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ABSTRACT
This article is concerned with the problem of controlling a simple
immigration-birth-death process, which represents a pest population,
by the introduction of a predator in the habitat of the pests. The opti-
mization criterion is theminimization of the expected long-run average
cost per unit time. It is possible to construct an appropriate semi-Markov
decision model with a finite set of states if and only if the difference
between the per capita birth rate and the per capita death rate of the
pests is smaller than half of the rate at which the predator is introduced
in the habitat.

1. Introduction

The Markov decision and semi-Markov decision models are flexible and powerful tools for
solving probabilistic sequential decision problems with an infinite planning horizon. The rel-
evant theory combines concepts from the theory of Markov and semi-Markov models and
from the dynamic programming method. The aim is the determination of the optimal pol-
icy, i.e., the optimal rule for choosing decisions as the process evolves over time. The most
widely used optimization criteria are the minimization of the expected total discounted cost
and the minimization of the expected long-run average cost per unit time. The expected total
discounted cost of a policy π is defined as the expected total cost during an infinite-time
horizon if the costs are discounted at a rate α ∈ (0, 1) per unit time given that the policy π

is employed. The expected long-run average cost per unit time of a policy π is defined as
the limit as n → ∞ of the expected cost incurred until the n-th decision epoch divided by n,
given that the policy π is employed. We refer to the books of Ross (1983), Puterman (1994),
Bather (2000), Tijms (2003), and Hu and Yue (2008), where the theory of Markov and semi-
Markov decision processes is presented together with many applications from various areas.
Most of the applications deal with queueing systems, manufacturing systems, inventorymod-
els, maintenance problems, replacement problems, and problems for controlling biological
populations.

CONTACT E. G. Kyriakidis ekyriak@aueb.gr Department of Statistics, Athens University of Economics and Business, 
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Various deterministic and stochastic models for the optimal control of damaging biologi-
cal populations have been developed during the last years. A recent article, which also gives
references to earlier work, is that of Pathak and Maiti (2012). Individuals whose presence is
damaging are referred as pests. Insects which destroy a crop or spread a disease can be consid-
ered as pests. Pests may be also bacteria or diseased cells which multiply in a living organism.
The amount of damage done by the pests at any time generally depends on the initial number
of pests in the habitat, their birth and death rates, and their migration rates to and from the
habitat. The damage done by the pests can be usually represented by a cost which increases
as their population size increases. For that reason one is faced with the problem of control-
ling the growth of the pest population. Spraying the crop or the insects with some insecticide,
and treating an organism with drugs or X-rays may be appropriate controlling actions for the
population growth in the above cases. Another possibility could be the introduction in the
habitat of a predator that captures the pests. A controlling action gives rise to costs due to
labor, materials, risk etc. and it is therefore necessary to balance the cost caused by the pests
against the cost of the controlling action. We present below a pest control problem that we
will formulate as a semi-Markov decision model under the criterion of the minimization of
the average cost.

Consider a population of pests which grows stochastically in a habitat according to a simple
immigration-birth-death process with immigration rate ν > 0 and per capita birth and death
rates λ and μ, respectively (ν > 0, λ ≥ 0, μ ≥ 0). We assume that the deaths of the pests
are caused by a predator that lives permanently in their habitat and captures the pests with
rate proportional to their population size. We refer to this predator as the internal predator.
We define the unit of cost as the cost per unit time of the damage caused by each pest and we
assume that the damage caused by the pests during one unit of time is proportional to their
population size. It follows that the cost of the damage caused by the pests is i per unit time,
if i is their current population size. Note that a great number of deterministic and stochas-
tic population models for predator-prey interactions can be found in the literature (see, e.g.,
Hassell, 1978; Renshaw, 1991).

The pest populationmay be controlled by some action that introduces an external predator
in the habitat of the pests after some random time that is exponentially distributed with mean
ρ−1. The presence of the external predator in the habitat prevents the immigrations and the
births of the pests. The external predator dominates the internal predator in the sense that the
internal predator does not capture the pests as long as the external predator is in the habitat.
The external predator captures the pests one at a time with constant rate σ > 0 until their
population size is annihilated and, then leaves the habitat after some random time that is
exponentially distributed with mean θ−1. As soon as the external predator emigrates from
the habitat the internal predator becomes again active causing the deaths of the pests with per
capita rate μ.

The cost of taking controlling action that introduces the external predator in the habitat of
the pests is equal to k > 0 per unit of time. The decision epochs include the epochs at which
an immigration or a birth or a death of a pest occurs and the epochs at which the predator
emigrates. Let i and i′ denote the states of the process at which the population size of the pests
is i(i ≥ 0) and the predator is absent from their habitat or present, respectively. A stationary
policy f is defined by a sequence { fi}, i ≥ 0, where fi is the action chosen when the process is
at state i. It is assumed that fi = 1 when the controlling action, which introduces the external
predator in the habitat, is being taken and fi = 0 when the controlling action is not being
taken. If the stationary policy f = { fi}, i ≥ 0, is used, our assumptions imply that we have a
continuous-time Markov chain model for the population growth of the pests with state space
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3862 E. G. KYRIAKIDIS AND T. D. DIMITRAKOS

Figure . The transition rates of the process under P0.

{0, 0′, 1, 1′, . . .} and the following transitions in a small time interval (t, t + δt ) :

i → i + 1 with probability (ν + λi)δt + o(δt ), i ≥ 0,
i → i − 1 with probability μiδt + o(δt ), i ≥ 1,
i′ → (i − 1)′ with probability σδt + o(δt ), i ≥ 1,
i → i′ with probability fiρδt + o(δt ), i ≥ 0,
0′ → 0 with probability θδt + o(δt ).

Our objective is to find a stationary policy whichminimizes the expected long-run average
cost per unit time among all stationary policies. Let Px, x = 0, 1, . . . be the stationary policy
that takes the controlling action that introduces the external predator in the habitat if and only
if the population size of the pests is greater or equal to x. The policy Px is called control-limit
policy. It seems intuitively reasonable to suppose that the optimal policy is of control-limit
type. The transition rates of the process under the policy P0 are depicted in Figure 1.

In Kyriakidis (1995b) we studied the same problemwhen λ = μ = 0. In that work, first, an
expression for the average cost gx under the policy Px, x = 0, 1, . . . was derived using a regen-
erative argument, then the optimal policyPx∗ among all control-limit policies Px, x = 0, 1, . . .

was found analytically by minimizing gx with respect to x = 0, 1, . . . and finally the opti-
mality of Px∗ among all stationary policies was established by applying Bather’s (1976) general
results. Specifically, it was shown that (i) the policy Px∗ satisfied the average-cost optimal-
ity equations and (ii) some extra conditions on the cost and transition rates were valid. In
Kyriakidis (2003), we generalized the cost structure of the problem studied in Kyriakidis
(1995b) by assuming that the cost rate caused by the pests is an increasing function of their
population size. In that work the existence of an optimal control-limit policy was established
by following the Federgruen-So technique (see Federgruen and So, 1989, 1990, 1991; So, 1992)
which is based on the variation of a fictitious parameter over the entire real line. Specifically,
we introduced a fictitious cost r incurred each unit of time the process is occupying state 0′. It
was shown that an optimal control-limit policy exists when r takes small values. This assertion
was then extended inductively from interval to interval of the values of the parameter r.

In the present problem the process under the control-limit policy Px, x = 0, 1, . . . is a
regenerative process, where the successive entries into state x can be considered as regen-
erative epochs between successive cycles. From a well known regenerative argument (see
Proposition 5.8 in Ross, 1992) the average cost under the policy Px is equal to the expected
cost during a cycle divided by the expected time of the cycle. Note that, if the initial state is
x ∈ {0, 1, . . .}, the process under Px maymove from the set of states {x, x + 1 , . . .}, in which
the controlling action is exerted, into the state x − 1, in which the controlling action is not
exerted, before the external predator is introduced in the habitat of the pests. Hence, if the
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initial state is x, the time until the external predator is introduced in the habitat is not expo-
nentially distributedwithmean ρ−1, as in the case inwhichμ = 0.Therefore, the regenerative
argument used in Kyriakidis (1995b) for the determination of the average cost under the pol-
icy Px cannot be applied in the present problem. If μ = 0 and 0 < λ < ρ/2 it is possible to
apply the regenerative argument and to derive an expression for the average cost under the
policy Px, x = 0, 1, . . .with respect to x. However, this expression is too complicated and it is
impossible to minimize it with respect to x. Consequently, even in this case it does not seem
possible to prove the optimality of a control-limit policy by applying Bather’s (1976) theory, as
it was achieved in Kyriakidis (1995b). Furthermore, if we introduce a fictitious cost incurred
each unit of time the process is in state 0′, it seems difficult to apply the Federgruen-Somethod
as in the problem that was studied in Kyriakidis (2003). This difficulty is due to the fact that
the one-step expected time, if the external predator is not in the habitat of the pests, tends to
0 as the pest population size tends to infinity.

From the above remarks it becomes clear that it is difficult to prove the structure of the
optimal policy for the present problem. However a computational treatment of the problem
is possible. In Sec. 2 a suitable semi-Markov decisionmodel with a finite set of decision epochs
is constructed provided that the birth rate, the death rate and the rate at which the external
predator is introduced satisfy a certain condition. In Sec. 3, numerical results obtained by
the value iteration algorithm are presented providing strong evidence that the optimal pol-
icy is of control-limit type. Note that an analogous numerical treatment was presented in
Kyriakidis (1995a) for the problem of controlling a simple immigration-birth-death process
through total catastrophes. In Sec. 4, a summary of the results of the article is given.

Our model can also have the following alternative interpretation. Suppose that computer
viruses are installed in a computer system according to a Poisson process with rate ν > 0.The
cost rate due to the damages caused by the viruses is equal to i when the number of viruses
is equal to i. Each virus reproduces itself with rate λ > 0. An antivirus software 1 is installed
permanently in the system and removes the viruses with rate proportional to the number of
viruses. The removal rate per virus is equal toμ > 0. The controller may install in the system
the antivirus software 2 and the installation lasts a randomperiod of time that is exponentially
distributedwithmeanρ−1. The cost rate of this action is equal to k > 0.The antivirus software
2: (i) stops the arrivals and the reproduction of the viruses, (ii) prevents the operation of
software 1, and (iii) removes the viruses one at a time with rate σ > 0 until their annihilation.
Then it is uninstalled after an exponentially distributed period of time with mean θ−1. The
objective is to find the average-cost optimal policy and the decision epochs include the epochs
atwhich the viruses are installed in the system, the epochs atwhich the viruses are reproduced,
the epochs at which the viruses are removed by antivirus software 1 and the epochs at which
antivirus software 2 is uninstalled. Note that deterministic and stochastic immigration-birth-
death processes for the spread of computer viruses in a computer systemhave been considered
in the literature (see, e.g., Jones andWhite, 1990;Wierman andMarchette, 2004; Amador and
Artalejo, 2013).

2. Formulation as a semi-Markov decisionmodel

In the present problem the set of states of the process at the decision epochs is the set
{0, 1, . . .}. This set is infinite and therefore, a direct application of the standard semi-Markov
decision algorithms (i.e. the policy iteration algorithm, the value iteration algorithm, the lin-
ear programming algorithm (see Tijms, 2003, Ch. 7)) is not possible. This difficulty could
be circumvented by eliminating the effect of immigrations and deaths if the population size
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3864 E. G. KYRIAKIDIS AND T. D. DIMITRAKOS

of the pests exceeds a sufficiently large level. This modification would lead to a very large
finite state space enabling us to implement the algorithms. However, such a truncation of the
state space would change essentially the original model. It is preferable to obtain a more effi-
cient semi-Markov decision formulation for our problem by restricting the set of admissible
stationary policies rather than truncating the state space. Similar approaches were followed
in a queueing problem in Tijms (2003, p. 291) and in the pest control problem studied in
Kyriakidis (1995a).

We restrict our attention only to the stationary policies that always take the controlling
action that introduces the external predator in the habitat when the pest population size is
greater than or equal to M, where M is a sufficiently large integer. This restriction is intu-
itively reasonable and it is consistent to Theorem 3 in Kyriakidis (1995a) that states that if
λ = μ = 0 the optimal policy is of control-limit type. It also enables us to obtain a semi-
Markov decisionmodel for our problemwith finite state space S = {0 , . . . ,M} and action sets
A(i) = {0, 1}, 0 ≤ i ≤ M − 1, and A(M) = {1}. The standard semi-Markov decision algo-
rithms can be implemented directly under this formulation. The semi-Markov decisionmodel
is determined by the one-step transition probabilities, the expected one-step transition times
and the expected one-step transition costs. These quantities are needed for the implementa-
tion of the algorithms and are defined as follows. Let pi j(a) be the probability that at next
decision epoch the process will be in state j ∈ S if action a ∈ {0, 1} is chosen in the present
state i ∈ S, and let T (i, a) andC(i, a) be the corresponding expected time and expected cost,
respectively. We point out that in the above definition if i = M the action a = 1 is the only
one that it is admissible. The non-zero, one-step transition probabilities, one-step expected
transition times and one-step expected costs that correspond to the states 0 , . . . ,M − 1 are
given below:
• non-zero one-step transition probabilities

pi,i+1(a) = ν + λi
ν + (λ + μ)i + aρ

, 0 ≤ i ≤ M − 1, a ∈ {0, 1},

p00(1) = ρ

ν + ρ
,

pi,i−1(a) = μi
ν + (λ + μ)i + aρ

, 2 ≤ i ≤ M − 1, a ∈ {0, 1},

pi0(1) = ρ

ν + (λ + μ)i + ρ
, 2 ≤ i ≤ M − 1,

p10(a) = μ + aρ
ν + λ + μ + aρ

, a ∈ {0, 1},

• one-step expected transition times

T (i, 0) = 1
ν + (λ + μ)i

, 0 ≤ i ≤ M − 1,

T (i, 1) = σρ + (σ + ρi)θ
σθ[ν + (λ + μ)i + ρ]

, 0 ≤ i ≤ M − 1,

• one-step expected costs

C(i, 0) = i
ν + (λ + μ)i

, 0 ≤ i ≤ M − 1,

C(i, 1) = 2σ (i + k) + ρi(i + 1)
2σ [ν + (λ + μ)i + ρ]

, 0 ≤ i ≤ M − 1.
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The only non-zero probabilities pMj(1), 0 ≤ j ≤ M, are the probabilities
pM,M−1(1), pMM(1) and pM0(1). Note that

pM,M−1(1) = μM
ν + (λ + μ)M + ρ

,

pMM(1) = ν + λM
ν + (λ + μ)M + ρ

pM+1,

pM0(1) = 1 − pM,M−1(1) − pMM(1),

(1)

where pM+1 in (1) is the probability that the process returns to M before the introduction
of the external predator in the habitat occurs, given that the initial state is M + 1 and the
controlling action is being taken. The probability pM+1 is the limit of p(n)

M+1, as n → ∞,where
p(n)
M+1, n = 0, 1 , . . . , is the probability that the process returns to state M in at most n steps

before the introduction of the external predator in the habitat, given that the initial state is i
and the controlling action is being taken. The probabilities p(n)

M+1, n = 0, 1, . . . can be found
through the following recursive scheme:

p(0)
i = 0, i ≥ M + 1,

p(n)
M = 0, n ≥ 0,

p(r)
i = (ν + λi)p(r−1)

i+1 + μip(r−1)
i−1

ν + (λ + μ)i + ρ
,

where, i = M + n − r + 1 for each r ∈ {1 , . . . , n}.The probability pM+1 can be approximated
by p(n1)

M+1, where n1 is a positive number such that (p(n1)
M+1 − p(n1−1)

M+1 )/p(n1 )
M+1 < ε and ε is a pre-

specified tolerance number.
Conditioning on the outcome of the next transition from stateM, we obtain

T (M, 1) = σρ + (σ + ρM)θ

σθ[ν + (λ + μ)M + ρ]
+ ν + λM

ν + (λ + μ)M + ρ
TM+1

and

C(M, 1) = 2σ (M + k) + ρM(M + 1)
2σ [ν + (λ + μ)M + ρ]

+ ν + λM
ν + (λ + μ)M + ρ

CM+1,

where TM+1 and CM+1 are the expected time and cost, respectively, until the process enters
either state 0 or stateM given that the initial state isM + 1 and the controlling action is being
taken. The result of the following lemma is needed for the proof of Proposition 2.1.

Lemma 2.1.
(i) If λ − μ ≥ ρ then TM+1 = ∞.

(ii) If λ − μ ≥ ρ/2 then CM+1 = ∞.

Proof. Let T̃M+1 and C̃M+1 be the expected time and the expected cost, respectively, until entry
either into state 0 or stateM, if the initial state isM + 1 and the controlling action that intro-
duces the external predator in the habitat is being taken, in a modified process for the growth
of the pest population in which the effect of immigrations is eliminated and the state M is
absorbing. From the definitions of TM+1, T̃M+1,CM+1, and C̃M+1 we have that

TM+1 ≥ T̃M+1 (2)

and

CM+1 ≥ C̃M+1. (3)
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3866 E. G. KYRIAKIDIS AND T. D. DIMITRAKOS

Let pi(t ), i ≥ M, be the probability that the pest population size is i at time t for the mod-
ified (uncontrolled) process, given that the initial size is M + 1. The probability that the
modified (uncontrolled) process is absorbed ultimately in state M is μ/λ. This result is a
consequence of the inequality λ > μ and can be shown by considering the corresponding
embedded random walk as in the computation of the probability of ultimate absorption into
state 0 in a simple birth-death process (Taylor and Karlin, 1994, pp. 351–352)). From the def-
inition of pM(t ) we have that

pM(t ) ≤ μ

λ
. (4)

The forward equations (see, e.g., Taylor andKarlin, 1994, Ch. 6) for the probabilities pi(t ), i ≥
M, are:

dpi(t )
dt

= −(λ + μ)ipi(t ) + μ(i + 1)pi+1(t ) + λ(i − 1)pi−1(t ), i ≥ M + 2,

dpM+1

dt
= −(λ + μ)(M + 1)pM+1(t ) + μ(M + 2)pM+2(t ),

dpM(t )
dt

= μ(M + 1)pM+1(t ).

Let D(t ) = ∑∞
i=M ipi(t ).

Multiplying the forward equations by i, i ≥ M, and summing over iwe obtain a differential
equation for D(t ). After solving it and making use of (4) we obtain the inequality below. For
details we refer to Kyriakidis (1995a, pp. 351–352):

D(t ) ≥ (M + 1 − μM/λ)e(λ−μ)t + MpM(t ). (5)

Let t∗(≤t ) be the time until the modified (uncontrolled) process returns to state M, given
that the initial state isM + 1 and the state at time t isM. Assume that the controlling action
is taken even when the process enters the absorbing state M. The expected time until entry
into state 0 is equal to t + iσ−1 + θ−1 if the predator is introduced in the habitat at time t and
the number of pests at time t is i ≥ M + 1, while the expected time until entry in state M is
equal to E(t∗) if the predator is introduced in the habitat at time t and the number of pests at
time t is M. Conditioning on the time until the introduction of the external predator, which
is exponentially distributed with mean ρ−1, we have that

T̃M+1 =
∫ ∞

0

[ ∞∑
i=M+1

(t + iσ−1 + θ−1)pi(t ) + E(t∗)pM(t )

]
ρe−ρtdt.

From the above equation we deduce that

T̃M+1 > σ−1
∫ ∞

0

[ ∞∑
i=M+1

ipi(t )

]
ρe−ρtdt.

Part (i) of the lemma is an immediate consequence of (2), (5) and the above inequality. We
define

F(t ) =
∞∑
i=M

i2pi(t ),

G(t ) = F(t ) − M2pM(t ). (6)
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Note that

F(0) = (M + 1)2. (7)

Multiplying the forward equations by i2(i ≥ M) and summing over i we have that
∞∑
i=M

i2
dpi(t )
dt

= −(λ + μ)

∞∑
i=M+1

i3pi(t ) + μ

∞∑
i=M

(i + 1)i2pi+1(t ) + λ

∞∑
i=M+2

(i − 1)i2pi−1(t )

= −(λ + μ)

∞∑
i=M+1

i3pi(t ) + μ

∞∑
i=M+1

i(i − 1)2pi(t ) + λ

∞∑
i=M+1

i(i + 1)2pi(t ).

Using the definition of F(t ) the above equation can be written as

dF(t )
dt

= 2(λ − μ)[F(t ) − M2pM(t )] + (λ + μ)

∞∑
i=M+1

ipi(t ).

Making use of (6) and (7) we obtain

dF(t )
dt

≥ 2(λ − μ)F(t ) − 2(λ − μ)M2μ

λ
+ (λ + μ)

(
M + 1 − μM

λ

)
e(λ−μ)t .

Multiplying the above inequality by e−2(λ−μ)t , integrating between 0 and t and using initial
condition (7) we obtain:

F(t ) ≥ H(t ) + μM2

λ
,

where

H(t ) =
[(λ − μ)2M2 + (3λ + μ)(λ − μ)M + 2λ2]e2(λ−μ)t − (λ + μ)[(λ − μ)M + λ]e(λ−μ)t

λ(λ − μ)
.

From (4), (6), and the above inequality we have

G(t ) ≥ H(t ). (8)

Let m(s|i, t ) be the mean pest population size at time s(≤t ) for the modified (uncontrolled)
process, given that the initial size isM + 1 and the size at time t is i(i ≥ M). Assume that the
controlling action that introduces the external predator in the habitat is exerted even when
the process enters the absorbing stateM. Conditioning on the time until the introduction of
the predator, which is exponentially distributed with mean ρ−1, and taking into account the
cost structure of the problem we have

C̃M+1 =
∫ ∞

0

[ ∞∑
i=M+1

[
∫ t

0
m(s|i, t )ds + i(i + 1)

2σ
]pi(t ) + pM(t )

∫ t∗

0
m(s|M, t )ds

]
ρe−ρtdt

+kT̃M+1.

From the above equation we deduce that

C̃M+1 > (2σ )−1
∫ ∞

0

[ ∞∑
i=M+1

i2pi(t )

]
ρe−ρtdt.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

eg
ea

n]
 a

t 0
1:

04
 2

8 
N

ov
em

be
r 

20
17

 



3868 E. G. KYRIAKIDIS AND T. D. DIMITRAKOS

Part (ii) of lemma is an immediate consequence of (3), (8), and the above inequality.

Proposition 2.1.
(i) TM+1 is finite if and only if λ − μ < ρ.

(ii) CM+1 is finite if and only if λ − μ < ρ/2.

Proof. If TM+1 < ∞ then the relation λ − μ < ρ follows from Part (i) of Lemma 2.1. If
CM+1 < ∞ then the relation λ − μ < ρ/2 follows from Part (ii) of Lemma 2.1.

Let T ′
M+1 and C′

M+1 be the expected time and expected cost, respectively, until entry into
state 0 through state 0′, given that the initial state isM + 1 and the controlling action is being
taken even if the process returns toM before the introduction of the predator. T ′

M+1 andC′
M+1

can be found by conditioning on the time until the introduction of the predator, which is
exponentially distributed with mean ρ−1. Thus,

TM+1 ≤ T ′
M+1 = 1 +

∫ ∞

0

[ ∞∑
i=0

(iσ−1 + θ−1)p′
i(t )

]
ρe−ρtdt

= 1 + θ−1 + σ−1
∫ ∞

0
m(t )ρe−ρtdt (9)

and

CM+1 ≤ C′
M+1 = k +

∫ ∞

0

[∫ t

0
m(s)ds

]
ρe−ρtdt +

∫ ∞

0

[ ∞∑
i=0

i(i + 1)(2σ )−1p′
i(t )

]
ρe−ρtdt

= k + [1 + (2σ )−1]
∫ ∞

0
m(s)ρe−ρtdt + (2σ )−1

∫ ∞

0
m2(t )ρe−ρtdt, (10)

where p′
i(t ), i ≥ 0, is the probability that the population size is i at time t for a simple (uncon-

trolled) immigration-birth-death process with initial state M + 1 and, m(t ) and m2(t ) are
the corresponding mean and second moment. The quantities m(t ) and m2(t ) can be repre-
sented as c1e(λ−μ)t + c0 and c2e2(λ−μ)t + c1e(λ−μ)t + c0, respectively (see Bailey, 1964, p.99).
Therefore, (9) implies that TM+1 is finite if λ − μ < ρ and (10) implies that CM+1 is finite if
λ − μ < ρ/2.

From the above proposition it follows that a semi-Markov decision formulation of the
problem with finite state space S = {0 , . . . ,M} is possible if and only if λ − μ < ρ/2. The
quantities TM+1 and CM+1 can be approximated as follows. Let T (n)

i and C(n)
i , n = 0, 1 , . . . ,

i ≥ M + 1, denote the expectations of min{ti, t (n)
i } and min{ci, c(n)

i }, respectively, where ti
and ci are the time and cost, respectively, until the process reaches either state 0 or state M
given that the controlling action is being taken and the initial state is i, and t (n)

i and c(n)
i are

the time and cost, respectively, until the n-th transition under the policy PM given that the
initial state is i. The quantities TM+1 and CM+1 are the limits as n → ∞ of the sequences
T (n)
M+1, n = 0, 1, . . . and C(n)

M+1, n = 0, 1, . . . that are defined by the following recursive
schemes:

T (0)
i = C(0)

i = 0, i ≥ M + 1,

T (n)
M = C(n)

M = 0, n ≥ 0,
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T (r)
i = σρ + (σ + ρi)θ

σθ[ν + (λ + μ)i + ρ]
+ (ν + λi)T (r−1)

i+1 + μiT (r−1)
i−1

ν + (λ + μ)i + ρ
,

C(r)
i = 2σ (i + k) + ρi(i + 1)

2σ [ν + (λ + μ)i + ρ]
+ (ν + λi)C(r−1)

i+1 + μiC(r−1)
i−1

ν + (λ + μ)i + ρ
,

where i = M + n − r + 1 for each r ∈ {1 , . . . , n}. Hence, TM+1 and CM+1 can be approx-
imated by T (n2)

M+1 and C(n3)
M+1 where n2 and n3 are positive numbers such that (T (n2)

M+1 −
T (n2−1)
M+1 )/T (n2 )

M+1 < ε and (C(n3)
M+1 −C(n3−1)

M+1 )/C(n3 )
M+1 < ε, where ε is a prespecified tolerance

number.

Remark 2.1. If λ ≥ μ the uncontrolled process (i.e., the process under the policy that never
introduces the external predator in the habitat of the pests) does not have an equilibrium
distribution and consequently, in view of Lemma 2.2.2 in Bather (1976), the expected long-
run average cost per unit time is infinite for every initial state. If λ < μ, the process that is
never controlled has an equilibrium distribution. Given the cost structure of the problem we
can see that the average cost in this case is equal to the mean of the equilibrium distribution,
i.e., ν/(μ − λ) (see Bailey, 1964, p.99). It seems difficult to find a condition that guarantees the
optimality of the policy that never initiates the controlling action in this case. In all numerical
examples that we have tested with μ > λ the optimal policy was of control-limit type with
average cost smaller than ν/(μ − λ).

Remark 2.2. Suppose that we consider amodified problem inwhich (i) the cost rate caused by
i pests is ci, i ≥ 1, where {ci} is non decreasing and ci ≤ Ai, i ≥ 1, for some positive number
A, (ii) the external predator captures the pests at a rate σ i, when the pest population size
is i, and (iii) the deaths of the pests with per capita rate μ are not necessarily caused by an
internal predator and continue to occur even when the external predator is in their habitat.
Assumptions (ii) and (iii) imply that the per capita death rate of the pests is equal to μ + σ

when the external predator is present in their habitat. If λ − μ < ρ, it is possible to construct
a finite-state semi-Markov decision model for this problem in a similar way as in the original
problem.However, it seems difficult to prove that the above condition is a necessary condition
for the construction of a finite-state semi Markov decision model.

3. Numerical results

In this section, we present numerical results obtained by the value-iteration algorithm (see
Tijms, 2003, pp. 285–286). In all examples tested, the optimal stationary policywas found to be
of control-limit type. We chooseM = 50 as the truncation point and the numbers 3, 0.4, 0.3,
2, 6 as the initial values of the parameters ν, λ, μ, ρ, k, respectively. Note that the condition
λ − μ < ρ/2 holds and, therefore, a semi-Markov decision formulation with state space S =
{0 , . . . ,M} is possible.We also choose ε = 10−3 as the tolerance number for the computation
of p(n1)

M+1, T
(n2)
M+1, C

(n3 )

M+1, and as the accuracy number for the stopping criterion of the value-
iteration algorithm. In Tables 1–3, we present the critical number x∗, that corresponds to
the optimal control-limit policy Px∗, the minimum average cost and the required number of
iterations. In Table 1 the effect of varying σ is studied, in Table 2 the effect of varying θ is
studied and in Table 3 the effect of varying both σ and θ is studied.

It can be seen from Tables 1 and 2 that the optimal critical level x∗ increases as each of
the parameters σ or θ increases. This can be explained intuitively since as σ or θ increases,

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

eg
ea

n]
 a

t 0
1:

04
 2

8 
N

ov
em

be
r 

20
17

 



3870 E. G. KYRIAKIDIS AND T. D. DIMITRAKOS

Table . The effect of varying σ for θ = 10.

σ x∗
minimum

average cost
number of
iterations

.  . 
.  . 
  . 
  . 
  . 
  . 
  . 
  . 
  . 
  . 

Table . The effect of varying θ for σ = 10.

θ x∗
minimum

average cost
number of
iterations

.  . 
.  . 
  . 
  . 
  . 
  . 
  . 
  . 
  . 
  . 

the required expected time for the extermination of the pest population decreases and, con-
sequently, it is reasonable to initiate the controlling action that introduces the predator in the
habitat only if the population size exceeds higher values. It can also be seen from Tables 1 and
2 that the minimum average cost increases as each of the parameters σ or θ increases. This
seems to be reasonable since (i) the presence of the predator in the habitat of the pests pre-
vents their immigrations and births and (ii) as σ or θ increases the time period, during which
the predator is in the habitat, decreases. From Table 3 we see that if (σ, θ ) = (500, 500) then
x∗ and the minimum average cost coincide with those obtained in the problem studied in
Kyriakidis (1995a). This is reasonable since, when σ → ∞ and θ → ∞ the introduction of
the external predator in the habitat of the pests is equivalent to a total catastrophe that anni-
hilates their population size.

Table . The effect of varying both σ and θ.

σ θ x∗
minimum

average cost
number of
iterations

. .  . 
. .  . 
   . 
   . 
   . 
   . 
   . 
   . 
   . 
   . 
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Figure . The minimum average cost as parameter ρ varies.

In Figure 2, for σ = θ = 10, we present a graph that shows the variation of the minimum
average cost as the rate ρ of the introduction of the external predator in the habitat of the pests
varies in the set {1 , . . . , 60}.We see that, as ρ increases, theminimum average cost decreases.
This can be explained, since, asρ increases, the time period until the introduction of the exter-
nal predator in the habitat of the pests decreases. When ρ takes values in the set {1 , . . . , 20}
the minimum average cost decreases rapidly. When ρ takes values in the set {21 , . . . , 60} the
minimum average cost decreases slowly. In Figure 3 below, for σ = θ = 10 and ρ = 5, we
present a graph that shows the variation of the minimum average cost as the cost rate k of
taking the controlling action that introduces the predator in the habitat of the pests varies in
the set {1 , . . . , 20}. We see that, as k increases, the minimum average cost increases rather
linearly. In Figure 4 below, for σ = θ = 5, ρ = 3, and k = 20, we present a graph that shows
the variation of the critical number x∗ that corresponds to the optimal control-limit policy
Px∗ , as the per capita birth rate λ of the pests takes values in the set {0.1, 0.2 , . . . , 4.1}. We

Figure . The minimum average cost as parameter k varies.
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3872 E. G. KYRIAKIDIS AND T. D. DIMITRAKOS

Figure . The variation of the optimal critical number x∗ as parameter λ varies.

observe that, as λ increases, the critical number x∗ that corresponds to the optimal control-
limit policy Px∗, decreases. This is plausible since, as λ increases, it is preferable to take the
controlling action that introduces the external predator in the habitat of the pests when the
pest population size takes smaller values.

4. Summary

In this article we considered the problem of the optimal control of a population of individuals,
that are referred as pests, by the introduction of a predator in their habitat. The pest population
grows according to a simple immigration-birth-death process and the predator captures the
pests one at a time until their population size is annihilated and then emigrates from the
habitat of the pests. The cost structure includes the cost of the damage caused by the pests,
which increases linearly with respect to their population size, and the cost of the controlling
action that introduces the predator in the habitat.

A suitable finite-state semi-Markov decision model was constructed for the determination
of the policy that minimizes the expected long-run average cost per unit time among all sta-
tionary policies. This construction is possible only if a specific condition is valid on the per
capita birth and death rates and the rate at which the predator is introduced. A great num-
ber of numerical results lead us to the conjecture that the optimal policy is of control-limit
type, i.e., it initiates the controlling action that introduces the predator if and only if the pest
population size exceeds some critical level. A proof of this conjecture seems to be difficult.
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