we can see a schematic representation of the temperature profile.
The temperature in the liquid part is linear and the effect of the specific heat can be
seen only in the solid part; the role of specific heat is very small compared with that
of the latent heat.

However, there is a singularity at ¢ = 0 in (3.2) which results from £ not being
small compared with bt? at the start of the melting. In other words the decomposition
of the signal into its underlying and cyclic parts at the start of the event does not
make sense because there are not yet enough cycles completed.

Second Term in the Ezpansion. We see that the dimensionless cyclic measurement
is small (of order w%)’ so in order to have a more accurate estimation of the cyclic
measurement, we have to include the effect of the specific heat in the measurement
by finding the second term of the expansion in the approximate solution.



A Model for Melting of a Pure Material During MTDSC 7

melt

To s crystal 1
centre line x

F1c. 3.1. Temperature profile inside the pan

The problem for the O(e) terms is

08, 0%6;
W:c‘)gﬂ , O<y<sp and sp<y<l,
s%(s T)+ 61(s0,7) =0 %Sg—ﬁ at =5
18y 0, 1(%0,7) =Y, By sg_dT Y = So,
=0 at y=0, %:0 at y =1,
Oy
T
0(y,0) =01 = — at t=0,
Tr
where 90:05<1—£> for y < s , 0o =0 for y > s,
S0

l
with fs =7+ Isin(wgr) and s¢ = \/7'2 + — [1 — cos(woT)]-
Wo
Note that the equation 6 ~ 0y (sg + €s1) + €61 (so +€s1) = 0, if we expand 6y and 6, for
€ small takes the form 6y (sg) + €51 %—0;(30) + €81 (s0) +O(€?) = 0, so our first condition
on the free boundary is as written. The second is achieved likewise.
For y > sg, i.e. in the solid region, we have that the problem for O(e) terms is

06y  0%6,
or e sp <y <1,
06
$1=—=(50,7) + 01 (s0,7) =0, at y = so,
dy
00,
— =0 at =1.
Oy a v

Because 6y = 0, these equations will give that %2;21 = 0. So #; = 0,(7) due to %—9; =0
at y = 1. Therefore the gradient for #; in the solid region will not contribute to the
Stefan condition at y = so because it is purely a function of time. (Note also for a
short time of order O(e), or even smaller, after the melting starts, the temperature in
the solid region depends upon the initial condition #(y,0). For larger times the effect
of this initial condition decays exponentially to zero.)

Now, in the liquid zone, by the heat equation we have for O(e) terms that

826, s o'
99y (0520 - %) 4o
Oy? y< Ss% so>+ o
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where 6y = % = 1+ lwp cos(woT). Integrating this we obtain

3 ! 9/ 2
=2 (0522~ 25 ) 1 L5 4 ya(r) + 60).
85  So 2

for some functions of time a(7) and B(7). The boundary condition at y = 0 in this
problem is ; = 0 and this will give 5(7) = 0.
Using the equation for 8 at sg, we finally obtain for a(r):

_p (L _ %0 _g %0
Oé(T)—95<S% 6) 053.

Therefore we have that €; takes the form

3 i i 2 !

Yy 50 95 Y S1 S0 ; S0
. == (6522 — 25} + L ¢ s [ = —20) — g2 ).
oo n= (i3 -5) < 5o (0 (3-5) -#3)

We now apply the Stefan condition for O(e) terms at the moving boundary, ( bear in

mind that %2y92° =0 at y = s9) and we have
ot
[691] 0 801( 7) d81
— =——(sg)=—-
oy . oy dr

Substitution of the expression given for 6; in the liquid region from equation (3.3)
in the Stefan condition results in a differential equation for sy,

2 !
S0 So

05‘ So
Py DS =020 gg (2020
Tt 56*‘S<6 2)

We write s; = §; + 151, separating the underlying and the cyclic parts of s;, and the
resulting equation for 57 is

The solution of this equation, for 5, (0) =0, is

(2 2
3.4 s T (T 2\
(34) 173 (10 3)

The equation for the modulated part of sq, 31, is

g, T . wo_ 11, 1)
51+ 2 §1=— % cos(woT) + (680 550 —§%> sin(woT)
1. 1_ . 1, 5150
+ 680 +7 (58080 — 586 + 2@) s

with §,(0) = 0.
The dominant term in the solution of this equation comes from the term “ 5, cos(woT).
Therefore dropping the O(1) or smaller terms, we obtain

1= %sin(wor).

V3

(3.5)
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The O(e) terms of the heat flow will be proportional to the corresponding contributions
to the temperature gradient at the point y = 0. The underlying part is then

06, T 72 7
oy 0 =3 (1_0_T_1_8>’

while the cyclic part is

851 _ 2 2\ .
a—y(O,T) = (5 3~ §> sin(wpT).

It is important to note that the above analysis is applicable as long as we ensure
that we have a single interface between the solid and the liquid phase. Having the
temperature always nondecreasing obviously suffices. If there is cooling during the
cycle, i.e. having Bw > b, there should still be a single stable interface provided that
wio > €. This means that because the Stefan number is very small, the temperature
is approximately harmonic even with the small time scale of the oscillations. In the
case that the frequency is very large, wio = O(e), then the sample is cooled and heated
in the time scale that the heat is being transferred inside the sample. In such a case
it is likely that temperature is not harmonic in the time scale of a period, and this
situation is analysed in the next Section.

1 ~ a 1~ e -
4. Case of oo eor - L€ We may assume that oo M €le that wpe =

2r2
% = O(1). By the discussion in the previous Section, in such a case the perturbed
expansion breaks down because the temperature is no longer harmonic (diffusion time

~ wio) We now introduce two time scales: a slow one, 7 = O(1), and a fast one

1

—-), so that the time derivative is replaced by
0

)

%90 " or’

We consider a perturbation expansion in powers of wio for temperature § = 6(y, 7, 0)

and the free boundary s = s(r,0) so that 8 ~ 6y + %001 + ﬁ92 4+ ...and s ~
0

T =wpo, /T = O(

so+wi031 +wi332+.... Therefore we have as regards the heat equation, taking § = 1/woe,

L W 2 + 2 0 = @
dwo 90 " or) T oy?
and using the expansion for § we have

O 108  10B 5 5 0%

~ — e+ ....
oy?  wy Oy?

% Wo 67' Wo 80

Similarly as regards the Stefan condition we have

081" _ | Bs 05
oyl .- %9c " or T

which, after the substitution of the expansion for § and s, becomes
S+ S+

| L L [0)  _ 0% Os Os  10s1 10s
Oy Oy T %% Tar T e wy OT B

—  Wo . wo Oo
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at y = sg. Also 6y = 0 at y = sp and00:7'+w—):)sin(a) atyszhile?—iant

y = 1. Here we make use of the assumption that [ is small so that we can write [ = wio

for A = O(1). (In practical situations, [ and w%) are of the same size).
Then from the equation of O(wp) terms we have

%:0 S0 So = So(T)
and to O(1) terms we get
00 026
(4.1) 8_00 = 8y20’ 0<y<so, and sp<y<l1,
(4.2) {860] E 930 + 951 and =0 at y=s
. - = 1T 535 0= = 50,
dl,- Or 0do
(4.3) Go=7 at y=0.
00
4.4 — = t =1.
(4.4) oy at y
Especially as regards the solid region i.e sy < y < 1, note that the problem is
00 026,
4. — =9 1
(5) 60’ 8y2 ;30<y< )
(4.6) 0p=0 at y=sp, and ?:0 at y =1,
)

and initially 0(y,0) = O(e). This gives 6p(y,0) = 0 and the temperature, 6(y, 7,0) =
0, for this region to leading order terms. Therefore we have no contribution by the
temperature gradient in the solid region to the Stefan condition.

Looking at the equation for the liquid region, 0 < y < so and taking the average

over a cycle by writing fy = % 0277 fodo, we have, from the heat equation
020,
8—y2 =Y,
while the Stefan condition becomes
o _ o
Oy or’

Also fp =7 at y = 0 and Ay = 0 at sy = 0. Therefore the problem for the underlying
part of the temperature is the same as before, and the solution of this is 8y = 7(1— %),
with 59 = 7.

As regards the cyclic part of 6y, we have 6o = 6y — 6o, and for this we get the
following set of equations :

. .
50:0 at y = so,

80y 05
"oy 9o at y = so,

60:0 at y:0,
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and this gives 6o = 0 and §; = 0.

To see the cyclic part of the moving boundary, we have to take higher order terms.
Equating terms of order O(-), we obtain

690 801 6201

AU et S
or + 0o oy2 ' 0 <y < s,
[
51b+91:0 at  y = s,
oy
601 681 682
it Sl Rl =
Oy  Or +8U - y=so

61 = Asin(o) at y=0.

~ Taking the average as before, we have for §; = 5- 02” 6,do, and the problem for
61 becomes

oy 0%,
E—éayz 5 0<y<80,
§1%+9_1:0 at Yy = So,
dy
00 _0s
oy  or Y= s

90:0 at y:O_

This will give the same result for §; and 5, as above (see (3.3) and (3.4)). Also
again A in the solid region, being purely a function of time, will not contribute in
the Stefan condition. The same applies for 6; satisfying the same set of equations as
(4.5) and (4.6), with 6, (y,0,0) = 0, and this will give §; = 0 for all times in the solid
region. That is because the effect of the initial condition decays exponentially to zero.
For 6, = 6, — 6, we get the problem

96, 6329]

(47) % = 8y2 y 0< y < Sp,

(4.8) 6, =0 at y=so,
86, _ 03

4. 2 _ 2o —

( 9) ay O at Yy S0,

(4.10) 6, = Asin(o) at y=0.

We assume that §; has the form Im{)\él (y)e'“}. Substituting this into the above set
of equation, we get the boundary value problem

(4.12) =1 at y =0, and 0, = 0, at y = so.
This gives

~

61 = A |exp( i+1)(s0 —y))

1. 1
\/—2_5@ +1)(s0 —y)) — exp(\/—Q—é(
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with

A= 1 smh( ) cos( ) +i cosh( O_) sin(

=
5e
5

\/_
Finally we have for 6;

&Zgﬁer%ﬁM®+@%—Qﬁwwm
0

where

S

o

Qo = sinh®

—~
E ‘
(%)

) cos? (—) + cosh?(

5 ) sin? —)

\/—_ 2
y) (50 — ))
\/ﬁ :

(9]
/\

vl

0

0 sinh( (50
(s0

Q1 = sinh( ) cos( ) cos(

Q2 = cosh( ) cosh(

) sin(

Qs = cosh( )sinh((

%) sin(

\/_
\/_ x/%
\/_

V2l
3‘ 3‘ )
V) V) V)
g2 ﬁ‘o ﬁ‘o @‘
(9 (9 [«

)COSh( (SO y))sm( (SO y))

Q4 = sinh cos

(\/ 26) (\/ 26 V20 V20
In order to see the behaviour of the cyclic part of the moving boundary, §, we use the
Stefan condition, 01y = ‘9—22, and after simplifying the resulting expression for 32,
we obtain

(4.13) @zgw@+@mmm—n+@e@nmwu
0

) cos(— ) sin(—).

with ¢ —smh( ) and, @0 cosh(

\/_ \/_ \/_ V26

Finally the amplitude of cyclic signal will be proportional to the amplitude of the
gradient of the cyclic part of temperature, |g—§|, at y = 0. Therefore

o8
(4.14) |8_y|y:0 = [ —a)* + @ +3)?]7,

=

with g3 = cosh(s—0 and, q4 = sinh(S—0 S—O)

m)cos(ﬁ) m)sin(m .

We see that the amplitude of the cyclic signal, proportional to the amplitude of

a_y at y = 0, starts with a singularity at zero and then increases exponentially as

so = so(T) = 7 increases. Since J is small, i.e. =— ~ < ¢, the same results hold, and the

rate of change of | 89 l|y=o for later times is even larger

Behaviour of the cyclic signal for T = O(w—o) . In order to get an understanding of
the behaviour of the signal for small times in the previous cases, where dimensionless
latent heat is large, we have to look at the problem for using a time scale of order wio
We start by scaling time in the dimensionless problem (2.6)-(2.10). We write o = wpT.
We scale also distance y and the moving boundary position, s, with 1 because for

this time scale the position of the moving boundary is also of order w_o So we have
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a boundary layer in an inner region of order O(w%) at y = 0, and an outer region of
order one. We take z = woy and £ = wps, and then the problem for the inner region
becomes:

(4.15) %00 =00,,, for 0<z<¢,
“o
dg
4.1 g == =
(416) Wl =%, a z=g
o AL _
(4.17) 0= o + o sin(o) at z=0.

We take again a perturbation expansion, §(o,2) = %090 + wigt‘)l + .., &(o) =& +

%051 + u%gfg + ..., and after equating terms of order one, we obtain for 6

(4.18) 0o, =0, for 0<z<& €<z,
d

(4.19) 00,1+ = %, at 2= g,

(4.20) 0 =0+ Asin(o) at z=0.

This means that the quasi-steady approximation is valid for this time scale with
bo = (0 + Asin(0))(1 — &) in the liquid region and 6 = Ao(c)(z — &) in the solid
region. Here Ag(o) is a function of time which will be determined by the solution of
the outer region.

In the outer region we want to see the behaviour of the solution in the whole
interval, so we need to scale only time as we did for the inner region, 0 = wy7. The
problem with this scaling becomes :

(4.21) 0y, = 80,,, for 0<y<l1

< 0 6>0 _
(4.22) o= { o+ Asin(o) <0 at y=0,
(4.23) f,=0 at y=1,

where 6 is the solution of the problem in the outer region. After taking again 6 =
%000 + —z0; + ..., the solution of the resulting Dirichlet problem for 6y is:
0

(4.24) bo =23 e 7 cos(bm(l —y)) (I + I2)
m=0
where
1t sin(by,), 2
L=—— [ (1-(1-y)? 1- = - i |
1 2% J, (1= (1 =9)7) cos(bm (1 —y))dy b (62bm +5 -1,
and
K oM
—5b2 o A . 1 +
I, = Z {e db2, (m(ébm sin(o) — cos(0)) + o + 552 >] E
i=1 m m/ 1ot
for by, = w and having temperature being negative at the intervals [o%, o/ ],

pw=1,2, ..M. We have to note here that temperature by =0 + Asin(o) can become
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negative for some times (for M time intervals [0", 0% ], p =1,2,..M) if A > 1 until o
becomes large enough so that f(c,0) > 0 for all later times. In case that A < 0 then
temperature is always positive and I» = 0.

We need now to combine the results of the inner and outer region. We have at
the inner region in the solid part of it that 6y = Ag(c)(z — &), 61 = A1(0)(z — &),
Oy = Al (0)23 /64 (A\éo — Ao&l)2% /2 + cz +d, for ¢, d being some functions of o. The
functions Ay and A; will be determined by using the fact that away from the moving
boundary in the solid region the solution of the inner problem, 8%, should match with
the solution of the outer problem. This means that taking z = ywy we have:

¥ (2,0) = 0% (i, 0) = - Ao(o) o — €) + 5 An(o)ao —€) 4 g +

+ (A5 (o) (ywo)? /6(ApEo — Ao&p) (ywo)? /2 + c(ywo) + d) +

Therefore we have
1
0% (y,0) = Ao(0)y + Ap(o)y® /6 + w_o(Aly — Aobo + (Ap&o — Ao&)y?/2) +

This gives that Ap(o) = 0 because the solution of the outer region to order one is

zero, and that A, (o) = % at y = 0. Thus in the inner region the moving boundary
to ﬁrst order terms, &, soﬁves the equation

o+ Asin(o) _ d&

€o do’

and this gives & = ["; + A(cos(o) — 1)]2, while the temperature at the solid region
contributes only to higher order terms. This result in terms of variables 7 and s is
given by equation (3.1). This result could be also obtained by taking the limit of
3o for sg and so — y being small. Therefore for times of O(w%))’ the quasi-steady
approximation is valid, and the temperature in the solid region tends exponentially
to zero as it can be seen from (4.24).

5. Numerical Solution. We solve numerically this Stefan problem by using the
enthalpy method (see [1], [3]). We define the enthalpy H by

_[o0+1 0>0
H‘{ 6" 6<0
where % is the dimensionless latent heat. Therefore the field equation becomes

OH _ 15°6

Initially the temperature is 6(y,0) = 5(1 — (1 — y)?) and we compute the evolution
of the temperature by using an explicit in time scheme.

(5.2) HY' = H) +r(0_, —260) +6,)

where H J’ and 0;- are the enthalpy and temperature respectively at the jth space grid

and at the ith time level. Also r = E(U‘li—iy (we need r < 1/2 for the scheme to be
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F1G. 5.1. Numerical solution of problem (2.6)-(2.10). 0 is plotted against time and space
variables in (a). In (b) s is plotted against time. In (c) the underlying part of temperature gradient,

—g—§|y:0 and in (d) the amplitude of modulation of temperature \g—§|y:0, given by equation (5.9),
are plotted against time for e = 1, wo = 100 and [ = 0.033.

stable). Now knowing the enthalpy 0;- at the i¢th time level the temperature at this
level is given by

(5.3) 6 = 0 O0<H<1
H H <0,

This method will give a step-like solution for the free boundary, so we need an algo-
rithm to compute the free boundary position more accurately. Assuming that at the
jth space grid, the enthalpy is 0 < H! < £, we expect the enthalpy to be H! = - at
a time given by the condition

(5.4) dts = dt g i |
J J

These results are demonstrated in Figure (5.1)where the temperature profile is plotted
after solving numerically the problem for e = 1 and wy = 100 (5.1 a) and s is plotted
against time (5.1 b). The result is similar as in [6].

The numerical results should be separated in its underlying and cyclic parts.
In order to be able to do this we can solve the problem numerically without the
modulation in the boundary condition , i.e. 6(0,7) = 7. In this way we can compute
the underlying part of the temperature # and the moving boundary 5. Then writing
0 =0+10=0+1Im{fe“™} and s = 5+ 15 = 5+ [Im{3e™™} we obtain for  and 3
the following problem :

(5.5) iewold = éyy, for 0<y<s, s<y<l
(5.6) 6=1, at y=0,
(5.7) 0=—30, =—30, at y=s,
(5.8) éy =0, at y=1.
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Fic. 5.2. Comparison of numerical results with analytic approximations of Sections 3 and j.
In (a) the numerical solution (dotted line) and the approzimation by equation (3.1), (solid line)
are plotted against time with € = .01 and wo = 10. In (b) the numerical solution (dotted line),
the approzimation by equation (3.1) in Section 3 (solid line), together with the approzimation by
equation (4.18) in Section 4 (dashed line) are plotted against time.

Note that the condition § = —§9_; at y = 5 comes from linearizing 6 for [ small, i.e.
0(,s) ~ 0(3) + 150, + 10 + ..., so to O(I) terms we have 50, + 6 = 0 or equivalently
= —36, where 0, is the gradient of § at y = s for y < 5 (for y > 5 we have 6 = —56,

~ >

Solving this for the liquid region, 0 < y < § we obtain

6 = exp <(i +1) %11) - [ge‘y— +exp ((i + 1)@5)} lzzi EZ i Bg‘g] :

Similarly in the solid region we have that

f=—3fF [GXP (G +1)/5(y—2) +exp (=i + 1)@@1 |

|
=

exp ((i + 1) /52 (5 — 2)) + exp (— (i + 1)/5P5)

We use now the Stefan condition, and we get that

M

~

+ _
s = [0, +5[0,)7,
then from the obtained expressions for 6 for the liquid and solid region we can solve
the resulting algebraic equation for § and obtain the following formula:

10
iwg + gg_Pl — gy_P2 — [éyy]i_ ’

§ =
where

Py=(i+1) “‘JTOexp ((i+1) %s) {l—coth ((¢+1) %s)} ,
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Py = (4 1), [0 2P (4 DYERG = 2) —exp (i +1)/5E5)
exp ((i+1)\/¥(§—2))+exp (_(i+1)\/¥§) )

2

Py=(i+1) MTocoth ((i + 1),/%,9) .
.

By these formulas we can calculate the quantity —8—2 at y = 0 by taking —g—g ~

—Im{lg—zei“’”} at y = 0. More precisely

EWp §é; — exp (—(’L + 1)@5) _
2 T[l_ sinh (—(i + 1),/%23) ] at y=0

Applying a similar analysis as in Section 4 regarding the behaviour of the system
for small times we can see that for this initial stage temperature is harmonic so that
the underlying signal is constant and the cyclic behaves like % This can be seen in
Figure (5.1 c¢) and (5.1 d). Note that this analysis based on [ being small is valid
when € = O(1) or larger. If this is not the case, the approach followed in sections 3
or 4, depending the case, should be applied.

Also in Figure (5.2) we compare the numerical solution of problem (2.6)-(2.10)
with the approximate analytical results of Section 3 and 4. In Figure (5.2 a) the
problem is solved numerically with ¢ = .01 and wg = 10. The position of the moving
boundary is plotted with a dotted line. The solid line corresponds to the position of the
moving boundary given by equation (3.1). We see that equation (3.1) is a very good
approximation to the numerical solution for the case that WLO > e. In Figure (5.2D)
the problem is solved numerically, again with € = .1 and wy = 100. The position of
the moving boundary given by the numerical solution of the problem is plotted with
the dotted line. It appears to have a good fit with the approximate solution (dashed

line) given by the analysis in Section 4. In this case s = so + wiosl + §32 where

a0 .

and §s is given by equation (4.13). The expression in equation (3.1), plotted with the
solid line, is not valid any more because WLO & €. (The range of the plot is the interval
[0 0.3], so that the difference of the two approximations can be obvious in the graph.)

6. Effects of the melting process at the signal. We will examine the be-
haviour of the signal initially for the case that € < wio & 1. During the melting the
rate of intake of heat will be approximately

Qs ds B[
T 2pS.LLg T 25./kbpL [1 + m <sm(wt)

! (1—cos<wt>>)],

Cwt

where S. is the cross-sectional area of the sample pan. Note here that in this case
the quasi-steady approximation is valid so that the heat intake in the sample is f =
-8, =-1[%],_, =% The only important contribution comes only from the
latent heat term while those representing the effect of specific heat (of order e and
smaller) are neglected. In Figure (6.1a) the heat flow @, is plotted against time ¢.
Using the assumption of the large frequency, wg = wt, > 1, we can neglect the %
term in the brackets of the previous equation, and the expression for the heat intake

can be written more simply as

dQ, d
Ci - 2pSC/3LSd—f ~ 2S.\/kbpL {1 +

. Bsin(wt) } |

bt
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Fi1G. 6.1. a)Total heat flow rate d?ts , b) Underlying measurement C, c)Cyclic measurement c

We use this in the basic ordinary-differential-equation model for the calorimeter, and
we obtain, approximately,

AT Bsi
Cr + KAT = 25,\/kboL {1 + y] .

Solving this equation in the usual way, and separating the underlying and cyclic parts
of the solution, we obtain

AT = AT + AT,

with

_ kbpL - 2BS. [kpL K sin(wt) — wCg cos(wt)
AT =25,/ 2= AT = ilidod .
Se\| i and i Vo K? +w?C%

The heat capacity measurements are

_ ~ 28,
(6.1) C=25./ME ana &= 2, [RPL
b wt b

Plots of these underlying and cyclic measurements are shown here in Figures (6.1
b) and (6.1 c) respectively. The size of the peak in the underlying measurement is

25, %, and it starts at time ¢ = 0 and drops to zero when the melting is completed

at time L4/ %. The cyclic measurement takes place at the same range of time and

behaves like % Including the second term in the regular perturbation expansion will
give for the measurements

_ e b ko, 1 [k, 7
C=284/2=01+2 Ty LS
b { T3z (10Lgpc .\ oz 18 )}

~ 28 1 ef 1 kb 1 [k 2
= 22 Jkplh! = — = LN N LA R Y
C= - Vhkot {bt C <3OLS PYARREY I Y 9)}
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The sample is inert for ¢ < 0 and for ¢t > t, = LS\/%, which is the time needed
for the whole material to melt, so before and after the melting takes place, we have
C = C = Cg. This is of course small compared with the cyclic and underlying
measurements in equation (6.1).

Considering now the case that the frequency is very large and using the results

of Section 4 we obtain for the cyclic measurement

_ 2S5,
Towt

=

C VELPb [a7 (qa — q3)* + a5 (a1 + q3)*] #

for § being of order O(1) and the ¢’s are ¢; = qi(\;—g—é) = qi( p‘;kgbt). In the case that

0 is small we have the same measurement i.e. initially the signal behaves like % and
for larger times it modulates as it can be seen according to Figure (6.2)

(@) (b)
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200 \% 10 1
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0
o 0.5 1 o 0.5 1

F1G. 6.2. Cyclic signal is plotted in (a) for § =1 and in (b) for § = 0.001

Finally for the case that the enthalpy is of same size as the specific heat the cyclic
signal has the same form i.e. initially behaves like % as in Figure (5.1 d) while the
underlying appears to have the form of a small bump proportional to g—Z|y:0 as in
Figure (5.1 ¢). This happens because heat is not transferred instantly and we need
an extra amount of heat for the final part of the sample to melt.

According to the experiment presented in [14] of the melting of a pure lead
sample, the results illustrated from the above analysis are in qualitative agreement
with those of the experiment. The underlying measurement remains constant during
the transition while the amplitude of the modulation decays with time during the
melting. When the melting is completed there is a sharp change in the amplitude and
central value of the signal.

7. Discussion. The melting of a pure material has been modelled as a one-
dimensional two-phase Stefan problem. The assumption of having a large latent heat
allows us to obtain an asymptotic approximate solution. Without this assumption
the problem is solved numerically.

In the former case the quasi-steady approximation for temperature is valid for the
underlying part, and for the cyclic part, the relative sizes of dimensionless frequency
and latent heat play an important role in the solution.
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If € is very small, the underlying signal is constant, because the quasi-steady
approximation is valid, and this is irrelevant to the relative size of wy and €. As regards
the cyclic signal for the case that wge < 1, again the quasi-steady approximation is
valid during the experiment, and the signal is proportional to % For 1/§ = wpe = O(1)
we have that the signal has the form of a combination of elementary trigonometric
functions of \;;Lé = 7y/wpe/2. Initially again it is proportional to % Taking § to be
small, we observe modulations of the cyclic signal during the experiment, due to the
fact that the hyperbolic trigonometric functions become large with § small.

Finally for the case where both latent heat and specific heat play an important
role in the melting process i.e. € = O(1), we can simulate both the underlying and
cyclic signal of the device. The underlying signal, computed numerically, initially is
constant because the quasi-steady approximation is valid, and then it increases with
time. The cyclic signal behaves like %

In all cases the size of the cyclic heat capacity decreases with increasing frequency
and for small times the deconvolution of the signal has no meaning so the cyclic signal
behaves like 1/t. Also the moving boundary for this kind of problem is stable (we
have no mechanism causing instability).

These results are in qualitative agreement with the experimental results presented
in [14].

A two or three-dimensional model would be an aspect for future work in order
to have a more accurate simulation of the signal. In such a case asymmetries and
artifacts of the device could be involved in the model.

Another possible idea for future work is to review the problem with the more
realistic assumption that the reference pan’s temperature is controlled as is likely in
practice in order to be able to have a quantitative comparison with real experiments.
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