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A B S T R A C T

We study a mathematical model for a specific vehicle routing problem in which a vehicle starts its route from a
depot loaded with items of two similar but not identical products. The vehicle must deliver the products to N
customers according to a predefined sequence. It is assumed that each customer prefers either product 1 or
product 2 with known probabilities and the quantity that each customer demands is a random variable with
known distribution. The actual preference and demand of each customer are revealed upon the vehicle's arrival at
customer's site. The demand of each customer cannot exceed the vehicle capacity and the vehicle is allowed
during its route to return to the depot to restock with quantities of both products. The travel costs between
consecutive customers and the travel costs between the customers and the depot are known. If there is shortage
for the desired product it is permitted to deliver the other product at a reduced price. The optimal routing strategy
is found by implementing a suitable stochastic dynamic programming algorithm. It is possible to prove that the
optimal routing strategy has a specific threshold-type structure. Furthermore, if we consider the same problem
without the assumption that the customers are ordered, numerical experiments indicate that the optimal routing
strategy can be computed for N � 8:
1. Introduction

A well-known problem in Operations Research is the vehicle routing
problem (VRP). The context of VRP is that of delivering goods located at a
central depot to customers who are scattered in a geographical area and
have ordered these goods. A vehicle or several vehicles start their routes
from the depot and visit the customers in order to satisfy their orders.
After servicing all customers the vehicles return to the depot. The
objective is to minimize the total transportation cost for servicing the
customers. The VRP has been extensively studied in the optimization
literature during the last fifty-five years. Several variations of the vehicle
routing problem have been considered: (i) the VRP with time windows
(see e.g. Cort�es et al. (2014)) in which the customers are served within
predefined time windows. Time windows are defined as hard when it is
not allowed to deliver outside of the time interval. Soft time windows on
the other hand allow deliveries outside the time interval with a penalty
cost, (ii) the capacitated VRP with or without time windows (see e.g.
Laporte et al. (2002), Syrichas and Crispin (2017)) in which the vehicles
have limited carrying capacity of the goods that must be delivered, (iii)
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the VRP with backhauls (see e.g Goetschalckx and Jacobs-Blecha (1989),
Belloso et al. (2017)) in which the customers are divided into linehaul
customers, who require a given quantity of product to be delivered, and
backhaul customers, who require a given quantity of product to be picked
up, (iv) the VRP with pickup and delivery (see e.g Tasan and Gen (2012),
Zhang et al. (2012)) in which each customer is associated with two
quantities representing the demands of products to be delivered and
picked up, (v) the VRP with multiple trips (see e.g. Olivera and Viera
(2007)) in which each vehicle can be scheduled for more than one trip, as
long as it corresponds to the maximum distance allowed in the workday,
(vi) open VRP (see e.g. Derigs and Reuter (2009)) in which the vehicles
are not required to return to the depot after servicing the customers, (vii)
VRP with multiple compartments (see e.g. Derigs et al. (2011)) in which
each compartment of the vehicles is suitable for a single product. The
VRP is a NP-hard problem that in some cases can be solved exactly by
algorithms (for example branch-and-bound, branch-and-cut,
branch-and-cut-and-price methods) that lead to the optimal routing
strategy (see e.g. Gauvin et al. (2014), Dayarian et al. (2015)). Heuristics
and metaheuristics (tabu search, simulated annealing, genetic
), ckaramatsoukis@sse.gr (C.C. Karamatsoukis).
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algorithms, colony optimization) have also been developed in many cases
(see e.g. Kriticos and Ioannou (2013), Segerstedt (2014)). Although these
approaches do not guarantee optimality, they yield best results in prac-
tice. Furthermore, hybrid methods use combination of exact algorithms,
heuristics or metaheuristics to the VRP. It is noteworthy that a great
amount of research is related to the Stochastic VRP (see e.g. Gendreau
et al. (1996), Haugland et al. (2007), Nguyen et al. (2016)) that contains
stochastic components, as the demands of the customers, the vehicle
travel times and the service times of the customers. Recent surveys of
research on VRP have been given by Pillac et al. (2013), Toth and Vigo
(2014) and Psaraftis et al. (2016).

In the last seventeen years various capacitated vehicle routing prob-
lems have been studied in which a single vehicle starts its route from a
depot and serves N customers according to a predefined sequence. Suit-
able dynamic programming formulations have been given for these
problems. It was shown that the form of the optimal routing strategy is of
threshold-type, i.e for each customer it is characterized by some critical
numbers. We present below these studies. In Section 3 of Yang et al.
(2000) the demands of the customers were assumed to be discrete
random variables with known distributions. It was shown that, for each
customer, the optimal routing strategy is characterized by an inventory
threshold. If, after completing the service of a customer, the remaining
amount of products in the vehicle is greater or equal to the threshold,
then the vehicle proceeds to the next customer. Otherwise, it returns to
the depot for replenishment, and then resumes its route. In Kyriakidis and
Dimitrakos (2008) an analogous result was proved for the case of
continuous random demands of the customers. Tsirimpas et al. (2008)
assumed that the demands of the customers are deterministic and
investigated (i) the case of multiple-product deliveries when each prod-
uct is stored in its own compartment in the vehicle, (ii) the case of
multiple-product deliveries when all products are stored together in the
vehicle's single compartment, and (iii) the case in which the vehicle picks
up from and delivers a single product to each customer. In each case the
optimal routing strategy was found by implementing a suitable dynamic
programming algorithm. Tatarakis andMinis (2009) studied cases (i), (ii)
and Minis and Tatarakis (2011) studied case (iii) when the demands of
the customers are discrete random numbers. In these papers structural
results for the optimal routing strategies were obtained that were
generalized by Pandelis et al. (2012, 2013a, 2013b). In the last three
papers the corresponding infinite-time horizon problems were also
studied where the service of the customers does not stop when the last
customer has been serviced but it continues indefinitely with the same
customer order. Kyriakidis and Dimitrakos (2013) assumed that a penalty
is imposed if a customer's demand is not satisfied or if it is satisfied
partially. It was shown that, for each customer, the optimal routing
strategy has a specific threshold-type structure that is characterized by
three critical numbers. Dimitrakos and Kyriakidis (2015) extended the
results obtained by Pandelis et al. (2013b) to the case where the demands
of the customers for a material are continuous random variables instead
of discrete ones. In Section 4 of Zhang et al. (2016) a vehicle routing
problem with ordered customers, stochastic discrete demands and time
windows was investigated and the structure of the optimal routing
strategy was proved to be of threshold-type. Dikas et al. (2016) consid-
ered a vehicle routing problem with a predefined customer sequence,
deterministic customer demands and two load replenishment depots,
which may be of limited capacity. A dynamic programming algorithm
was developed for the simplest case and labeling algorithms or a parti-
tioning heuristic were developed for more complex cases. Realistic ap-
plications of these problems are described in the above papers.

In the present work we study another problem under the assumption
that the customers are ordered. We suppose that the vehicle carries two
similar but not identical products that are delivered to the customers
according to their preferences. If there is lack of the product that a
customer prefers, it is possible to deliver to him/her the other product. In
this case a penalty cost is incurred that could be due to some reduction of
the price of the product that is delivered or to some loss of goodwill. We
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assume that a vehicle starts its route from a depot loaded to its full ca-
pacity with items of two similar but not identical products and visits N
customers according to a predefined sequence 1→2→⋯→N: The proba-
bility that he/she prefers a particular product is known. The quantity that
each customer demands is a random variable with known distribution.
The actual preferences and demands of the customers are revealed only
when a vehicle arrives at their sites. If there is lack of the preferred
product, the demand of the customer may be satisfied by delivering the
product that is not preferred. The vehicle may interrupt its route by
returning to the depot to restock with quantities of both products. The
total cost for servicing all customers consists of (i) travel costs between
consecutive customers, (ii) travel costs between customers and the depot
and (iii) penalty costs. The assumption that the customers are ordered
and an appropriate selection of decision epochs enable us to develop a
dynamic programming algorithm for the determination of the optimal
routing strategy of the vehicle. It is shown that the optimal routing
strategy has a specific threshold-type structure. This characterization
enables us to design an efficient special-purpose dynamic programming
algorithm that leads to the optimal routing strategy and requires less
computations that the initial dynamic programming algorithm.

A practical application of the problem could be the delivery of two
similar materials or goods to patients in a healthcare facility (see Dikas
et al. (2016)). For example, the staff of the healthcare facility may
distribute two similar linens or two similar medical materials or two
similar meals to the patients. The service is performed according to
predefined sequence, usually room after room. The staff may interrupt
the route in order to return to the warehouse to reload the transportation
carts. Another real-world application of the proposed model is the dis-
tribution of two similar types of ammunition (e.g. bullets, missiles) to
military units. Because of safety reasons or command restrictions, the
vehicle carrying military equipments may follow a predefined sequence
in order to deliver the ammunition to military units. The determination
of the optimal routing strategy will reduce the total transportation cost.

The rest of the paper is organized as follows. In Section 2 the problem
is specified and analyzed for the case of random discrete demands of the
customers. A dynamic programming formulation is given for the deter-
mination of the optimal routing strategy of the vehicle. The structure of
the optimal routing strategy is shown and an efficient special-purpose
dynamic programming algorithm is presented. In Section 3 similar re-
sults are obtained for the case of random continuous demands of the
customers. In Section 4 the theoretical results are illustrated by numerical
examples. In Section 5 we consider the more general problemwithout the
assumption that the customers are ordered. In the last section we give a
summary of the main results of the paper and a topic for future research.

2. The problem and the optimal routing strategy

2.1. The problem

We assume that a vehicle starts its route from a depot and visits N
customers in order to deliver them two similar but not identical products.
We name these products, product 1 and product 2. An item of product 1
has the same size as an item of product 2. For example, an item of product
1 could be a bottle of milk A and an item of product 2 could be a bottle of
milk B with the same size. The customers are serviced according to a
predefined sequence 1→2→⋯→N: This means that first customer 1 must
be serviced, then customer 2 must be serviced, then customer 3 must be
serviced and so on. After servicing all customers, the vehicle returns to
the depot. Suppose that (i) the capacity of the vehicle is finite and it is
equal to Q items of product 1 or product 2, (ii) the demand of customer
j 2 f1;…;Ng is a discrete random variable ξj 2 f0;…;Qg with known
distribution, (iii) customer j 2 f1;…;Ng prefers product 1 with known
probability pj or product 2 with probability 1� pj; (iv) the depot contains
enough items of both products to satisfy the demands of all customers
according to their preferences, (v) the actual demand and preference of
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each customer are revealed only when the vehicle arrives at customer's
j 2 f1;…;Ng site, (vi) if upon arrival the vehicle does not contain enough
items of the product that customer j 2 f1;…;Ng prefers, it is permissible
to deliver items of the product that he/she does not prefer; in this case a
penalty cost is incurred that is equal to πj per item that is not preferred.
Let cj;jþ1; j ¼ 1;…;N � 1; be the travel cost from customer j to customer
jþ 1: Let also cj0 and c0j; j ¼ 1;…;N; be the travel cost from customer j to
the depot and the travel cost from the depot to customer j, respectively.
These costs can be considered as the costs of the required fuel that the
vehicle needs to cover the distances between consecutive customers and
the distances between customers and the depot. It is reasonable to as-
sume that they satisfy the following properties:

cj0 ¼ c0j; j ¼ 1;…;N ðsymmetric propertyÞ;

and

c0j þ cj;jþ1 � c0;jþ1; j ¼ 1;…;N � 1 ðtriangle propertyÞ:
The road network is presented in Fig. 1.

Suppose that the vehicle arrives at customer's j 2 f1;…;Ng site. The
actual demand and the preference of the customer are revealed and the
maximum possible quantity of the preferred product is delivered. Let
ðz1; z2Þ be the state of the process after the first visit to customer j, where
zi; i ¼ 1; 2; is the number of items of product i that remain in the vehicle
after the first visit to customer j and after he/she has been served ac-
cording to his/her preference. There are three cases:

Case 1: 0 � z1 � Q; 0 � z2 � Q; z1 þ z2 � Q: In this case customer j
has been serviced completely according to his/her preference.

Case 2: �Q � z1 < 0; 0 � z2 � Q: In this case customer j prefers
product 1 and the vehicle does not have �z1 items to give him/her. We
separate this case into Case 2a when z2 < �z1 and Case 2b when �z1 �
z2: In Case 2a some part of the demand of the customer can be satisfied by
delivering to him/her up to z2 items of product 2. In Case 2b the whole
demand of the customer can be satisfied by delivering to him/her �z1
items of product 2.

Case 3: 0 � z1 � Q; �Q � z2 < 0: In this case customer j prefers
product 2 and the vehicle does not have �z2 items of product 2 to give
him/her. We separate this case into Case 3a when z1 < �z2 and Case 3b
when �z2 � z1: In Case 3a some part of the demand of the customer can
be satisfied by delivering to him/her up to z1 items of product 2. In Case
3b the whole demand of the customer can be satisfied by delivering to
him/her �z2 items of product 2.
Suppose j 2 f1;…;N � 1g :
Fig. 1. The road network.
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In Case 1 the possible actions are Action 1 and Action 2θ; θ 2 f0;…;Qg:
Action 1 means that the vehicle proceeds to customer jþ 1 and Action 2θ
means that it goes to the depot, restocks with θ items of product 1 and
Q � θ items of product 2 and then goes to customer jþ 1: In Case 2a the
possible actions are Action 3ðθ1 ;θÞ; θ1 2 f0;…; z2g; θ 2 f0;…;Q þ z1 þ
θ1g; and Action 4θ; θ 2 f0;…;Qg Action 3ðθ1 ;θÞ means that the vehicle
delivers θ1 items of product 2 (that is not preferred) to customer j, it goes
to the depot to restock with θ � z1 � θ1 items of product 1 and Q þ z1 þ
θ1 � θ items of product 2, returns to customer j to deliver �z1 � θ1 owed
items of product 1 and then proceeds to customer jþ 1 with θ items of
product 1 and Q þ z1 þ θ1 � θ items of product 2. Note that if Action
3ð0;θÞ; θ 2 f0;…;Q þ z1g is chosen, then the vehicle does not deliver to
customer j any item of product 2, while if Action 3ðz2 ;θÞ; θ 2 f0;…;Q þ
z1 þ z2g is chosen, then the vehicle delivers to customer j all remaining
items of product 2. Action 4θ means that the vehicle goes to the depot to
restock with�z1 items of product 1, it returns to customer j to deliver�z1
owed items of product 1, it makes a second trip to the depot to restock
with θ items of product 1 and Q � θ items of product 2 and then goes to
customer jþ 1: In Case 2b the possible actions are Action 5, Action
6θ; θ 2 f0;…;Qg; Action 7ðθ1 ;θÞ; θ1 2 f0;…;�z1 � 1g; θ 2 f0;…;Q þ
z1 þ θ1g and Action 4θ; θ 2 f0;…;Qg: Action 5 means that the vehicle
delivers �z1 items of product 2 (that is not preferred) to customer j and
proceeds to customer jþ 1: Action 6θ means that the vehicle delivers�z1
items of product 2 (that is not preferred) to customer j, goes to the depot
to restock with θ items of product 1 andQ � θ items of product 2 and then
goes to customer jþ 1: Action 7ðθ1 ;θÞ means that the vehicle delivers θ1
items of product 2 (that is not preferred) to customer j, it goes to the
depot to restock with θ � z1 � θ1 items of product 1 and Q þ z1 þ θ1 � θ
items of product 2, it returns to customer j to deliver�z1 � θ1 owed items
of product 1 and then proceeds to customer jþ 1 with θ items of product
1 and Q þ z1 þ θ1 � θ items of product 2. Note that if Action 7ð0;θÞ; θ 2
f0;…;Q þ z1g is chosen, then the vehicle does not deliver to customer j
any item of product 2. Actions 3ðθ1 ;θÞ and 7ðθ1 ;θÞ cause a penalty cost that is
equal to πjθ1 while Actions 5 and 6θ cause a penalty cost that is equal to
�πjz1: It is assumed that if Action 3ðθ1 ;θÞ or Action 4θ or Action 7ðθ1 ;θÞ is
selected, there is no extra demandwhen the vehicle returns to customer j,
i.e. ξj remains unaltered.
Suppose that j ¼ N :

In Case 1 the only possible action for the vehicle is to return to the depot
to terminate its route. In Case 2a the only possible action is Action 8
which means that the vehicle goes to the depot to restock with �z1 items
of product 1, returns to customer N to deliver �z1 owed items of product
1 and then goes again to the depot to terminate its route. In Case 2b the
possible actions are Action 8 and Action 9. Action 9 means that the
vehicle delivers�z1 items of product 2 (that is not preferred) to customer
N and then goes to the depot to terminate its route. If Action 9 is selected
a penalty cost is incurred that is equal to �z1πN : It is assumed that if
Action 8 is selected, there is no extra demand when the vehicle returns to
customer N, i.e. ξN remains unaltered.

Note that in Case 3a and Case 3b for j 2 f1;…;Ng the possible
actions are the same as in Case 2a and Case 2b by taking into account
that there is shortage for items of product 2 instead of product 1. Our
goal is to determine the optimal routing strategy of the vehicle that
serves all customers. This routing strategy minimizes the expected total
cost from the beginning of the route until its end. The total cost con-
sists of travel costs between consecutive customers and between cus-
tomers and the depot and penalty costs that incur when items of the
product that is not preferred are delivered to customers. The optimal
routing strategy can be found by implementing a suitable dynamic
programming algorithm.

2.2. Dynamic programming equations

Let fjðz1; z2Þ denote the minimum expected future cost from the first
visit of the vehicle to customer j 2 f1;…;Ng until the end of the route
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where ðz1; z2Þ is the state of the process that has been defined above. For
j 2 f1;…;N � 1g we give below the dynamic programming equations
(1)–(3) for Case 1, Case 2a and Case 2b. For Case 3a and Case 3b the
dynamic programming equations are the same as (2) and (3) if we
interchange z1 and z2:
If 0 � z1 � Q; 0 � z2 � Q; z1 þ z2 � Q; then

fjðz1; z2Þ ¼ min
�
Ajðz1; z2Þ; Bj

�
; (1)

where,

Ajðz1; z2Þ ¼ cj;jþ1 þ pjþ1Efjþ1

�
z1 � ξjþ1; z2

�þ �
1� pjþ1

�
Efjþ1

�
z1; z2 � ξjþ1

�
;

Bj ¼ cj0 þ c0;jþ1 þ min
0�θ�Q

�
pjþ1Efjþ1

�
θ � ξjþ1;Q� θ

�þ �
1� pjþ1

�
Efjþ1

�
θ;Q

� θ � ξjþ1

��
:

If �Q � z1 < 0; 0 � z2 � Q; z2 < �z1 then

fjðz1; z2Þ ¼ min
�
Cjðz1; z2Þ; Dj

�
; (2)

where,

Cjðz1; z2Þ ¼ 2cj0 þ cj;jþ1 þ min
ðθ1 ;θÞ:0�θ1�z2 ;0�θ�Qþz1þθ1

�
πjθ1 þ pjþ1Efjþ1

�
θ � ξjþ1;Q

þ z1 þ θ1 � θ
�þ �

1� pjþ1

�
Efjþ1

�
θ;Qþ z1 þ θ1 � θ � ξjþ1

��
;

Dj ¼ 3cj0 þ c0;jþ1 þ min
0�θ�Q

�
pjþ1Efjþ1

�
θ � ξjþ1;Q� θ

�þ �
1� pjþ1

�
Efjþ1

�
θ;Q

� θ � ξjþ1

��
:

If �Q � z1 < 0; 0 � z2 � Q; �z1 � z2; then

fjðz1; z2Þ ¼ min
�
Ejðz1; z2Þ; Fjðz1Þ; Gjðz1Þ; Dj

�
; (3)

where,

Ejðz1; z2Þ ¼ �πjz1 þ cj;jþ1 þ pjþ1Efjþ1

�� ξjþ1; z1 þ z2
�þ �

1� pjþ1

�
Efjþ1

�
0; z1

þ z2 � ξjþ1

�
;

Fjðz1Þ ¼ �πjz1 þ cj0 þ c0;jþ1 þ min
0�θ�Q

�
pjþ1Efjþ1

�
θ � ξjþ1;Q� θ

�þ �
1

� pjþ1

�
Efjþ1

�
θ;Q� θ � ξjþ1

��
;

Gjðz1Þ ¼ 2cj0 þ cj;jþ1 þ min
ðθ1 ;θÞ:0�θ1<�z1 ;0�θ�Qþz1þθ1

�
πjθ1 þ pjþ1Efjþ1

�
θ � ξjþ1;Q

þ z1 þ θ1 � θ
�þ �

1� pjþ1

�
Efjþ1

�
θ;Qþ z1 þ θ1 � θ � ξjþ1

��
:

(4)

The boundary conditions are given below for Case 1 and for Case 2a and
Case 2b. For Case 3a and Case 3b the boundary conditions are the same as
for Case 2a and Case 2b if we interchange z1 and z2:

If 0 � z1 � Q; 0 � z2 � Q; z1 þ z2 � Q; then

fNðz1; z2Þ ¼ cN0: (5)

If �Q � z1 < 0; 0 � z2 � Q; z2 < �z1 then

fNðz1; z2Þ ¼ 3cN0: (6)

If �Q � z1 < 0; 0 � z2 � Q; �z1 � z2; then

fNðz1; z2Þ ¼ minf3cN0; cN0 � z1πNg: (7)

The minimum total expected cost during a visit cycle is equal to

f0 ¼ c01 þ min
0�z�Q

½p1Ef1ðz� ξ1;Q� zÞ þ ð1� p1ÞEf1ðz;Q� z� ξ1Þ�:

In the above equations the expected values are taken with respect to the
random variables ξj; j ¼ 1;…;N: The terms Ajðz1; z2Þ and Bj in the right-
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hand-side of Eq. (1) correspond to Action 1 and Actions 2θ ðθ 2
f0;…;QgÞ; respectively. The terms Cjðz1; z2Þ and Dj in the right-hand-side
of Eq. (2) correspond to Actions 3ðθ1 ;θÞ ðθ1 2 f0;…; z2g; θ 2 f0;…;Q þ
z1 þ θ1gÞ and Actions 4θ ðθ 2 f0;…;QgÞ; respectively. The terms
Ejðz1; z2Þ; Fjðz1Þ; Gjðz1Þ; Dj in the right-hand-side of Eq. (3) correspond to
Action 5, Actions 6θ ðθ 2 f0;…;QgÞ; Actions 7ðθ1 ;θÞ ðθ1 2 f0;…;�z1 � 1g;
θ 2 f0;…;Q þ z1 þ θ1gÞ; Actions 4θ ðθ 2 f0;…;QgÞ; respectively. The
terms in the curly brackets in the right-hand-side of Eq. (7) correspond to
Action 8 and Action 9, respectively. Lemma 1 below will be used in the
proof of Theorem 1 that describes the structure of the optimal routing
strategy.
2.3. Structure of the optimal policy
Lemma 1. fjðz1; z2Þ; j ¼ 1;…;N; is non-increasing with respect to z1
and z2:

Proof. The proof is by induction on j. From (5), (6), (7) it can be seen
that fNðz1; z2Þ is non-increasing in z1 and z2: Assuming that fjþ1ðz1; z2Þ is
non-increasing in z1 and z2; we will show that fjðz1; z2Þ is non-increasing
in z1 and z2: Wewill restrict ourselves to Case 1 and Case 2, since Case 3 is
similar to Case 2. Let some fixed z1 2 f � Q;…;Qg: In view of the in-
duction hypothesis, it follows from (1), (2), (3) that, to prove that
fjðz1; z2Þ is non-increasing in z2, it is enough to show that fjð�z2; z2Þ �
fjð�z2; z2 � 1Þ; z2 2 f1;…;Qg: This inequality holds if Gjð�z2Þ �
Cjð�z2; z2 � 1Þ; z2 2 f1;…;Q � 1g; which holds as equality. Let some
fixed z2 2 f0;…;Qg: In view of the induction hypothesis and Equations
(1)–(3), it follows that, to prove that fjðz1; z2Þ is non-increasing in z1, it is
enough to prove that

Gjðz1 þ 1Þ � Gjðz1Þ; �Q � z1 < �1; (8)

fjð0; z2Þ � fjð � 1; z2Þ; 1 � z2 � Q; (9)

fjð0; 0Þ � fjð � 1; 0Þ; (10)

fjðz1;�z1Þ � fjðz1 � 1;�z1Þ; �Qþ 1 � z1 � �1: (11)

To prove (8), in view of the induction hypothesis, it is enough to show
that Hð�z1 � 1; θÞ � Hð�z1 � 2; θÞ; θ 2 f0;…;�z1 � 1g; where
Hðθ1; θÞ; 0 � θ1 < �z1; 0 � θ � Q þ z1 þ θ1; is the quantity in the
square brackets in the right-hand-side of (4). It can be readily checked
that the last inequality holds. Inequality (9) is equivalent to

min
�
Ajð0; z2Þ;Bj

� � min
�
Ejð � 1; z2Þ;Fjð � 1Þ;Gjð � 1Þ;Dj

�
; 1 � z2 � Q:

The above inequality holds since Ajð0; z2Þ � Ejð�1; z2Þ; Bj �
Fjð�1Þ; Bj � Gjð�1Þ; Bj � Dj: Inequality (10) is equivalent to
minfAjð0;0Þ;Bjg � minfCjð�1; 0Þ;Djg This inequality holds since Bj �
Cjð�1; 0Þ; Bj � Dj: Inequality (11) is equivalent to minfEjðz1;�z1Þ;
Fjðz1Þ;Gjðz1Þ;Djg � minfCjðz1 � 1;�z1Þ;Djg This inequality holds since,
in view of induction hypothesis, Gjðz1Þ � Cjðz1 � 1;�z1Þ:
Theorem 1. For each customer j 2 f1;…;N � 1g the structure of the
optimal routing strategy is described in the following five cases:

(i) For z1 2 f0;…;Qg there exists a critical integer s1ðz1Þ � 0 such
that if z2 2 fs1ðz1Þ;…;Q � z1g the optimal action is Action 1,
while if z2 2 f0;…; s1ðz1Þ � 1g the optimal action is Action 2θ for
some θ 2 f0;…;Qg: Moreover, s1ðz1Þ is non-increasing in z1:

(ii) For z2 2 f0;…;Q � 1g there exists a critical integer s2ðz2Þ 2 f �
Q;…;�z2 � 1g such that if z1 2 fs2ðz2Þ;…;�z2 � 1g the optimal
action is Action 3ðθ1 ;θÞ for some θ1 2 f0;…; z2g and some θ 2
f0;…;Q þ z1 þ θ1g; while if z1 2 f � Q;…; s2ðz2Þ � 1g the
optimal action is Action 4θ for some θ 2 f0;…;Qg: Moreover,
s2ðz2Þ is non-increasing in z2:
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(iii) For z2 2 f1;…;Qg there exists a critical integer s3ðz2Þ 2 f �
z2;…;�1g such that if z1 2 fs3ðz2Þ;…;�1g the optimal action is
Action 5 or Action 6θ for some θ 2 f0;…;Qg or Action 7ðθ1 ;θÞ for
some θ1 2 f0;…;�z1 � 1g and some θ 2 f0;…;Q þ z1 þ θ1g;
while if z1 2 f � z2;…; s3ðz2Þ � 1g the optimal action is Action 4θ
for some θ 2 f0;…;Qg: Moreover, s3ðz2Þ is non-increasing in z2:

(iv) For z1 2 f0;…;Q � 1g there exists a critical integer s4ðz1Þ 2 f �
Q;…;�z1 � 1g such that if z2 2 fs4ðz1Þ;…;�z1 � 1g the optimal
action is Action 3ðθ1 ;θÞ for some θ1 2 f0;…; z1g and some θ 2
f0;…;Q þ z2 þ θ1g; while if z2 2 f � Q;…; s4ðz1Þ � 1g the
optimal action is Action 4θ for some θ 2 f0;…;Qg: Moreover,
s4ðz1Þ is non-increasing in z1:

(v) For z1 2 f1;…;Qg there exists a critical integer s5ðz1Þ 2 f �
z1;…;�1g such that if z2 2 fs5ðz1Þ;…;�1g the optimal action is
Action 5 or Action 6θ for some θ 2 f0;…;Qg or Action 7ðθ1 ;θÞ for
some θ1 2 f0;…;�z2 � 1g and some θ 2 f0;…;Q þ z2 þ θ1g;
while if z2 2 f � z1;…; s5ðz1Þ � 1g the optimal action is Action 4θ
for some θ 2 f0;…;Qg: Moreover, s5ðz1Þ is non-increasing in z1:
Proof. From Lemma 1 it follows that Ajðz1; z2Þ is non-increasing in z1
and z2: Part (i) is a direct consequence of this result. From Lemma 1 it
follows that Cjðz1; z2Þ is non-increasing in z1: It can also be seen that
Cjðz1; z2Þ is non-increasing in z2: Part (ii) is a direct consequence of these
results. From Lemma 1 it follows that Ejðz1; z2Þ is non-increasing in z1 and
z2: In the proof of Lemma 1 it has been shown that Gjðz1Þ is non-
increasing in z1: It can also easily be seen that Fjðz1Þ is non-increasing
in z1: Part (iii) is a direct consequence of these results. Part (iv) and
Part (v) can be proved in a similar way as Part (ii) and Part (iii),
respectively.

2.4. Special-purpose dynamic programming algorithm

The optimal routing strategy, i.e. the critical integers s1ðz1Þ; z1 2
f0;…;Qg; s2ðz2Þ; z2 2 f0;…;Q � 1g; s3ðz2Þ; z2 2 f1;…;Qg; s4ðz1Þ;
z1 2 f0;…;Q � 1g; s5ðz1Þ; z1 2 f1;…;Qg; for each j 2 f1;…;N � 1g;
can be found by a special-purpose dynamic programming algorithm, that
takes into account the structure of the optimal routing strategy as given in
Theorem 1. The part of this algorithm that computes the critical integers
s1ðz1Þ; z1 2 f0;…;Qg; s2ðz2Þ; z2 2 f0;…;Q � 1g; s3ðz2Þ; z2 2 f1;…;Qg
is presented below. The complete special-purpose dynamic programming
algorithm includes the computation of the critical integers s4ðz1Þ; z1 2
f0;…;Q � 1g and s5ðz1Þ; z1 2 f1;…;Qg that is similar to the computa-
tion of the critical integers s2ðz2Þ; z2 2 f0;…;Q � 1g and s3ðz2Þ; z2 2
f1;…;Qg; respectively.
Algorithm for the determination of the critical integers s1ðz1Þ; z1 2
f0;…;Qg; s2ðz2Þ; z2 2 f0;…;Q � 1g; s3ðz2Þ; z2 2 f1;…;Qg

Step 0 Set fNðz1; z2Þ ¼ cN0 if z1; z2 2 f0;…;Qg; z1 þ z2 �
Q; fNðz1; z2Þ ¼ 3cN0 if z1 2 f � Q;…;�1g;

z2 2 f0;…;Qg; z2 < �z1; fNðz1; z2Þ ¼ minf3cN0; cN0 � z1πNg if z1 2
f � Q;…;�1g; z2 2 f0;…Qg;
�z1 � z2: Set j ¼ N � 1:

Step 1 (Determination of critical integers s1ðz1Þ ; z1 2 f0;…;QgÞ
Compute Bj:

For z1 ¼ 0;…;Q do the following:
For z2 ¼ Q � z1;Q � z1 � 1;… compute Ajðz1; z2Þ until Ajðz1; z2Þ > Bj

or z2 ¼ �1:
Set s1ðz1Þ ¼ z2 þ 1:
Set fjðz1; z2Þ ¼ Ajðz1; z2Þ; z2 2 fs1ðz1Þ;…;Q � z1g and fjðz1; z2Þ ¼
Bj; z1 2 f0;…; s1ðz1Þ � 1g

Step 2 (Determination of critical integers s2ðz2Þ; z2 2 f0;…;Q � 1gÞ
Dj ¼ 2cj0 þ Bj:

For z2 ¼ 0;…;Q � 1 do the following:
For z1 ¼ �z2 � 1; �z2 � 2;… compute Cjðz1; z2Þ until Dj < Cjðz1; z2Þ
or z1 ¼ �Q � 1:
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Set s2ðz2Þ ¼ z1 þ 1:
Set fjðz1; z2Þ ¼ Cjðz1; z2Þ; z1 2 fs2ðz2Þ;…;�z2 � 1g and fjðz1; z2Þ ¼
Dj; z1 2 f � Q;…;

s2ðz2Þ � 1g
Step 3 (Determination of critical integers s3ðz2Þ; z2 2 f1;…;QgÞ

For z2 ¼ 1;…;Q do the following:
For z1 ¼ �1;�2;… compute Ejðz1; z2Þ; Fjðz1Þ;Gjðz1Þ
until Dj < minfEjðz1; z2Þ; Fjðz1Þ;Gjðz1Þg or z1 ¼ �z2 � 1:
Set s2ðz2Þ ¼ z1 þ 1:
Set fjðz1; z2Þ ¼ minfEjðz1; z2Þ; Fjðz1Þ;Gjðz1Þg; z1 2 fs3ðz2Þ;…;�1g
and
fjðz1; z2Þ ¼ Dj; z1 2 f � z2;…; s3ðz2Þ � 1g

Step 4 Set j ¼ j� 1: If j � 1 go to Step 1. Otherwise stop.

The above special-purpose dynamic programming algorithm is based on
the structure of the optimal routing strategy described in Theorem 1. The
complexity of this algorithm can be calculated by considering Definition
7.1 in Sipser (2013) and it is found to be OðNQ3Þ: It is more efficient than
the initial dynamic programming algorithm since it requires less com-
putations. For example, for j ¼ 1;…;N � 1; the quantities Ajðz1; z2Þ; z2 2
f0;…; s1ðz1Þ � 2g; for z1 2 f0;…;Qg are not computed, while these
quantities are computed in the initial dynamic programming algorithm.
In Section 4 we will compare the computations times of these algorithms
in a numerical example.

3. The problem when the demands are continuous random
variables

3.1. The optimal routing strategy with continuous demands

We modify the problem that we introduced in Section 2 by assuming
that the demands ξj; j ¼ 1;…;N; of the customers are continuous random
variables and take values in the interval ½0;Q� with probability density
function ϕjðxÞ: A practical example with continuous demands could be
the delivery of two different kinds of building materials, for example lime
and pebble. The states ðz1; z2Þ of the process, where 0 � z1; z2 � Q; z1 þ
z2 � Q or �Q � z1 < 0; 0 � z2 � Q or �Q � z2 < 0; 0 � z1 � Q; after
the first visit at a customer's site and Action 1, Actions 2θ ð0 � θ � QÞ;
Actions 3ðθ1 ;θÞ ð0 � θ1 � z2; 0 � θ � Q þ z1 þ θ1Þ; Actions
4θ ð0 � θ � QÞ; Action 5, Actions 6θ ð0 � θ � QÞ; Actions 7ðθ1 ;θÞ ð0 �
θ1 < �z1; 0 � θ � Q þ z1 þ θ1Þ; Action 8, Action 9 are the same as those
defined in Section 2. The minimum expected future cost fjðz1; z2Þ for j ¼
1;…;N; satisfies the dynamic programming equations (1)–(3) and the
boundary conditions (5)–(7). The structure of the optimal routing strat-
egy is the same as in the case of discrete demands and is given in the
theorem below.

Theorem 2. For each customer j 2 f1;…;N � 1g the structure of the
optimal routing strategy is described in the following five cases:

(i) For z1 2 ½0; Q� there exists a critical number s1ðz1Þ � 0 such that if
z2 2 ½s1ðz1Þ; Q � z1 � the optimal action is Action 1, while if z2 2
½0; s1ðz1ÞÞ the optimal action is Action 2θ for some θ 2 ½0;Q�:
Moreover, s1ðz1Þ is non-increasing in z1:

(ii) For z2 2 ½0;QÞ there exists a critical number s2ðz2Þ 2 ½�Q;�z2Þ
such that if z1 2 ½s2ðz2Þ;�z2Þ the optimal action is Action 3ðθ1 ;θÞ for
some θ1 2 ½0; z2� and some θ 2 ½0;Q þ z1 þ θ1�; while if z1 2
½�Q; s2ðz2ÞÞ the optimal action is Action 4θ for some θ 2 ½0;Q�:
Moreover, s2ðz2Þ is non-increasing in z2:

(iii) For z2 2 ð0;Q� there exists a critical number s3ðz2Þ 2 ½�z2; 0Þ such
that if z1 2 ½s3ðz2Þ;0Þ the optimal action is Action 5 or Action 6θ

for some θ 2 ½0;Q� or Action 7ðθ1 ;θÞ for some θ1 2 ½0;�z1Þ and
some θ 2 ½0;Q þ z1 þ θ1� or Action 4θ; while if z1 2 ½�z2; s3ðz2ÞÞ
the optimal action is Action 4θ for some θ 2 ½0;Q�: Moreover,
s3ðz2Þ is non-increasing in z2:
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(iv) For z1 2 ½0;QÞ there exists a critical number s4ðz1Þ 2 ½�Q;�z1Þ
such that if z2 2 ½s4ðz1Þ;�z1Þ the optimal action is Action 3ðθ1 ;θÞ for
some θ1 2 ½0; z1� and some θ 2 ½0;Q þ z2 þ θ1�; while if z2 2
½�Q; s4ðz1ÞÞ the optimal action is Action 4θ for some θ 2 ½0;Q�:
Moreover, s4ðz1Þ is non-increasing in z1:

(v) For z1 2 ð0;Q� there exists a critical number s5ðz1Þ 2 ½�z1; 0Þ such
that if z2 2 ½s5ðz1Þ;0Þ the optimal action is Action 5 or Action 6θ

for some θ 2 ½0; Q� or Action 7ðθ1 ;θÞ for some θ1 2 ½0; �z2Þ and
some θ 2 ½0; Q þ z2 þ θ1�; while if z2 2 ½�z1; s5ðz1ÞÞ the optimal
action is Action 4θ for some θ 2 ½0; Q� Moreover, s5ðz1Þ is non-
increasing in z1:
3.2. Discretization of the state space

The state space after the first visit of the vehicle at customer's j 2
f1;…;Ng site is the set S ¼ fðz1; z2Þ : �Q � z1 < 0; 0 � z2 � Qg [
fðz1; z2Þ : 0 � z1; z2 � Q; z1 þ z2 � Qg [ fðz1; z2Þ : 0 � z1 � Q; �Q �
z2 < 0g A discretization of the state space is necessary for the imple-
mentation of the dynamic programming algorithm. Let ρ be a relatively
small number (e.g. ρ ¼ 0:05 or ρ ¼ 0:01Þ: We discretize S by restricting
our attention only to its points that belong to the set

~S ¼ fðkρ; lρÞ : k ¼ �1;…;�Q=ρ; l ¼ 0;…;Q=ρg [ fðkρ; lρÞ : k; l
¼ 0;…;Q=ρ s:t: k þ l � Q=ρg [ fðkρ; lρÞ : k ¼ 0;…;Q=ρ; l

¼ �1;…;�Q=ρg:

The minimum expected cost fNðkρ; lρÞ; ðkρ; lρÞ 2 ~S; is found by using
(5)–(7) with z1 ¼ kρ; z2 ¼ lρ: The minimum expected cost
fjðkρ; lρÞ; ðkρ; lρÞ 2 ~S; and the corresponding optimal decisions are found,
recursively, for j ¼ N � 1; N � 2;…;1; by using the dynamic program-
ming equations. The parameters θ1 and θ in these equations take values in
finite sets. For example in (4) the pair ðθ1; θÞ takes values in the set B ¼
fðuρ; vρÞ : u ¼ 0;…;�k� 1; v ¼ 0;…;Q=ρþ kþ ug The expectations are
computed approximately. For exampleGjðkρÞ is computed approximately
as follows:

GjðkρÞ ¼ 2cj0 þ cj;jþ1 þ min
ðθ1 ;θÞ2B

"
πjθ1 þ pjþ1

XQ=ρ�1

x¼0

fjþ1ðθ � xρ;Qþ kρþ θ1

� θÞϕjþ1ðxρÞρþ
�
1� pjþ1

� XQ=ρ�1

x¼0

fjþ1ðθ;Qþ kρþ θ1 � θ

� xρÞϕjþ1ðxρÞρ
#
:

3.3. Special-purpose dynamic programming algorithm

As in the case of discrete demands, the optimal routing strategy, i.e.
the critical numbers s1ðkρÞ; k ¼ 0;…;Q=ρ; s2ðlρÞ; l ¼ 0;…;Q=ρ�
1; s3ðlρÞ; l ¼ 1;…;Q=ρ; s4ðkρÞ; k ¼ 0;…;Q=ρ� 1; s5ðkρÞ; k ¼ 1;…;Q=ρ
for each customer j 2 f1;…;N � 1g can be found by a special-purpose
dynamic programming algorithm that takes into account the structure
of the optimal routing strategy as given in Theorem 2. The part of this
algorithm that computes the critical numbers s1ðkρÞ; k ¼ 0;…;Q=ρ;
s2ðlρÞ; l ¼ 0;…;Q=ρ� 1; s3ðlρÞ; l ¼ 1;…;Q=ρ; is presented below. The
complete special-purpose dynamic programming algorithm includes the
computation of the critical numbers s4ðkρÞ; k ¼ 0;…;Q=ρ� 1 and
s5ðlρÞ; l ¼ 1;…;Q=ρ that is similar to the computation of the critical
numbers s2ðlρÞ; l ¼ 0;…;Q=ρ� 1 and s3ðlρÞ; l ¼ 1;…;Q=ρ; respectively.

Algorithm for the determination of the critical numbers
s1ðkρÞ; k ¼ 0;…;Q=ρ; s2ðlρÞ; l ¼ 0;…;Q=ρ� 1; s3ðlρÞ; l ¼ 1;…;Q=ρ

Step 0 Set fNðkρ; lρÞ ¼ cN0 if k; l 2 f0;…;Q=ρg and kþ l � Q=ρ: Set
fNðkρ; lρÞ ¼ 3cN0 if k ¼ �1;…;�Q=ρ; l ¼ 0;…;Q=ρ; l < �k: Set
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fNðkρ; lρÞ ¼ minf3cN0; cN0 � kρπNg if k ¼ �1;…; �Q=ρ; l ¼
0;…;Q=ρ; l � k: Set j ¼ N � 1:

Step 1 (Determination of critical numbers s1ðkρÞ; k ¼ 0;…;Q=ρÞ
Compute Bj:

For k ¼ 0;…;Q=ρ do the following:
For z2 ¼ Q � kρ;Q � ðkþ 1Þρ;… compute Ajðkρ; z2Þ until Ajðkρ; z2Þ >
Bj or z2 ¼ �ρ:
Set s1ðkρÞ ¼ z2 þ ρ:
Set fjðkρ; lρÞ ¼ Ajðkρ; lρÞ; s1ðkρÞ=ρ � l � Q=ρ:
Set fjðkρ; lρÞ ¼ Bj; 0 � l < s1ðkρÞ=ρ:

Step 2 (Determination of critical numbers s2ðlρÞ; l ¼ 0;…;Q=ρ� 1Þ
Dj ¼ 2cj0 þ Bj:

For l ¼ 0;…;Q=ρ� 1 do the following:
For z1 ¼ �lρ� ρ; �lρ� 2ρ;… compute Cjðz1; lρÞ until Dj < Cjðz1; lρÞ
or z1 ¼ �Q � ρ:
Set s2ðlρÞ ¼ z1 þ ρ:
Set fjðkρ; lρÞ ¼ Cjðkρ; lρÞ; s2ðlρÞ=ρ � k � �l� 1:
Set fjðkρ; lρÞ ¼ Dj; �Q=ρ � k � s2ðlρÞ=ρ� 1:

Step 3 (Determination of critical numbers s3ðlρÞ; l ¼ 1;…;Q=ρÞ
For l ¼ 1;…;Q=ρ do the following:
For z1 ¼ �ρ;�2ρ;… compute Ejðz1; lρÞ; Fjðz1Þ;Gjðz1Þ
until Dj < minfEjðz1; lρÞ; Fjðz1Þ;Gjðz1Þg or z1 ¼ �lρ� ρ:
Set s3ðz2Þ ¼ z1 þ ρ:
Set fjðkρ; lρÞ ¼ minfEjðkρ; lρÞ; FjðkρÞ;GjðkρÞg; s3ðlρÞ=ρ � k � �1:
fjðkρ; lρÞ ¼ Dj; �l � k � s3ðlρÞ=ρ� 1:

Step 4 Set j ¼ j� 1: If j � 1 go to Step 1. Otherwise stop.

The above special-purpose dynamic programming algorithm is based on
the structure of the optimal routing strategy described in Theorem 2. Its
complexity is OðN½Q=ρ�3Þ (see Definition 7.1 in Sipser (2013)). It requires
less computations than the initial dynamic programming algorithm. For
example, for j ¼ 1;…;N � 1; the quantities Ajðkρ; lρÞ; l 2
f0;…; s1ðkρÞ=ρ� 2g; for k 2 f0;…;Q=ρg are not computed, while these
quantities are computed in the initial dynamic programming algorithm.
A numerical example is presented in Section 4 that shows that the dif-
ference of the computation times of these algorithms is significant
especially for high values of the number of customers N.

4. Numerical results

In the following numerical results, we implemented the initial dynamic
programming algorithm and the special-purpose dynamic programming
algorithm by running the corresponding Matlab programs on a personal
computer equipped with an Intel Core i5-4460, 3.2 GHz processor and
16 GB of RAM. In Example 1, we assume that the demands of the cus-
tomers for the products are discrete random variables and in Example 2,
we assume that the demands of the customers for the products are
continuous random variables. These examples confirm the structural
results presented in Theorem 1 and in Theorem 2.

Example 1. Suppose that N ¼ 8 and Q ¼ 12: The travel costs between
customer j and jþ 1; j 2 f1;…; 7g; are given by: c12 ¼ 10; c23 ¼ 12;
c34 ¼ 10; c45 ¼ 14; c56 ¼ 12; c67 ¼ 15 and c78 ¼ 12: The travel costs
between customers j;j ¼ 1;…; 8; and the depot are given by: c10 ¼ 12;
c20 ¼ 11; c30 ¼ 9; c40 ¼ 10; c50 ¼ 13; c60 ¼ 11; c70 ¼ 14 and c80 ¼ 9:
Note that these costs satisfy the triangle inequality. We assume that the
penalty costs π1;…; π8 incurred when an item of the non-preferred
product is delivered to customers 1,…,8 instead of the preferred one
are elements of the row vector π ¼ ð4; 3; 6; 5; 3; 5; 4; 6Þ: We further
assume that the demand ξj of each customerj 2 f1;…;8g is a random
variable which follows the binomial distribution BinðQ; 0:4Þ; i.e.

Pr
�
ξj ¼ x

� ¼ �
Q
x

	
0:4x0:6Q�x; x ¼ 0;…;Q:

Note that the binomial distribution has been used to model demands in



Fig. 2. The optimal decisions for customer 3.
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vehicle routing problems, for example in Golden and Yee (1979) and in
Haugland et al. (2007). We assume that the probabilities p1;…; p8 that
customers 1,…,8 prefer product 1 are elements of the row vector p ¼
ð0:6; 0:7; 0:5; 0:4; 0:5; 0:6; 0:8; 0:4Þ: In Figs. 2 and 3, we present the
optimal decisions for customers 3 and 6. If 0 � z1 � Q; 0 � z2 � Q; z1 þ
z2 � Q; the action of proceeding directly to next customer (Action 1) is
denoted by blue circles and the action of going to the depot for restocking
with product loads θ and Q � θ and then going to the next customer
(Action 2θÞ is denoted by red squares. If �Q � z1 < 0; 0 � z2 � Q; or if
0 � z1 � Q; �Q � z2 < 0 and if z2 < �z1 or if z1 < �z2 we use cyan stars
for action 3ðθ1 ;θÞ (or action 3ðθ2 ;θÞ; where θ2 is the number of items of the
non-preferred product 1 that are delivered) that corresponds to quantity
Cjðz1; z2Þ and green diamonds for action 4θ that corresponds to quantity
Dj: If z2 � �z1 or z1 � �z2; we use yellow hexagrams for action 5, that
corresponds to the quantity Ejðz1; z2Þ; magenta x-marks for action 6θ that
corresponds to quantity Fjðz1Þ (or Fjðz2ÞÞ and black upper triangles for
action 7ðθ1 ;θÞ (or action 7ðθ2 ;θÞ;where θ2 is the number of the non-preferred
items of product 1 that are delivered) which correspond to the quantity
Gjðz1Þ (or Gjðz2ÞÞ:
The value of the minimum total expected cost f0 is found to be approx-
imately equal to 165.61. The computation time of the special-purpose
dynamic programming algorithm is 0.625 seconds. It is considerably
smaller than the computation time of the initial dynamic programming
algorithm which is 3.062 seconds.

Both algorithms enable us to determine the optimal values of θ1 (or
θ2Þ and θ when the optimal actions are the actions 3ðθ1 ;θÞ (or 3ðθ2 ;θÞ) and
7ðθ1 ;θÞ (or 7ðθ2 ;θÞ) and the optimal value of θ when the optimal actions are
the actions 2θ; 4θ and 6θ: For example, for customer 3, if the state is
ðz1; z2Þ ¼ ð2;�5Þ; then the optimal action for the vehicle is the action
3ðθ2 ;θÞ with θ2 ¼ 2 and θ ¼ 7: According to this action, the vehicle de-
livers θ2 ¼ 2 items of non-preferred product 1 to customer 3, goes to the
depot to restock with θ � z2 � θ2 ¼ 7� ð�5Þ � 2 ¼ 10 items of product 2
and Q þ z2 þ θ2 � θ ¼ 12� 5þ 2� 7 ¼ 2 items of product 1, returns to
customer 3 to deliver�z2 � θ2 ¼ �ð�5Þ � 2 ¼ 3 owed items of product 2
and then proceeds to customer 4 with θ ¼ 7 items of product 2 and 2
items of product 1. If, again for customer 3, the state is ðz1; z2Þ ¼ ð�4; 6Þ;
then the optimal action for the vehicle is the action 7ðθ1 ;θÞ with θ1 ¼ 3 and
θ ¼ 8: According to this action, the vehicle delivers θ1 ¼ 3 items of non-
preferred product 2 to customer 3, goes to the depot to restock with θ �
z1 � θ1 ¼ 8� ð�4Þ � 3 ¼ 9 items of product 1 and Q þ z1 þ θ1 � θ ¼
12� 4þ 3� 8 ¼ 3 items of product 2, returns to customer 3 to deliver
�z1 � θ1 ¼ �ð�4Þ � 3 ¼ 1 owed item of product 1 and then proceeds to
customer 4 with θ ¼ 8 items of product 1 and 3 items of product 2. For
customer 6, if the state is ðz1; z2Þ ¼ ð2; 2Þ; then the optimal action for the
vehicle is the action 2θ with θ ¼ 7: According to this action, the vehicle
goes to the depot, restocks with θ ¼ 7 items of product 1 and Q � θ ¼
12� 7 ¼ 5 items of product 2 and then goes to customer 7. In Table 1, for
customer 6, and for some states ðz1; z2Þ for which the optimal action is the
action 3ðθ2 ;θÞ; the optimal values of θ2 and θ are presented.

In Table 2 for customer 6 and for some states ðz1; z2Þ; for which the
optimal action is the action 7ðθ2 ;θÞ; the optimal values of θ2 and θ are
presented.

In Fig. 4, we present a graph that shows the variation in the minimum
expected total cost f0 as the probability p of the binomial distribution
BinðQ; pÞ for the demand ξj of each customer j takes values in the set
f0:1; 0:2:…;0:8;0:9g

We see that as p takes values in the set f0:1; …; 0:6g the minimum
expected total cost increases rather quickly and approximately linearly.
When p takes values in the set f0:7; 0:8; 0:9g the minimum expected
total cost increases rather slowly.

In Fig. 5, we present graphs that show, as Q varies in the set
f12; 14;…;60g the variation in computation times, expressed in seconds,
required by the initial dynamic programming and the special-purpose
dynamic programming algorithm.

We observe that, as Q increases, the computation times for both al-
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gorithms increase non-linearly. For the special-purpose algorithm the
form of the graph verifies that the complexity of the algorithm is OðNQ3Þ:
The computation time required by the special-purpose algorithm is
considerably smaller than the computation time required by the initial
dynamic programming algorithm especially for high values of Q:

Example 2. Suppose that N ¼ 9 and Q ¼ 7: The travel costs between
customers j and jþ 1; j 2 f1;…;8g; are given by: c12 ¼ 9; c23 ¼ 8; c34 ¼
9; c45 ¼ 7; c56 ¼ 8; c67 ¼ 10; c78 ¼ 9 and c89 ¼ 7: The travel costs be-
tween customers j;j 2 f1;…;9g; and the depot are given by: c10 ¼ 7;
c20 ¼ 8; c30 ¼ 8; c40 ¼ 7; c50 ¼ 6; c60 ¼ 8; c70 ¼ 6; c80 ¼ 7 and c90 ¼ 7:
Note that these costs satisfy the triangle inequality. We assume that the
penalty costs π1;…; π9 incurred when a unit of the non-preferred product
is delivered to customers 1,…,9 instead of the preferred one are elements
of the row vector π ¼ ð6; 5; 6; 6; 4; 5; 6; 7; 8Þ: The probabilities
p1;…; p9 that customers 1, …,9 prefer product 1 are elements of the row
vector p ¼ ð0:6; 0:5; 0:3; 0:4; 0:6; 0:3; 0:7; 0:8; 0:6Þ : We further as-
sume that the demand ξj of each customer j 2 f1;…;9g is a continuous
random variable that follows the Gamma distribution right-truncated in
the interval ½0; Q�: The probability density functions φjðxÞ are given by:

φjðxÞ ¼ ½FðQÞ��1λ
αxα�1

ΓðαÞ e
�λx; x 2 ½0; Q�;

where, α; λ > 0; ΓðαÞ ¼ ∫ ∞
0 e

�uuα�1du and FðxÞ ¼
½ΓðαÞ��1∫ λx

0 e�uuα�1du; x � 0: The Gamma distribution seems to be a
reasonable choice for the demand of a customer for a product since, as
mentioned in p. 442 in the book of Tijms (2003), in inventory applica-
tions the Gamma distribution is often used to model demand distribu-
tions. We choose α ¼ 4 and λ ¼ 2: We also choose ρ ¼ 0:05 so that the
discretized state space ~S for each customer j 2 f1;…;9g is the set
fðk*0:05; l*0:05Þ : k ¼ �1;…;�140; l ¼ 0;…;140g [ fðk*0:05; l*0:05Þ;
k; l ¼ 0;…;140 s:t: kþ l � 140g[fðk*0:05; l*0:05Þ : k ¼ 0;…; 140; l
¼ �1;…;�140g

In Figs. 6 and 7, we present the optimal decisions for customers 6 and
8. If z1 2 ½0;Q�; z2 2 ½0;Q� and z1 þ z2 � Q; the action of proceeding
directly to next customer (Action 1) is colored by blue and the action of
going to the depot for restocking with product loads θ of product 1 and
Q � θ of product 2 and then going to the next customer (Action 2θÞ is
colored by red. Ifz1 2 ½�Q;0Þ; z2 2 ½0;Q� or if z1 2 ½0;Q�;z2 2 ½�Q; 0Þ and
if z2 < �z1 or if z1 < �z2 the action 3ðθ1 ;θÞ (or the action 3ðθ2 ;θÞÞ which



Fig. 3. The optimal decisions for customer 6.

Table 2
The optimal values of θ2 and θ for customer 6 when the action 7ðθ2 ;θÞ is optimal.

States ðz1 ; z2Þ Optimal value of θ2 Optimal value of θ

ð7; �6 Þ 5 6
ð7; �5Þ 4 7
ð8; �4Þ 3 8
ð9; �6Þ 5 6
ð10; �6Þ 5 6

Fig. 4. The minimum expected total cost as p varies.

Fig. 5. The computation times of the algorithms as Q varies.
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correspond to the quantity Cjðz1; z2Þ is colored by cyan and the action 4θ
which corresponds to the quantity Dj is colored by green. If z2 � �z1 or if
z1 � �z2; the action 5 which corresponds to the quantity Ejðz1; z2Þ is
colored by yellow, the action 6θ which correspond to the quantity Fjðz1Þ
(or Fjðz2ÞÞ is colored by magenta and the action 7ðθ1 ;θÞ (or the action
7ðθ2 ;θÞÞ which correspond to the quantity Gjðz1Þ (or Gjðz2ÞÞ is colored by
black.
The value of the minimum total expected cost f0 is found to be approx-
imately equal to 108.37. The computation time of the special-purpose
dynamic programming algorithm is 22 143 s. It is considerably smaller
than the computation time of the initial dynamic programming algorithm
which is 23 670 seconds.

Both algorithms enable us to determine the optimal values of θ1 (or
θ2Þ and θ when the optimal actions are the actions 3ðθ1 ;θÞ (or 3ðθ2 ;θÞÞand
7ðθ1 ;θÞ (or 7ðθ2 ;θÞÞ and the optimal value of θ when the optimal actions are
the actions 2θ; 4θ and 6θ:

For example, for customer 6, if the state is ðz1; z2Þ ¼ ð�3:55; 2:45Þ;
then the optimal action for the vehicle is the action 3ðθ1 ;θÞ: According to
this action, the vehicle delivers quantity equal to θ1 ¼ 2:45 of non-
preferred product 2 to customer 6, goes to the depot to restock with
quantity equal to θ � z1 � θ1 ¼ 3:45� ð�3:55Þ � 2:45 ¼ 4:55 of product
1 and quantity equal toQ þ z1 þ θ1 � θ ¼ 7� 3:55þ 2:45� 3:45 ¼ 2:45
of product 2, returns to customer 6 to deliver the owed quantity equal to
�z1 � θ1 ¼ �ð�3:55Þ � 2:45 ¼ 1:1 of product 1 and then proceeds to
customer 7 with quantity equal to θ ¼ 3:45 of product 1 and quantity
equal to 2:45 of product 2. If, again for customer 6, the state is ðz1; z2Þ ¼
ð�2:9; 6:05Þ; then the optimal action for the vehicle is the action 7ðθ1 ;θÞ:
According to this action, the vehicle delivers quantity equal to θ1 ¼ 2:85
of non-preferred product 2 to customer 6, goes to the depot to restock
with quantity equal to θ � z1 � θ1 ¼ 4:1� ð�2:9Þ � 2:85 ¼ 4:15 of
Table 1
The optimal values of θ2 and θ for customer 6 when action 3ðθ2 ;θÞ is optimal.

States ðz1; z2Þ Optimal value of θ2 Optimal value of θ

ð1; �4Þ 1 8
ð2; �3Þ 2 9
ð3; �5Þ 3 7
ð3; �4Þ 3 8
ð4; �5Þ 4 7

201
product 1 and quantity equal to Q þ z1 þ θ1 � θ ¼ 7� 2:9þ 2:85�
4:1 ¼ 2:85 of product 2, returns to customer 6 to deliver the owed
quantity equal to �z1 � θ1 ¼ �ð�2:9Þ � 2:85 ¼ 0:05 of product 1 and
then proceeds to customer 7 with quantity equal to θ ¼ 4:1 of product 1
and quantity equal to 2:85 of product 2. For customer 6, if the state is
ðz1; z2Þ ¼ ð1:15; 0:45Þ; then the optimal action for the vehicle is the ac-
tion 2θ with θ ¼ 4:4: According to this action, the vehicle goes to the
depot, restocks with quantity of product 1 equal to θ ¼ 4:4 and with
quantity of product 2 equal to Q � θ ¼ 2:6 and then goes to customer 7.
In Table 3, for customer 8 and for some states ðz1; z2Þ for which the



Fig. 6. The optimal decisions for customer 6.

Fig. 7. The optimal decisions for customer 8.

Table 3
The optimal values of θ1 and θ for customer 8 when the action 3ðθ1 ;θÞ is optimal.

States ðz1 ; z2Þ Optimal value of θ1 Optimal value of θ

ð�4:6; 4:55Þ 4.55 2.4
ð�4:9; 4:6Þ 4.6 2.1
ð�4:85; 4:75Þ 4.75 2.15
ð�4:9; 4:85Þ 4.85 2.1
ð�4:7; 4:6Þ 4.6 2.3
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optimal action is the action 3ðθ1 ;θÞ; the optimal values of θ1 and θ are
presented.
In Table 4, again for customer 8 and for some states ðz1; z2Þ for which the
optimal action is the action 7ðθ2 ;θÞ; the optimal values of θ2 and θ are
presented.
Suppose that Q ¼ 3 and that the number of customers N takes values in
the set f7; 8; …; 15g For each value of N; let
ci;iþ1 ¼ 27;i 2 f1;…;N � 1g; ci0 ¼ 24; if i is odd and ci0 ¼ 22; if i is even.
For each customer j 2 f1;…;Ng we assume that the penalty cost πj per
unit of quantity of the non-preferred product that is delivered instead of
the preferred one is equal to 3 and the probability of preference of
product 1 is equal to 0.5.
In Fig. 8, we present graphs that show, asN varies in the set f7;8;…;15g,
the variation in the computation times, expressed in seconds, required by
the initial dynamic programming algorithm and by the special-purpose
dynamic programming algorithm.
We observe that, as N increases, the computation times for both algo-
rithms increase approximately linearly. The form of the graph confirms
that the complexity of the special-purpose algorithm ðOðN½Q=ρ�3Þ is a
linear function with respect to N. The computation time required by the
special-purpose algorithm is considerably smaller than the computation
time required by the initial dynamic programming algorithm for all
values ofN: The difference between the computation times increases as N
increases.

5. The problem when the customers are not ordered

We modify the problem that we introduced in Section 2 by assuming
that the customers are not serviced according to a predefined sequence.
In this case there are N! different customer sequences that the vehicle
may follow. For each sequence using the dynamic programming algo-
rithm we can find the optimal routing strategy and the corresponding
minimum expected total cost, and then by comparing these minimum
costs we can determine the optimal customer sequence that achieves the
overall minimum cost. Numerical experiments indicate that, if the de-
mands of the customers are discrete random variables, it is possible to
find the optimal customer sequence for values ofN up to 8. As illustration
we give below a numerical example.

Example 3. Suppose that Q ¼ 6: We assume that the number of cus-
tomers N takes values in the set f3; 4; 5; 6; 7; 8g The travel costs cij
between customers i; j 2 f1;…;8g and the travel costs ci0 between each
customer i 2 f1;…;8g and the depot are given by the following sym-
metric matrix C ¼ ðcijÞ; i; j ¼ 0;…; 8:
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BB
0 18 21 15 14 22 17 13 13
18 0 12 10 9 9 10 11 12CC
C ¼

0
BBBBBBBBBB@

21 12 0 12 11 12 10 11 10
15 10 12 0 10 11 12 13 12
14 9 11 10 0 12 15 17 10
22 9 12 11 12 0 13 12 10
17 10 10 12 15 13 0 11 13
13 11 11 13 17 12 11 0 12
13 12 10 12 10 10 13 12 0

1
CCCCCCCCCCA

These costs satisfy the triangle inequality. We assume that the penalty
costs π1;…; π8 incurred when an item of the non-preferred product is
delivered to customers 1;…;8 instead of the preferred one are elements
of the row vector π ¼ ð3; 4; 3; 10; 4; 10; 1; 2Þ: We further assume that
the demand ξj of each customer j 2 f1;…;8g is a random variable which
follows the binomial distribution Bin(Q,0.4) and that the probabilities
p1;…; p8 that customers 1,…,8 prefer product 1 are elements of the row
vector p ¼ ð0:4; 0:2; 0:3; 0:3; 0:4; 0:5; 0:6; 0:5Þ: For N 2 f3; :::;8g we
consider the network consisting of customers 1,…,N. In Table 5 we
present for N 2 f3; :::;8g the number N! of all possible customer se-
quences, the minimum expected cost among all customer sequences, the
optimal customer sequence, the required computation time in seconds
(Time 1) if the initial dynamic programming algorithm is used and the
required computation time in seconds (Time 2) if the special-purpose
dynamic programming algorithm is used.

In Fig. 9, we present the graphs that show, as N takes values in the set
f3;…;8g; the variation in required computations times (expressed in
seconds) if the initial dynamic programming algorithm and the special-
purpose dynamic programming algorithm are used.

We observe that, as N increases, both computation times seem to
increase exponentially. The required computation time if the special-
purpose dynamic programming algorithm is used is considerably
smaller than the required computation time if the initial dynamic pro-
gramming algorithm is used.

6. Summary of results and a topic for future research

In this paper a capacitated stochastic single vehicle routing problem



Table 4
The optimal values of θ2 and θ for customer 8 when the action 7ðθ2 ;θÞ is optimal.

States ðz1; z2Þ Optimal value of θ2 Optimal value of θ

ð6:8; �4:25 Þ 4.2 2.75
ð6:85; �4:55Þ 4.5 2.45
ð6:9; �1:5Þ 1.45 5.5
ð6:95; �2:1Þ 2.05 4.9
ð7; �4:05Þ 4 2.95

Fig. 8. The computation times of the algorithms as N varies.

Table 5
The optimal customer sequence for N¼ 3, 4, 5, 6, 7, 8.

N N! Minimum Cost Optimal Sequence Time 1 Time 2

3 6 80.50 2,1,3 0.56 0.23
4 24 100.64 4,1,2,3 2.83 0.84
5 120 127.53 1,5,3,2,4 18.44 5.05
6 720 152.48 6,2,3,5,1,4 139.15 38.23
7 5040 169.25 6,2,7,5,1,4,3 1173.90 324.83
8 40 320 187.93 6,2,8,5,3,4,1,7 10 825.91 617.20

Fig. 9. The computation times of the algorithms as N varies.
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was studied in which (i) the customers are served according to a pre-
defined sequence, (ii) the vehicle delivers to the customers two similar
but not identical products, (iii) the product preference and the demand of
each customer are stochastic, (iv) the actual preference and the actual
demand of each customer are revealed as soon as the vehicle arrives at
the customer's site. The cost structure includes travel costs between
consecutive customers, travel costs between customers and the depot and
penalty costs that are incurred when a product that is not preferred by a
customer is delivered to him/her. We selected as decision epochs for the
routing of the vehicle, the epochs at which the vehicle visits for the first
time each customer and the maximum possible quantity of the preferred
product has been delivered. This selection of decision epochs makes
possible a dynamic programming formulation for the determination of
the routing strategy that minimizes the expected total cost for servicing
all customers. The optimal routing strategy has a specific threshold-type
structure. This result enables us to design a special-purpose dynamic
programming algorithm that is considerably more efficient than the
initial one. If the above Assumption (i) does not hold, it is possible to
compute the optimal routing strategy for moderate values of the number
of customers.

A possible topic for future research could be the study of a more
general problem where the vehicle delivers K � 2 similar but not iden-
tical products.
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