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Abstract In this work, we estimate the blow-up time for the non-local hyperbolic equation of Ohmic

type, ut + ux = λf(u)/(
∫ 1
0 f(u) dx)2, together with initial and boundary conditions. It is known, that

for f(s), −f ′(s) positive and
∫ ∞
0

f(s)ds < ∞, there exists a critical value of the parameter λ > 0, say

λ∗, such that for λ > λ∗ there is no stationary solution and the solution u(x, t) blows up globally in
finite time t∗, while for λ ≤ λ∗ there exist stationary solutions. Moreover the solution u(x, t) also blows

up for large enough initial data and λ ≤ λ∗. Thus, estimates for t∗ were found either for λ greater than

the critical value λ∗ and fixed initial data u0(x) ≥ 0, or for u0(x) greater than the greatest steady-state
solution (denote w2 ≥ w∗) and fixed λ ≤ λ∗. The estimates are obtained by comparison, by asymptotical

and by numerical methods. Finally, amongst the others, for given λ, λ∗ and 0 < λ − λ∗ � 1, estimates
of the form were found: upper bound ε + c1 ln [c2 (λ − λ∗)−1]; lower bound c3(λ − λ∗)−1/2; asymptotic

estimate t∗ ∼ c4(λ − λ∗)−1/2 for f(s) = e−s. Moreover, for 0 < λ ≤ λ∗ and given initial data u0(x)

greater than the greatest steady-state solution w2(x), we have upper estimates: either c5 ln(c6 A−1
0 +1)

or ε + c7 ln(c8ζ−1), where A0, ζ measure, in some sense, the difference u0 − w2, (if u0 → w2+ then

A0, ζ → 0+). ci > 0 are some constants and 0 < ε � 1, 0 < A0, ζ . Some numerical results are also
given.
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1. Introduction

We consider the non-local initial boundary value problem,

ut(x, t) + ux(x, t) = λ
f(u(x, t))(∫ 1

0
f(u(x, t)) dx

)2 , 0 < x < 1, t > 0, (1.1a)

u(0, t) = 0 , t > 0, (1.1b)

u(x, 0) = u0(x) ≥ 0, 0 < x < 1, (1.1c)
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where λ > 0. The function u(x, t) represents the dimensionless temperature when an
electric current flows through a conductor (e.g. food) with temperature dependent on
electrical resistivity f(u) > 0, subject to a fixed potential difference V > 0. The (dimen-
sionless) resistivity f(u) may be either an increasing or a decreasing function of temper-
ature depending strongly on the type of the material (food). Problem (1.1) models one
of the main methods for sterilizing food. The sterilization can take place by electrically
heating the food rapidly. The food is passed through a conduit, part of which lies between
two electrodes. A high electric current flowing between the electrodes results in Ohmic
heating of the food which quickly gets hot. The problem was considered by Please et
al. [23] who looked at the stability of models allowing for different types of flow. More
background on this type of process can be found in Biss et al. [5], De Alwiss & Fryer
[3], Fryer et al. [14], Skudder & Biss [25], Stirling [26], and Zhang & Fryer [28].
Lacey, Tzanetis and Vlamos [21] have also studied problem (1.1): For f decreasing with∫ ∞
0
f(s)ds < ∞ then blow-up occurs if λ is too large for a steady state to exist or if

the initial condition is too big. If f is increasing with
∫ ∞
0
ds/f(s) < ∞ blow-up is also

possible. If f is increasing with
∫ ∞
0 ds/f(s) = ∞ or decreasing with

∫ ∞
0 f(s)ds = ∞ the

solution is global in time; some special cases with particular forms of f are discussed to
illustrate what the solution can do, for details see [21] and the references therein.

Here λ is a dimensionless parameter and can be identified, amongst other things, with
the square (is actually proportional) of the applied potential difference V. In the case
where f(u) is a sufficiently rapidly decreasing function of temperature, there exists a
critical value of the potential difference V, say V ∗, such that for V > V ∗ (equivalently
λ > λ∗) a thermal runaway (blow-up of the temperature u or burning of the food) takes
place, see [19, 20, 21].
In the following we assume f to satisfy

f(s) > 0, f ′(s) < 0, s ≥ 0, (1.2a)

∫ ∞

0

f(s) ds <∞ (1.2b)

for instance either f(s) = e−s or f(s) = (1 + s)−p, p > 1, satisfy (1.2).
For the initial data it is required that u0(x), u′0(x) to be bounded, u0(x) ≥ 0 in [0, 1]
(the last requirement is a consequence of the fact that for any initial data the solution u
becomes non-negative over (0, 1] for some time t and so, with an appropriate redefinition
of t, we can always make this assumption [19, 21]).

The solution u(x, t) also blows up for large enough initial data even if 0 < λ ≤ λ∗,
[19, 20, 21]; we give (see Section 5), in this case, an analogous estimate of blow up time,
as for the case of λ > λ∗.

The corresponding steady problem to (1.1) is

w′ = µf(w) = λ
f(w)(∫ 1

0 f(w) dx
)2 , 0 < x < 1, w(0) = 0, (1.3)
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Figure 1. Possible response diagrams for equilibrium solutions: (a) Mf(M) unbounded; (b)

Mf(M) → c, 0 < c < ∞, as M → ∞; (c) Mf(M) → 0, as M → ∞. In each diagram it is

possible for there to be more turning points than shown (so that for some λ there are more

solutions).

where w = w(x) = w(x;λ) (see [6, 13, 19, 20, 21]). The parameter µ is referred to
as a local parameter while λ as a non-local one and the relation between them is µ =

λ/
(∫ 1

0
f(w)dx

)2

.

On integrating the ordinary differential equation (1.3) we see that λ = M2

µ , where

M = M(µ) = max
[0,1]

w = w(1;µ) and µ =
∫ M

0
ds/f(s).

It is clear that M(µ) → 0+ as µ→ 0+ and, with f(0) > 0 , λ→ 0+ as µ→ 0 + .

It is also known that if (1.2b) holds, then there exists a critical value of the parameter
λ, say λ∗ < ∞, such that for λ > λ∗, the solution u(x, t;λ) to problem (1.1), blows
up globally in finite time t∗ (u → ∞ for all x ∈ (0, 1] as t → t∗−, actually the blow-up
is uniform in x on compact subsets of (0, 1], in fact, for two points 0 < x1 < x2 ≤ 1,
|u(x1, t)−u(x2, t)| → 0 as t→ t∗, [21]) and problem (1.3) has no solutions (of any kind).
For a fixed λ ∈ (0, λ∗) there exist at least two solutions w(x;λ) and a unique u(x, t;λ);
u(x, t;λ) may either exist for all time or blow up globally depending on the initial data
(for the blow-up, u0 must be greater than the greatest steady solution w(x;λ) and (1.2)
holds) [19, 20, 21]. The response (bifurcation) diagrams for problem (1.3) are as in Figure
1, see also [21].

Our purpose, in this work, is to find some estimates of the blow-up time t∗, either
with respect to the parameter λ (more precisely, with respect to the difference λ − λ∗,
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when λ > λ∗ and fixed initial data u0(x), or with respect to initial data u0(x) and fixed
λ ≤ λ∗.

Works related to this model (thermistor problem) can be found in [2, 7, 8, 9, 10, 12].
Estimates of blow-up time are very important since they answer the question “when” the
blow up takes place (for problem (1.1) this is the time when the food is burnt) [4, 15, 16].

In Figure 1, (c) or (b) with 2c < λ∗, there may be either only one or more than one
turning point (λ∗, M∗) depending on f . One can find other forms of non-local diagrams
in [19, 20, 21]; their shapes depend strongly on the boundary conditions and the function
f .

Under the assumptions (1.2), problem (1.3) has at least one classical (regular) steady
solution w∗ = w(x;λ∗), (more than one w∗ may exist). In the following, we assume that
w∗ is unique, i.e. Figure 1(c), and that the pair (w,w) at λ < λ∗ (λ close to λ∗) has the
property: w = w1 is stable while w = w2 is unstable, (since in our proofs we require only
the existence of at least one w∗ at λ∗ and that w(x) < w(x) for x in (0, 1] where w is
the next steady solution greater than w(x) at λ < λ∗).

Also we emphasize that for λ > λ∗ and for all x ∈ (0, 1] we have:

F (u) =
f(u)

(
∫ 1

0
f(u)dx)2

→ ∞ as t→ t∗− <∞, (1.4a)

u(x, t;λ) → ∞ as t→ t∗− <∞, (1.4b)

the latter means that u(x, t;λ) blows up globally, see [19, 20, 21].
Similar situations, concerning the blow-up, can be found in the study of the (local)

reaction diffusion problem:

ut = �u+ λf(u), x ∈ Ω, t > 0, (1.5a)

B(u) = 0, x ∈ ∂ Ω, t > 0, (1.5b)

u(x, 0) = u0(x), x ∈ Ω, (1.5c)

where B represents Dirichlet or Robin boundary conditions, Ω is a bounded domain of
R

n, λ is a positive parameter and f(u) behaves like eu:

f(s) > 0, f ′(s) > 0, f ′′(s) ≥ 0, for s ≥ 0, and
∫ ∞

0

ds/f(s) <∞, (1.6)

[1, 17, 18]. Again, under certain conditions, the solution u to (1.5) blows up
(lim supt→t∗− ‖ u(·, t;λ) ‖∞= ∞ for λ > λ∗, t∗ <∞). It should be emphasized that the
blow-up for problem (1.5) differs from that of non-local problem (1.1), in that, (1.5) does
not normally blow up globally. Moreover, there exists a turning point P ∗ = (λ∗, ‖w∗‖∞)
with ‖w∗‖∞ <∞ of the response diagram of the steady problem corresponding to (1.5).
For f which satisfies (1.6), the following upper and lower bounds for t∗ hold: t1 ≤ t∗ ≤ t2
where ti = ci(λ − λ∗)−1/2 and ci are some constants (c1 < c2 ); also for f(s) = es,
t∗ ∼ K(λ− λ∗)−1/2 as λ→ λ∗+ asymptotically, where K is a constant, [17].
Estimates of blow-up time also can be found in [16], (upper and lower bounds for t∗,
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similar to those for the local problem (1.5)), by using comparison methods, for the non-
local equation ut = uxx + λf(u)/(

∫ 1

−1
f(u) dx)2, with initial conditions u0(x), Robin

type boundary conditions, decreasing f and λ > λ∗. Also for f(u) = e−u, the following
asymptotic estimate holds: t∗ ∼ tu(λ − λ∗)−1/2 for 0 < λ − λ∗ � 1, where tu is a
constant. A numerical estimate is also obtained by using a Crank-Nicolson scheme.

In the present work, we find estimates for the non-local problem (1.1), for f(s) = e−s

and for general f(s) which satisfies (1.2).
In both problems, estimates of t∗ have been found only if the spectrum of the steady

problem is an interval closed on the right i.e. (0, λ∗]. It is still an open question, even
for problem (1.5), how to estimate t∗ when the spectrum is an open interval (0, λ∗); see
[16, 17, 18].

We organize this work as follows: in Section 2 we use comparison techniques and find
upper and lower bounds for t∗, when f satisfies (1.2). In Section 3, we use an asymptotic
expansion and again obtain an estimate of t∗ but for f(s) = e−s. Also in Section 4, we
compute numerically the blow-up time t∗ using an up-wind scheme and verifying the
previous estimate. Finally, in Section 5 we give an estimate for t∗ with respect to the
initial data u0(x).

2. Comparison methods: upper and lower bounds of t∗ for λ > λ∗

If the function f satisfies (1.2a), one can prove (see appendix in [21]) that a maximum
principle holds for (1.1) (here is where we need f to be decreasing). Then we may,
in the usual way, define upper and lower solutions of (1.1): an upper (lower) solution
u (u) is defined as a function which satisfies (1.1) if we substitute ≥ (≤) for =, see
[19, 20, 21, 24, 27]. The same comparison properties also hold for the equation ut+ux = 0
together with the data (1.1b), (1.1c). In the following work, we use ideas and techniques
similar to [16].

(a) An upper bound for t∗

We now wish to find an upper bound for the blow-up time t∗. For simplicity, we assume
that 0 ≤ u0 < w∗. Firstly, we write (1.3) in a slightly different way,

w′ = µf(w) =
λf(w)(∫ 1

0 f(w) dx
)2 = λF (w), 0 < x < 1, w(0) = 0, (2.1)

where F (·) = f(·)/
(∫ 1

0
f(·)dx

)2

and λ is a positive parameter (eigenvalue). Then, the
related linearized eigenvalue problem of (2.1) for a function φ = φ(x;λ) ∈ R (actually φ
is assumed to be a real valued function) is:

φ′ − λ δF (w;φ) = −ρ φ, 0 < x < 1, φ(0) = φ0 = 0, (2.2)



6 C.V. Nikolopoulos and D.E. Tzanetis

where φ = φ(x;λ), ρ = ρ(w, λ), (ρ, φ) is the eigenpair and δF (w;φ) is the first variation
(or Gâteaux derivative) of F at w in the direction of φ, (F (w;φ) := F (w + εφ) = J(ε)
and δF (w;φ) = J ′(0) = limε→0

F (w+εφ)−F (w)
ε ).

As regards the first variation δF (w;φ) we have,

δF (w;φ) =
f ′(w)φ

(
∫ 1

0
f(w) dx)2

− 2f(w)
∫ 1

0 f
′(w)φdx

(
∫ 1

0
f(w) dx)3

.

In the following, in order to simplify the expressions, we use the shorthand notation:

Iν k(w, φ) :=
∫ 1

0

f (ν)(w(x))φk(x) dx,

and Iν(w) := Iν 0(w, φ), ν, k = 0, 1, 2, 3, ... , f (ν)(w) = dν

dwν f(w), thus

δF (w;φ) =
f ′(w)φ
I2
0 (w)

− 2f(w)I11(w, φ)
I3
0 (w)

.

Now we can have the following lemma concerning the eigenpair of problem (2.2).

Lemma 1. Problem (2.2) has the eigenpair (ρ, φ) where φ(x) > 0, x ∈ (0, 1] and its
spectrum is a continuum of eigenvalues in R, generated by ρ = ρ(w, λ) for each λ ∈ (0, λ∗].
The eigenvalue ρ = ρ(w, λ) is continuous with respect to λ.

Proof: Firstly, if φ(x) is a real valued function then equation (2.2) implies that ρ ∈ R.
Now, we write equation (2.2) in a different way

φ′ + (g(x) + ρ)φ = qh(x),

where q = −I11(w, φ) is a number, h(x) = h(x;w(x)) = λ 2f(w(x))
I3
0 (w)

> 0 and g(x) =

g(x;w(x)) = −λf ′(w(x))
I2
0 (w)

. Problem (2.2) can be written under the equivalent integral
formulation,

φ(x) = q

[
exp

(
−

∫ x

0

g(z) dz − ρ x

)] ∫ x

0

h(s)
[
exp

(∫ s

0

g(z) dz + ρ s

)]
ds.

The above form of φ implies that if a non trivial φ satisfying (2.2) exists, then this is
positive (φ actually does not change sign in (0, 1) and can be taken as positive).

Now we can normalize φ so that q = 1. Therefore there exists a real valued function φ
satisfying (2.2) if we can find ρ 	= 0 satisfying the following equation

1 = −I11(w, φ) =
∫ 1

0

−f ′(w(x))φ(x)dx , where φ(x) = φ(x; ρ) .

This can be written as

1 =
∫ 1

0

−f ′(w(x))
[∫ x

0

h(x− s) exp [−ρs−G(x) +G(x − s)] ds
]
dx
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for G(s) =
∫ s

0 g(z) dz. Therefore

1 =
∫ 1

0

exp(−ρs)
[∫ 1

s

(−f ′(w(x))h(x − s) exp [−G(x) +G(x− s)])dx
]
ds or

1 =
∫ 1

0

Y (s) exp(−ρs) ds, (2.3)

where Y (s) = Y (s;w) > 0 for −f ′(w)h(x − s) exp [−G(x) +G(x− s)] > 0 and 0 < s <

x < 1 (the eigenvalue ρ is a real number). For a fixed λ, w’s are also fixed. Now for
each Y (s) > 1 we have only one real solution ρ > 0, which satisfies equation (2.3). Also
for each Y (s) < 1 we have only one real solution ρ < 0 and for Y (s) = 1 we have only
the trivial solution ρ = 0. The eigenvalues ρ = ρ(w, λ) ∈ C((0, λ∗]; R) since the function
w(x;λ), g(x) = g(x;λ) and Y (s) = Y (s;w) are continuous functions with respect to
λ ∈ (0, λ∗]. This proves the lemma. �

It is known that the spectrum to problem (2.1) can be either a closed interval from
the right or an open one. Here we consider the case where the spectrum to problem
(2.1) is a closed interval from the right and that there exists a unique turning point
(λ∗, ‖w∗‖∞) with ‖w∗‖∞ = w∗(1) = M∗ < ∞, see Figure 1(c); at λ < λ∗ two steady
states correspond w1, w2 with w1 < w2, while at λ = λ∗ correspond w1 = w2 = w∗.
We need the following:

Lemma 2. Let w1, w2 with w1 < w2 be the solutions of (2.1) at λ < λ∗, then
ρ1 = ρ(w1, λ) ≤ 0, ρ2 = ρ(w2, λ) ≥ 0 and ρ∗ = ρ(w∗, λ∗) = 0 where ρ represents the
eigenvalues of problem (2.2).

Proof: We assume u(x, t) = w(x) + ε φ(x) eρt + O(ε2), with φ(x) > 0, for x ∈ (0, 1]
and for some ε ∈ R. Then we find, to the first order of ε, that φ and ρ must satisfy
problem (2.2). We also know that w1 is asymptotically stable, w2 is unstable and w∗ is
stable from below and unstable from above, see [21]. These imply that ρ1 ≤ 0, ρ2 ≥ 0
and ρ∗ = 0. �

Thus, the lower branch of the response diagram (Figure 1(c)) is asymptotically stable
with ρ1 = ρ(w1, λ) ≤ 0 (ρ is the eigenvalue of (2.2) for λ < λ∗ at w), while the upper
branch is unstable with ρ2 = ρ(w2, λ) ≥ 0, see also [11, 19, 20, 22]. This continues
to hold (with a suitable understanding of the “upper branch”) even if there are more
turning points P ∗. Moreover, from Lemma 2 we have ρ∗ = ρ(w∗, λ∗) = 0, where ρ is the
eigenvalue of linearized problem (2.2); for related results, see also [1, 11, 22]. Because of
Lemmas 1, 2, problem (2.2) at λ = λ∗, with φ∗(x) > 0, becomes

φ∗′ − λ∗ δF (w∗;φ∗) = 0, 0 < x < 1 , φ∗(0) = φ∗0 = 0. (2.4)

Now, in order to find an upper bound for t∗, we take the difference,

v = v(x, t) = v(x, t;λ) = u(x, t;λ) − w∗(x) = u− w∗. (2.5)

Since w∗ is bounded, v blows up at the same time as u does and in the same manner
i.e. globally. Hence t∗ = t∗(u) = t∗(v) (t∗(u) is the blow-up time for u) and v(x, t) → ∞
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as t → t∗− for all x ∈ (0, 1]. In the following, we find an A-problem (see below (2.13)),
where A = A(t) blows up and is such that: A(t) ≤ c ‖v(·, t)‖∞ where c = 1/ supx φ

∗(x)
as long as v(x, t) ≥ ψ(x, t) = A(t)φ∗(x). The latter relation and (2.5) imply t∗(u) =
t∗(v) ≤ T ∗ = T ∗(A), for some T ∗, thus we find an upper bound T ∗ for t∗(u).

Therefore we obtain

vt = ut = −ux + λF (u) = −ux + λF (u) − λ∗F (w∗) + w∗′

= −vx + (λ− λ∗)F (u) + λ∗ (F (u) − F (w∗)) . (2.6)

By writing J(ε) = F (w∗ + εv), 0 ≤ ε ≤ 1, whence J(0) = F (w∗) and J(1) = F (u),
Taylor’s formula gives,

F (u) − F (w∗) = J(1) − J(0) = J ′(0) +
J ′′(ξ)

2
,

for some ξ = ξ(t) ∈ (0, 1), where J ′(0) = δF (w∗; v) =
[

d
dεJ(ε)

]
ε=0

. Also

δ2F (z; v) =
f ′′(z)v2

I2
0 (z)

− 4vf ′(z)I1 1(z, v)
I3
0 (z)

− 2f(z)I2 2(z, v)
I3
0 (z)

+
6f(z)I2

1 1(z, v)
I4
0 (z)

,

where z = w∗ + ξv and δ2F (z; v) = J ′′(ξ) is the second Gâteaux derivative. Thus, from
equation (2.6) we get the problem:

vt + vx = (λ− λ∗)F (u) + λ∗ δF (w∗; v) +
λ∗

2
J ′′(ξ), 0 < x < 1, t > t1, (2.7a)

v(0, t) = 0, t > t1, (2.7b)

v(x, t1) = u(x, t1) − w∗(x) ≥ 0, 0 ≤ x ≤ 1, (2.7c)

(it is easily seen, due to (1.4), that there exists a t1 ∈ (0, t∗) so that v(x, t) = u(x, t) −
w∗(x) > 0 in (0, 1] for every t > t1).

Now we set v = u− w∗ = θv̂, for 0 < θ = λ− λ∗ � 1. Thus, problem (2.7) becomes

θv̂t + θv̂x = θF (u) + λ∗θ δF (w∗; v̂) +
λ∗

2
J ′′(ξ), 0 < x < 1, t > t1, (2.8a)

v̂(0, t) = 0, t > t1, (2.8b)

θv̂(x, t1) = u(x, t1) − w∗(x) ≥ 0, 0 < x < 1. (2.8c)

This is simplified to

v̂t + v̂x = F (u) + λ∗ δF (w∗; v̂) +
λ∗

2
θĴ ′′(ξ), 0 < x < 1, t > t1,

where J(ξ) = θ2 Ĵ(ξ) = θ2 δ2F (z; v̂). Now we find a lower solution ψ for v̂-problem (2.8).
Therefore we require ψ = ψ(x, t) to satisfy

ψt + ψx ≤ F (u) + λ∗ δF (w∗;ψ) +
λ∗

2
θ δ2F (z;ψ). (2.9)
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Setting ψ(x, t) = A(t)φ∗(x) and Ȧ(t) = d
dtA(t) we obtain

Ȧ(t)φ∗ +A(t)φ∗′ − λ∗ A(t) δF (w∗;φ∗) ≤ F (u) +
λ∗

2
θ δ2F (z;ψ). (2.10)

Using φ∗-problem (2.4), equation (2.10) becomes

Ȧ(t)φ∗ ≤ F (u) +
λ∗

2
θ δ2F (z;ψ). (2.11)

Due to the fact that u blows up as t → t∗− and relation (1.4), we have that there
exists β such that F (u) > βA(t)φ∗(x) > 0, for some t ∈ [t∗ − ε, T ∗(A)) where ε > 0
and T ∗ = T ∗(A) ≥ t∗ is the maximum time of existence (the blow-up time) of A(t).
Therefore it is enough to consider, for t > τ1 = max{t1, t∗ − ε},

Ȧ(t)φ∗(x) ≤ βA(t)φ∗(x) +
λ∗

2
θ A2(t) δ2F (z;φ∗). (2.12)

For 0 < θ � 1 i.e. λ close to λ∗, we can find β1 > 0, so that we get

Ȧ(t)φ∗ ≤ β1A(t)φ∗ ≤ βA(t)φ∗ +
λ∗

2
θA2(t) δ2F (z;φ∗), t > τ1 . (2.13)

Taking c small enough so that θ ≤ c
A(t) , (for some fixed θ we choose c, and c1, see below,

so that θ ≤ c
A(t) where c is about the time that u is smaller than order one i.e. u(x, t) is

bounded, A(τ)φ∗θ + w∗ ≤ u(x, t) and 0 < t∗ − τ � 1) we have that A(t) ≤ c1 e
β1t ≤ c

θ

with c1 = A(τ1) e−β1τ1 and this holds for time t = τ = 1
β1

ln( c
θ c1

).
Now we can obtain an upper estimate T ∗

u for t∗(u) which is T ∗
u = τ + t∗1 > t∗(u) = t∗,

where t∗1 is the blow-up time of the problem:

ut(x, t) + ux(x, t) = λ
f(u(x, t))(∫ 1

0
f(u(x, t)) dx

)2 , 0 < x < 1, t > τ,

u(0, t) = 0 , t > τ, u(x, τ) = w∗ + cφ∗ ≥ 0, 0 < x < 1,

and t∗1 � τ .

(b) A lower bound for t∗

We take u0(x) such that u0(x) < w∗(x) for 0 < x < 1 and u0(0) = w∗(0) = 0. Let
u∗ = u∗(x, t) = u(x, t;λ∗) be the solution to (1.1) with u∗0 = u0.

In the following we use a similar concept to those in [16, 17]. Therefore we set u =
u∗ + u1 and we shall prove that u ≤ u∗ + ψ1 = w∗ − û + ψ1 ≤ w∗ − ψ + ψ1, where û
is given by û = w∗ − u∗ > 0 and satisfies (2.15), u1 solves (2.24) (see below), ψ1 is an
upper solution to the u1-problem and ψ is lower solution to û−problem i.e. ψ1 ≥ u1 and
ψ ≤ û. The û-problem is defined by

ût = −u∗t = u∗x − λ∗F (u∗) − w∗′ + λ∗F (w∗)

= −ûx − λ∗ (F (u∗) − F (w∗)) , 0 < x < 1, 0 < t < T, (2.15a)
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û(0, t) = w∗(0) − u∗(0, t) = 0, 0 < t < T, (2.15b)

û(x, 0) = û0(x) = w∗(x) − u∗0(x), 0 < x < 1, (2.15c)

with û0 > 0, hence û > 0, for 0 < x < 1, 0 < t < T < t∗ and for some T > 0. We write
J(ε) = F (w∗ − εû), 0 ≤ ε ≤ 1 and examine the difference,

F (u∗) − F (w∗) = J(1) − J(0) = J ′(0) +
J ′′(ξ)

2
, 0 < ξ < 1,

where J ′(0) = δF (w∗;−û) = −δF (w∗; û) = λ∗ f ′(w∗)û
I2
0 (w∗)

− 2λ∗f(w∗) I11(w∗,û)
I3
0 (w∗)

and

J ′′(ξ) = δ2 F (z;−û) = δ2 F (z; û) =
f ′′(z)û2

I2
0 (z)

− 4ûf ′(z)I1 1(z, û)
I3
0 (z)

−
2f(z)I2 2(z, û)

I3
0 (z)

+
6f(z)I2

1 1(z, û)
I4
0 (z)

, (2.16)

with 0 < z = w∗ − ξû < w∗, for some ξ = ξ(t) ∈ (0, 1).
Thus equation (2.15a) and (2.16) give:

L(û) := ût + ûx − λ∗δF (w∗; û) +
λ∗

2
δ2 F (z; û) = 0. (2.17)

Now we introduce the function ψ = ψ(x, t) = cφ∗(x)
t+t0

+ u2(x)
(t+t0)2

, where c, t0 (positive
constants), u2 = u2(x) ≥ 0 are to be determined and φ∗ = φ∗(x) satisfies problem (2.4).
For u∗ = w∗−ψ−r = w∗− cφ∗(x)

t+t0
− u2(x)

(t+t0)2
−r ≥ 0, where r = r(x, t) = u3(x)

(t+t0)3
+ u4(x)

(t+t0)4
+...,

(r ∈ R), since u∗ → w∗− or (ψ+ r) → 0+ as t→ ∞ (u∗0(x) < w∗(x)), actually u∗ < w∗

and ψ + r > 0 for all t ≥ 0, [21]. Thus we have

u∗t + u∗x = λ∗F (u∗) or

cφ∗

(t+ t0)2
+ w∗′ − cφ∗′

t+ t0
− u′2

(t+ t0)2
+ ... = λ∗F (w∗ − cφ∗

t+ t0
− u2

(t+ t0)2
+ ...) =

λ∗F (w∗) − λ∗
c

t+ t0
δF (w∗; φ∗) − λ∗

(t+ t0)2

[
δF (w∗; u2) − c2

2
δ2F (w∗; φ∗)

]
+ ... .

Equating terms of the same order with respect to powers of 1
t+t0

and taking into the
account φ∗-problem, we have

(cφ∗ − u′2) = −λ
∗

2
c2δ2F (w∗; φ∗) − λ∗δF (w∗; u2). (2.18)

We choose c so that

c

∫ 1

0

φ∗dx = c2
λ∗

2
|
∫ 1

0

δ2F (w∗; φ∗) dx |,
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which implies that c = 2/λ∗| ∫ 1

0
δ2F (w∗; φ∗) dx | > 0, since c = 0 is rejected and provided

that
∫ 1

0
φ∗ dx = 1, (it should be c > 0 otherwise we would have u∗ > w∗ for t
 1).

Then we need to estimate u2 by the inequality

u′2 ≤ λ∗δF (w∗; u2) + cφ∗ +
λ∗

2
c2δ2F (z; φ∗), (2.19)

where 0 < z = w∗ − ξû < w∗, for some ξ = ξ(t) ∈ (0, 1).
Therefore, by taking m0 = λ∗

2 c2 infx{δ2F (z; φ∗)} we have

u′2 ≤ λ∗
[
f ′(w∗)u2

I2
0 (w∗)

− 2f(w∗)I11(w∗, u2)
I3
0 (w∗)

]
+ cφ∗ +m0. (2.20)

Taking now c1 = infx

{
λ∗ f ′(w∗)

I2
0 (w∗)

}
, c2 = supx

{
− 2f(w∗)

I3
0 (w∗)

}
and q =

∫ 1

0
f ′(w∗)u2 dx =

I11(w∗, u2) < 0, we only need to estimate u2 by the expression

u′2(x) ≤ c1u2(x) + c2q + cφ∗(x) +m0.

This implies that we need

u′2(x) ≤ c1u2(x) + c2q +m1,

where m1 = c infx φ
∗(x) +m0 = m0, hence

u2 ≤ c2q +m1

c1
(ec1x − 1)

for u2(0) = 0, which is satisfied if

q =
c2q +m1

c1

∫ 1

0

f ′(w∗)(ec1x − 1)dx.

Therefore q = m1m2
c1−c2m2

for m2 =
∫ 1

0
f ′(w∗)(ec1x − 1) dx, which can be estimated.

Substituting now ψ, which is knowing, for û in (2.17) and taking into the account
φ∗-problem and (2.19), we obtain (for the operator L see (2.17)),

L(ψ) = c
t+t0

(φ∗′ − λ∗δ F (w∗;φ∗)) +
1

(t+ t0)2
(u′2 − λ∗δF (w∗; u2) −

c φ∗ +
λ∗

2
c2 δ2F (z; φ∗) +O

(
1

(t+ t0)3

)
≤ 0.

The last inequality holds since the term of order 1
(t+t0)2 dominates the term of order

1
(t+t0)3

, this due to the u∗-problem, actually due to the fact that u∗ → w∗− or (ψ+ r) →
0+ as t→ ∞ and that ψ + r > 0 for all t > 0.
Requiring ψ(x, 0) ≤ û0 and now knowing u2, since û0 = w∗ − u∗0 = w∗ − u0, we choose

t0 = supx
c φ∗+

√
c2 φ∗2+4û0 u2

2û0
= supx

E(x)
2û0

< ∞, in [0, 1], provided that u∗0(x) = u0(x) =



12 C.V. Nikolopoulos and D.E. Tzanetis

w∗(x) − û0(x) is chosen so that E(x) = O(û0(x)) as x → 0+, without lost of generality
we may choose u0 → 0+ properly as x → 0+. Then we have that ψ is a lower solution
to û-problem and thus ψ ≤ û.

We now write u = u∗ + u1 ≤ w∗ and find an upper solution to u1-problem. The
equation for u1 is

u1t = −u1x + (λ− λ∗)F (w∗) + λ (F (u) − F (w∗)) −
λ∗ (F (u∗) − F (w∗)) , 0 < x < 1, t > 0. (2.21)

We again examine the difference λ (F (u) − F (w∗)) and write v = u−w∗, (−w∗ < v < 0),
J1(ε) = F (w∗ + εv), 0 ≤ ε ≤ 1, we have:

λ(F (u) − F (w∗)) = λ(J1(1) − J1(0))

= λ

(
f ′(w∗)v
I2
0 (w∗)

− 2f(w∗)I11(w∗; v)
I3
0 (w∗)

)
+
λ

2
J ′′

1 (ξ1)

= λ∗δ F (w∗; v) + (λ− λ∗) δ F (w∗; v) +
λ

2
δ2 F (z; v)

= λ∗ δ F (w∗; v) +Q(w∗, z, v), (2.22)

where Q(w∗, z, v) = (λ− λ∗)δ F (w∗; v) + λ
2 δ

2 F (z; v) and

J ′′
1 (ξ1) = δ2 F (z; v) =

1
I4
0 (z)

[
I2
0 (z) v2 f ′′(z) − 4v f ′(z)I11(z, v) I0(z)

− 2f(z)I0(z) I22(z, v) + 6f(z) I0(z) I2
11(z, v)

]
,

z = w∗ + ξ1v, ξ1 = ξ1(t) ∈ (0, 1).
Also by setting u∗ = w∗ − û and J2(ε) = F (w∗ − εû), 0 ≤ ε ≤ 1 the quantity
λ∗ (F (u∗) − F (w∗)) is writen:

−λ∗ (F (u∗) − F (w∗)) = −λ∗(J2(1) − J2(0))

= λ∗
(
f ′(w∗)û
I2
0 (w∗)

− 2f(w∗)I11(w∗, û)
I3
0 (w∗)

)
− λ∗

2
J ′′

2 (ξ2)

= λ∗ δ F (w∗; û) − λ∗

2
δ2 F (ζ; û), (2.23)

with J ′′
2 (ξ2) = δ2 F (ζ; û) =

1
I4
0 (ζ)

[
I2
0 (ζ) û2 f ′′(ζ) − 4û f ′(ζ)I11(ζ, û) I0(ζ)

− 2f(ζ)I0(ζ) I22(ζ, û) + 6f(ζ) I0(ζ) I2
11(ζ, û)

]
,

where ζ = w∗ − ξ2û, ξ2 = ξ2(t) ∈ (0, 1).
The u1-problem (2.21), with relations (2.22), (2.23) now becomes

u1t = −u1x +(λ− λ∗)F (w∗) + λ∗δ F (w∗; v) +Q(w∗, z, v)

+ λ∗δ F (w∗; û) − λ∗

2
δ2 F (ζ; û), 0 < x < 1, t > 0, (2.24a)
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u1(0, t) = 0, t > 0, (2.24b)

u1(x, 0) = u0(x) − u∗0(x) = 0, 0 < x < 1, (2.24c)

where 0 < z < w∗, 0 < ζ < w∗, 0 < û < w∗, u < u1 < w∗ as far as u < w∗, so that
Q(w∗, z, v), J ′′

2 (ξ2) are bounded from above and below.
Hence, for a fixed λ > λ∗, there exist some constants B1, B2 and B > 0, such that

Q(w∗, z, v) < B1 <
(λ− λ∗)

2
B, −λ

∗

2
J ′′

2 (ξ2) < B2 <
(λ− λ∗)

2
B

and Q− λ∗
2 J

′′
2 < (λ− λ∗)B. From (2.21) - (2.24) we obtain :

u1t ≤ −u1x + (λ− λ∗)F (w∗) + λ∗
[
f ′(w∗)v
I2
0 (w∗)

− 2f(w∗)I11(w∗, v)
I3
0 (w∗)

]

+ λ∗
[
f ′(w∗)û
I2
0 (w∗)

− 2f(w∗)I11(w∗, û)
I3
0 (w∗)

]
+ (λ − λ∗)B. (2.25)

Due to the fact that u1 = u − u∗ = u − w∗ + w∗ − u∗ = v + û, the previous relation
becomes:

u1t ≤ −u1x + (λ− λ∗)F (w∗) + λ∗
[
f ′(w∗)u1

I2
0 (w∗)

− 2f(w∗)I11(w∗, u1)
I3
0 (w∗)

]
+ (λ− λ∗)B.

Now we introduce ψ1(x, t) = [(λ − λ∗)Λ(t + t0)]φ∗(x), where Λ is a constant which is
determined, so that ψ1 to be an upper solution to u1-problem. Here φ∗ again satisfies
problem (2.4).
By substituting −ψ1 for u1 in the right hand side of the above relation, we get

−ψ1x + (λ− λ∗)F (w∗) + λ∗
[
f ′(w∗)ψ1

I2
0 (w∗)

− 2f(w∗)I11(w∗, ψ1)
I3
0 (w∗)

]
+ (λ− λ∗)B

= (λ− λ∗)F (w∗) + (λ− λ∗)B ≤ (λ− λ∗) Λφ∗ =
∂ψ1

∂t
,

F (w∗(x)) +B ≤ Λφ∗(x), or sup
x
F (w∗(x)) +B ≤ Λφ∗(x).

Since supx F (w∗(x)) = f(0)
f2(w∗(1)) , it is enough to take,

f(0)
f2(w∗(1))

+B = Γ ≤ Λφ∗(x) or 0 < Γ ≤ Λ inf
x∈[γ, 1]

φ∗(x) = Λ Θ, (2.26)

for some γ ∈ (0, 1). Also ψ1(x, 0) = [(λ− λ∗)Λt0]φ∗(x) > u1(x, 0) = 0, and

ψ1(γ, t) = [(λ − λ∗)Λ(t+ t0)]φ∗(γ) > u1(γ, t) ≥ 0 . (2.27)

Relations (2.26), (2.27) leads us to choose Λ = max{ w∗(γ)
(λ−λ∗) t0 φ∗(γ) ,

Γ
Θ}, for some γ > 0

(such a γ exists since φ∗(0) = 0 and φ∗(x) > 0 in (0, 1]). Then, ψ1 is a “restricted” upper
solution for u1-problem in the interval [γ, 1], [18]. Here we have to notice that u blows up
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globally, see relation (1.4b), this means that u(x, t) is bounded for (x, t) ∈ [0, γ] × [0, T ]
for some T < t∗. In other words u is bounded in [γ, 1]× [0, T ], (actually here we require
u < w∗, see below) and hence a lower bound for t∗ can be found working in the restricted
interval [γ, 1].
Hence, u ≤ w∗ as far as ψ − ψ1 ≥ 0, thus we have

u = u1 + u∗ ≤ w∗ − cφ∗

t+ t0
− u2

(t+ t0)2
+ (λ− λ∗)Λ (t+ t0)φ∗.

The right-hand side of the above relation is no greater than w∗, as long as ψ ≥ ψ1 or

cφ∗

(t+ t0)
+

u2

(t+ t0)2
≥ (λ− λ∗) Λφ∗ (t+ t0), x ∈ [γ, 1].

Hence, u ≤ w∗ as far as ψ − ψ1 ≥ 0 ; it is enough u ≤ w∗ for any x ∈ [γ, 1], for some
γ > 0, due to the fact that u blows up globally.
Therefore, for simplicity, since 0 < λ− λ∗ � 1, it is enough to choose

cφ∗

t+ t0
≥ (λ− λ∗) Λφ∗ (t+ t0), x ∈ [γ, 1],

so that c ≥ (λ − λ∗)Λ(t+ t0)2.

Thus we get
t ≤ c1/2 Λ−1/2 (λ− λ∗)−1/2 − t0,

which for λ sufficiently close to λ∗ (λ > λ∗) gives

t � c1/2 Λ−1/2 (λ− λ∗)−1/2 = tl(λ− λ∗)−1/2.

Hence, as long as u = u(x, t) < w∗(x), x ∈ [γ, 1] at t = tl(λ − λ∗)−1/2, we deduce that
t∗ > tl(λ − λ∗)−1/2 and tl(λ − λ∗)−1/2 is a lower bound for t∗ with tl = c1/2Λ−1/2.

3. Asymptotic estimate of t∗ for small λ − λ∗ > 0

We now examine the special case f(s) = e−s. Motivated by Section 2 we wish to
find an estimate for the blow-up time t∗ to problem (1.1) as an asymptotic series of
η = θ1/2 = (λ − λ∗)1/2 � 1, η > 0. We again assume that u0(x) < w∗(x) for 0 < x ≤ 1,
with u0(0) = w∗(0) = 0.

Following similar concepts to [16, 17], as well as motivated from numerical calculations,
we consider three intervals of time, say I, II and III.
In I and III t varies by O(1) as θ = (λ−λ∗) → 0 and we expand u ∼ u∗ + θv1 + θ2v2 + ...

as θ → 0+, where u∗ satisfies problem (1.1) at λ = λ∗. More precisely, in I we have
u∗ < w∗ since u0 = u∗0 < w∗ in (0, 1], while in III we have u∗ > w∗. Moreover in I

u∗(x, t) ∼ w∗(x) − 2φ∗(x)
λ∗ J2 t

as t→ ∞,
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with J2 =
∫ 1

0
R2(w∗, φ∗) dx and R2(w∗, φ∗) = δ2 F (w∗;φ∗), where R2 follows from the

second term of Taylor’s expansion, see in Section 2 or below relation (3.1). This can be
obtained by assuming that u∗ ∼ w∗ + K

t φ
∗ as t → ∞, u∗ < w∗ and substituting this

expansion in the equation for u∗, we find that K = − 2
λ∗J2

, provided that
∫ 1

0
φ∗(x)dx = 1.

In III ( u∗ > w∗), we again expand u in a similar manner as in I, but now u∗(x, t) ∼
w∗(x) − 2φ∗(x)

λ∗ J2 t̂
as t̂ → −∞ and t = t∗ + t̂ > 0 for some large t∗ (t∗ ∼ t∗ < ∞ for

θ → 0 ) u∗ becomes infinity at some finite time t̂∗ as θ → 0.
In interval II, we expand u ∼ w∗ + ηv1 + η2v2 + ... as η → 0, and on making a change

in time scale t = τ/η, equation (1.1) gives:

η2v1τ + η3v2τ + ...+ w∗
x + ηv1x + η2v2x + ... = λR(η) as η → 0, (3.1)

where

F (u) ∼ R̂(x, t; η) := R(η) =
e−(w∗+ηv1+η2v2+...)(∫ 1

0
e−(w∗+ηv1+η2v2+...)

)2

dx
as η → 0.

We require an expansion for R(η) as follows

R(η) = R(0) + ηR′(0) +
η2

2
R′′(0) + ... . (3.2)

From (3.1), (3.2) we obtain

η2v1τ + η3v2τ + ...+ w∗
x + ηv1x + η2v2x + ...

= (λ∗ + η2)
(
R(0) + ηR′(0) +

η2

2
R′′(0) + ...

)
.

As regards the boundary condition u(0, t) = 0 at x = 0, we have

w∗(0) + ηv1(0, τ) + η2v2(0, τ) + ... = 0.

We equate the terms of zero order (O(1) or O(η0)) and get

w∗′ = λ∗R(0), 0 < x < 1, w∗(0) = 0, (3.3)

where R(0) = e−w∗
/

(∫ 1

0
e−w∗

dx
)2

. Problem (3.3) is actually problem (1.3). By looking
now at the terms of O(η) we have

v1x(x, τ) = λ∗R′(0), 0 < x < 1, τ > 0, v1(0, τ) = 0, τ > 0 , (3.4)

where R′(0) = δ F (w∗; v1) = − e−w∗
v1

(
∫ 1
0 e−w∗ dx)2

+ 2e−w∗ ∫ 1
0 e−w∗

v1 dx

(
∫ 1
0 e−w∗ dx)3

.

Problem (3.4) has the form of problem (2.4), thus we can write

v1(x, τ) = a(τ)φ∗(x), (3.5)
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where now we normalize φ∗ according to
∫ 1

0
φ∗2(x) dx = 1 and we denote the normalized

φ∗ again by φ∗. Looking next at the O(η2) terms we have

v1τ + v2x = R(0) +
λ∗

2
R′′(0),

which becomes

v1τ + v2x =
e−w∗

S2
0(φ∗)

+
2λ∗e−w∗

v1 S1(v2)
S3

0(φ∗)
+

2λ∗e−w∗
S1(v2)

S3
0(φ∗)

− λ∗e−w∗
S2(v2)

S3
0(φ∗)

+
3λ∗e−w∗

S2
1(v2)

S4
0(φ∗)

, (3.6)

where now we denote by Iν k(w∗, v) = (−1)νSk(v) with Sk(v) =
∫ 1

0 e
−w∗

vkdx, k =
0, 1, 2, 3 and Sk(φ∗) = Sk.

Multiplying (3.6) by φ∗, integrating over [0, 1], using (3.5) and the normalization of
φ∗, we obtain

ȧ(τ) =
∫ 1

0

(
−φ∗′ − λ∗e−w∗

φ∗

S2
0

+
2λ∗e−w∗

S1

S3
0

)
v2 dx+

S1

S2
0

+

λ∗
a2(τ)
2S4

0

(
S3 S

2
0 − 6S1 S2 S0 + 6S3

1

)
. (3.7)

Now we look at the equation for φ∗ which is

φ∗′ = −λ
∗e−w∗

φ∗

S2
0

+
2λ∗e−w∗

S1

S3
0

, 0 < x < 1, φ∗(0) = 0, (3.8)

and integrate over [0, 1], to obtain φ∗(1) = λ∗S1
S2

0
. Moreover, multiplying (3.6) by φ∗ and

then integrating over [0, 1], we obtain

φ∗2(1)S3
0

2λ∗
= −S2S0 + 2S2

1 . (3.9)

In the same way, but multiplying with φ∗2, we get

φ∗3(1)S3
0

3λ∗
= −S3S0 + 2S2S1. (3.10)

Now for the quantity S = S3S
2
0 −6S2S1S0 +6S3

1 , after using φ∗(1) and relations (3.9),
(3.10) we obtain

S = S3
1

(
−2 + 2

λ∗

S0
− λ∗2

3S2
0

)
. (3.11)

The quantity S is positive as long as the quantity Sq = −6S2
0 + 6λ∗S0 − λ∗2 is positive.

We know the relations λ∗ = M2

µ , where M = max{w∗(x)} = w∗(1), for 0 ≤ x ≤ 1 and
µ = λ∗

S2
0
. Using these relations we get that Sq is positive provided
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SqM
2 = λ∗2(−6 + 6M −M2)

is positive. We have (see [21]) that M ∼ 1.5936 and λ∗ ∼ 0.6476. The above quantity,
for these values, is positive (SqM

2 ∼ 0.4286).
Therefore the equation (3.7) can be written as

ȧ(τ) =
S1

S2
0

+ λ∗
S

2S4
0

a2(τ), a(τ) → −∞ as τ → 0, (3.12)

which has as a solution

a(τ) = (
B

K
)

1
2 tan

[
τ(BK)

1
2 − π

2

]
,

for K = λ∗S/2S4
0 , B = S1/S

2
0 (this choice of initial condition as τ → 0+ gives constant

of integration −π/2). Returning to the original time variable this expression becomes

A(t) = (
B

K
)

1
2 tan

[
t(λ− λ∗)1/2(BK)

1
2 − π

2

]
.

Because u = w∗ + ηv1 + ... and v1(x, t) = A(t)φ∗(x), it is obvious that u ceases to exist
at time

t∗ ∼ tb = tu(λ− λ∗)−
1
2

where tu = π(4BK)−1/2 and tb is the blow-up time of a(τ) = a(t(λ− λ∗)−1/2) = A(t).

4. Numerical Solutions

We solve problem (1.1) by using a two-step up-wind scheme. For the linear terms we
apply the usual form of the scheme:

vn+1
j = un

j − r
(
un

j − un
j−1

)
+ λF (un

j ),

where un
j is the temperature at the nth time level and at the jth space grid, r = δ t

δ x and
the non-local term F (un

j ) is evaluated at the nth time step. For this term we have

F (un
j ) =

f(un
j )(∫ 1

0
f(un

j ) dx
)2 .

The integral in the denominator is evaluated by Simpson’s rule. In the next step we
evaluate w

wn+1
j = un

j − r
(
vn+1

j − vn+1
j−1

)
+ λF (vn+1

j ).

Finally u at the (n+ 1)th time step is approximated by

un+1
j =

1
2
(vn+1

j + wn+1
j ).



18 C.V. Nikolopoulos and D.E. Tzanetis

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

(c) 

(b) 

(a) 

t* 

Figure 2. Numerical solution to problem (1.1). We plot the maxx(u(x, t)) = u(1, t) = M(t),

for x in [0, 1] against time for δx = 0.033, δt = 0.002 (the upper curve, (c), corresponds

to λ = 1.1476 > λ∗ = 0.6476, the intermediate, (b), to λ = λ∗ and the lower one, (a), to

λ = 0.1476 < λ∗). Also the dash-dotted axis corresponds to the asymptotic estimate of the blow

up time t∗ ∼ 1.3367 for λ = 1.1476. To obtain this estimate we calculate numerically w∗ by an

iteration scheme and then we solve the equation for φ∗ using the appropriate normalization.
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Figure 3. Numerical solution to problem (1.1) for λ = 0.5476 < λ∗.

In Figure 2 we use this scheme to solve the problem numerically for f(u) = e−u and
taking u(x, 0) = 0. We see that for λ < λ∗ the solution u tends to a steady state, for
λ = λ∗ the behaviour is similar and for λ > λ∗ the solution blows up (the decay is faster
for λ < λ∗ than it is for λ = λ∗). More precisely, in Figure 2 the maximum of solutions
are plotted against time.

In Figure 3, we plot the numerical solution of u for λ = 0.5476.
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5. Upper bounds of t∗ for sufficiently large u0(x) and λ ≤ λ∗

In this Section we study the case of λ ≤ λ∗, where the steady-state problem (1.3) has two
(bounded) solutions w1(x), w2(x) with w2(x) > w1(x) (w1 = w2 = w∗ at λ = λ∗) for
x ∈ (0, 1], see Figure 1(c). Following similar concepts as in the case of the upper bound
for t∗ when λ > λ∗, we may proceed by two ways: either (i) as in [16] or (ii) as in Section 2.

(i) First method: Again we set v(x, t) = u(x, t) − w2(x), 0 ≤ x ≤ 1, t > 0 with
v0(x) = u0(x) − w2(x) > 0, 0 < x ≤ 1 and v0(0) = u0(0) − w2(0) = 0. The function
w2(x) is the greatest steady-state solution to problem (1.3) while u(x, t) is the unique
solution to problem (1.1) which blows-up globally in finite time and (1.4) holds. Therefore
v(x, t) → ∞ and F (u) = F (v + w2) → ∞ as t→ t∗−.
Also F (u) − F (w2) = F (v + w2) − F (w2) = δF (w2; v) + 1

2 δ
2F (s; v).

Then v satisfies the problem

vt + vx = λ δF (w2; v) +
λ

2
δ2F (s; v), 0 < x < 1, t > 0, (5.1a)

v(0, t) = 0, t > 0, (5.1b)

v0 = v(x, 0) = u(x, 0) − w2(x) ≥ 0, 0 ≤ x ≤ 1, (5.1c)

where v0 = 0 only at x = 0, s = s(x, t) = w2 + ξv, ξ = ξ(t) ∈ (0, 1), F (w2 + ξv) := L(ξ)
and δ2 F (s, v) := L′′(ξ). Moreover δ2F (s; v) → ∞ as t → t∗−, otherwise v(x, t) would
not blow-up (in finite time).
Now we introduce the function Ψ for which we require to satisfy,

Ψt + Ψx ≤ λ δF (w2; Ψ) +
λ

2
δ2F (z; Ψ) = λ(F (w2 + Ψ) − F (w2)), (5.2)

where Ψ(x, t) = A(t)φ(x), φ(x) = φ(x; ρ), z = w2 + εΨ, ε = ε(t) ∈ (0, 1), J(ε) =
F (w2 + εΨ), J ′′(ε) = δ2F (z; Ψ), φ(x) satisfies problem (2.2) and A(t) satisfies problem
(5.7) (see below). We require the function Ψ to be a lower solution to problem (5.1) which
also blows up, due to the blow-up of A(t) at T ∗; since Ψ ≤ v, we have T ∗ = T ∗(A) ≥
t∗(v) = t∗(u) = t∗, actually this blow-up is global because of the form of Ψ.
Setting Ψ(x, t) = A(t)φ(x) in relation (5.2) we obtain

Ȧ(t)φ +A(t)φ′ − λ δF (w2;φ)A(t) ≤ λ

2
δ2F (z; Ψ). (5.3)

Also, by the same argument as for v, we have that J ′′(ε) = δ2F (z; Ψ) → ∞, Ψ → ∞ as
t→ T ∗−, otherwise Ψ(x, t) would not blow-up. Then for J ′′(ε) we have,

J ′′(ε) = Ψ2

[
f ′′(z)
I2
0 (z)

− 4f ′(z)I1 1(z,Ψ)
Ψ I3

0 (z)
− 2f(z)I2 2(z,Ψ)

Ψ2 I3
0 (z)

+
6f(z)I2

11(z,Ψ)
Ψ2 I4

0 (z)

]

= Ψ2

[
f ′′(z)
I2
0 (z)

− 4f ′(z)I1 1(z, φ)A
AφI3

0 (z)
− 2f(z)I2 2(z, φ)A2

A2 φ2 I3
0 (z)

+

6f(z)I2
1 1(z, φ)A2

A2 φ2 I4
0 (z)

]
= Ψ2Γ(x, t) = A2(t)φ(x) Γ1(x, t), (5.4)
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where Γ1(x, t) = Γ(x, t)φ(x). Since Ψ blows up globally, we have that F (w2 + Ψ) −
F (w2) ∼ F (w2 + Ψ) ∼ F (Ψ) → ∞ as t → T ∗− for every x ∈ (0, 1].
Now we impose an extra condition on the function f ,

f(s) ≤ c

s2
, c > 0, for s
 1, (5.5)

and have the following lemma.

Lemma 3. Let f satisfy (1.2) and (5.5), then J ′′(ε) = δ2F (z; Ψ) ≥ ΛA2(t)φ(x) > 0
for Ψ 
 1, or A
 1, where Λ is a positive constant.

Proof: Since Ψ blows up globally, δ2 F (z; Ψ) → ∞ as Ψ → ∞. Let that the conclusion
of the lemma do not hold, then due to (5.3) we would have δ2F (z; Ψ) � K0A

p(t)φ(x)
as A(t) → ∞ or as t → T ∗−, for some 1 < p < 2 and K0 > 0, otherwise Ψ does not
blow-up. The later, the fact that F (w2 + Ψ)− F (w2) ∼ F (Ψ), for Ψ 
 1 and (5.4) give,

F (w2 + Ψ) − F (w2) = δF (w2; Ψ) +
1
2
δ2F (z; Ψ) = δF (w2, φ)A(t) +

1
2
Γ(x, t)Ψ2 ∼ F (Ψ) � K0A

p φ, for A
 1 and 1 < p < 2 .

Also by using the mean value theorem we get, F (Ψ) = f(Ψ(x,t))

(
∫ 1
0 f(Ψ(x,t) dx)2

= f(A(t)φ(x))
f2(A(t)φ(ξ)) ,

where ξ = ξ(t) ∈ (0, 1). Then, due to the continuity of φ(x), we can always find
x0 = x0(t) ∈ (0, 1) such that 0 < φ(x0(t)) < min{φ(ξ(t)), φ2(ξ(t))}. This implies
f(A(t)φ(x0(t)))
f(A(t)φ(ξ(t))) > 1, and as t→ T ∗− we have,

F (Ψ(x0, t)) =
f(A(t)φ(x0))
f2(A(t)φ(ξ))

>
1

f(A(t)φ(ξ))
, and

1
f(A(t)φ(ξ))

<
f(A(t)φ(x0))
f2(A(t)φ(ξ))

= F (Ψ(x0, t)) � K0A
p(t)φ(x0).

Then, by using and condition (5.5), we get

K0A
p(t)φ(x0(t)) � 1

f(A(t)φ(ξ(t)))
≥ A2(t)φ2(ξ(t))

c
as t→ T ∗.

The latter implies K0 c � A2−p(t) φ2(ξ(t))
φ(x0(t))

> A2−p(t) for t close to T ∗, but A2−p(t) → ∞
as t→ T ∗ for 1 < p < 2 while K0 c <∞, which is a contradiction. �

Due to Lemma 3, relation (5.4) now becomes,

J ′′(ε) = Γ(x, t)Ψ2 ≥ ΛA2(t)φ(x) as t→ T ∗−, x ∈ (0, 1]. (5.6)

From relation (5.6), it is enough to take

Ȧ(t)φ+A(t) [φ′ − λδF (w2;φ)] ≤ K1A
2(t)φ, t > 0, A(0) = A0,

where K1 = λ
2 Λ. Now, by using problem (2.2) and Lemmas 2, 3 we obtain:

Ȧ(t) −A(t)ρ2 ≤ K1A
2(t), t > 0, A(0) = A0, ρ2 ≥ 0.
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Thus, we can take A(t) to satisfy,

Ȧ(t) = ρA(t) +KA2(t), t ∈ [0, T ∗), A(0) = A0, (5.7)

with K ≤ K1 and ρ = ρ2 ≥ 0.

Also we take ψ(x, 0) = A(0)φ(x) ≤ v(x, 0) = u0(x)−w2(x) orA0 = A(0) ≤ u0(x)−w2(x)
φ(x) ,

hence we choose A0 = infx
u0(x)−w2(x)

φ(x) = infx
E(x)
φ(x) > 0, (this infimum exists provided

that u0(x), u′0(x) are bounded in [0, 1]). Moreover Ψ(0, t) = v(0, t). Finally Ψ is a lower
solution to v-problem (5.1).

Now problem (5.7) for A(t) and ρ > 0 gives:

A(t) =
[
−K
ρ

+ (A−1
0 +

K

ρ
)e−ρt

]−1

,

where K is a constant depending on c and λ, while A0 depends on the infimum of the
difference (u0(x) − w2(x))/φ(x).

Then the blow-up time T ∗ for A(t) is

T ∗ =
1
ρ

ln
( ρ

K
A−1

0 + 1
)
, for ρ > 0.

While for ρ = 0, problem (5.7) gives, T ∗ = (KA0)−1. Since Ψ is a lower solution of
v-problem (5.1), we get

t∗ = t∗(u) = t∗(v) ≤ t∗(Ψ) = T ∗,

hence T ∗ is an upper bound for t∗(u).

(ii) Second method: This method works only if ρ = ρ2 > 0 or if ρ = ρ2 = 0 and
δ2F (z;φ) > 0. Let now u(x, t) = u(x, t;u0) be the solution to problem (1.1) for λ < λ∗

and assume, for simplicity, initial data of the form u0(x) = σw2(x), with σ > 1, then
u0(x) − w2(x) = (σ − 1)w2(x) = ζw2(x), with ζ = σ − 1 > 0. Also we have that
u → w2+ as ζ → 0+. Again we set v(x, t) = u(x, t) − w2(x), 0 ≤ x ≤ 1, t > 0 with
v0(x) = u0(x) − w2(x) > 0, 0 < x ≤ 1 and v0(0) = u0(0) − w2(0) = 0. We call
v = u− w2 = ζv̂, thus problem (5.1) becomes

ζv̂t + ζv̂x = λ ζ δF (w2; v̂) +
λ

2
J ′′(ξ), 0 < x < 1, t > 0, (5.8a)

v̂(0, t) = 0, t > 0, (5.8b)

v̂0(x) = v̂(x, 0) =
u0(x) − w2(x)

ζ
> 0, 0 < x < 1. (5.8c)

This is simplified to

v̂t + v̂x = λ δF (w2; v̂) +
λ

2
ζ Ĵ ′′(ξ), 0 < x < 1, t > 0,
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where J(ξ) = ζ2 Ĵ(ξ) = ζ2 δ2F (z; v̂). Now we find a lower solution ψ for the v̂-problem.
Therefore we require ψ = ψ(x, t) to satisfy

ψt + ψx ≤ λ δF (w2;ψ) +
λ

2
ζ δ2F (z;ψ). (5.9)

Setting ψ = A(t)φ(x) and Ȧ(t) = d
dtA(t) we obtain

Ȧ(t)φ+A(t)(φ′ − λ δF (w2;φ)) ≤ λ

2
ζ δ2F (z;ψ). (5.10)

Using φ-problem (2.2) and Lemma 2, equation (5.10) becomes

Ȧ(t)φ− ρ2 φA(t) ≤ λ

2
ζ δ2F (z;ψ), ρ2 ≥ 0. (5.11)

Thus we have, on setting ρ2 = ρ,

Ȧ(t)φ(x) ≤ ρA(t)φ(x) +
λ

2
ζ A2(t) δ2F (z;φ), 0 < x < 1 t > 0. (5.12)

For 0 < ζ � 1, in both cases, either ρ = ρ2 > 0, or ρ = ρ2 = 0 and δ2F (z;φ) > 0, we
can find β > 0, so that we get (for some τ1 close to T ∗ and τ1 < T ∗)

Ȧ(t)φ ≤ βA(t)φ ≤ ρA(t)φ +
λ

2
ζA2(t) δ2F (z;φ), t > τ1 > 0 .

Taking now c small enough so that ζ ≤ c
A(t) , (c is about the time that u is smaller than

order one) we have that A(t) ≤ c1 e
βt ≤ c

ζ with c1 = A(τ1) e−βτ1 and this holds for
time t = τ = 1

β ln( c
ζ c1

). Now we can obtain an upper estimate T ∗
u for t∗(u) which is

T ∗
u = τ + t∗1 > t∗ = t∗(u), where t∗1 is the blow-up time of the problem:

ut(x, t) + ux(x, t) = λ
f(u(x, t))(∫ 1

0 f(u(x, t)) dx
)2 , 0 < x < 1, t > τ,

u(0, t) = 0 , t > τ, u(x, τ) = w2(x) + c φ(x) ≥ 0, 0 < x < 1,

and t∗1 � τ .

6. Discussion

In the present work, we estimate the blow-up time t∗ of the solution to problem (1.1).
It is useful, from the point of view of applications, to know the time where the temper-
ature u becomes infinity. In our model, this is the time that the food is burnt. Similar
estimates are also known for local (the reaction diffusion problem) as well as for non-
local (the Ohmic heating problem) problems, [16, 17]. Here the results are obtained
for the case where there exists a steady-state solution w∗ = w(x;λ∗) at λ = λ∗, either
for 0 < λ − λ∗ � 1, with nonnegative initial data, or for 0 < λ ≤ λ∗ and initial data
greater than the greatest steady-state solution. The methods applied, are comparison
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and asymptotic techniques, as well as numerical computations. Although the asymptotic
estimate of t∗ is found for f(s) = es, it is possible to be estimated for general function f
satisfying (1.2).
Our main estimates, for given λ, λ∗ and 0 < λ − λ∗ � 1, are: upper bound ε +
c1 ln [c2 (λ− λ∗)−1]; lower bound c3(λ−λ∗)−1/2; asymptotic estimate t∗ ∼ c4(λ−λ∗)−1/2

as λ→ λ∗+. For 0 < λ ≤ λ∗ and given initial data u0(x) greater than the greatest steady-
state solution w2(x), we have the following upper estimates: either c5 ln(c6 A−1

0 + 1) or
ε+ c7 ln(c8ζ−1), where A0, ζ are measures of the difference u0 − w2, (if u0 → w2+ then
A0, ζ → 0+), ci are constants and 0 < ε � 1. Some numerical results are also repre-
sented in Section 4.
It still remains an open question how to estimate t∗ when there is no regular solution w∗

at λ = λ∗.
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