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a b s t r a c t

We consider the problem of finding the optimal routing of a single vehicle that delivers K different
products to N customers according to a particular customer order. The demands of the customers for each
product are assumed to be random variables with known distributions. Each product type is stored in its
dedicated compartment in the vehicle. Using a suitable dynamic programming algorithm we find the
policy that satisfies the demands of the customers with the minimum total expected cost. We also prove
that this policy has a specific threshold-type structure. Furthermore, we investigate a corresponding infi-
nite-time horizon problem in which the service of the customers does not stop when the last customer has
been serviced but it continues indefinitely with the same customer order. It is assumed that the demands
of the customers at different tours have the same distributions. It is shown that the discounted-cost
optimal policy and the average-cost optimal policy have the same threshold-type structure as the optimal
policy in the original problem. The theoretical results are illustrated by numerical examples.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

One of the most widely studied problems in combinatorial opti-
mization is the Vehicle Routing Problem (VRP). It was introduced
by Dantzig and Ramser [6] and it is considered as a generalization
of the classical travelling salesman problem. Surveys of the most
important results that have been derived on this significant
topic during the last fifty years are given by Toth and Vigo [18],
Simchi-Levi et al. [15] and Liong et al. [9]. The VRP can be described
as follows. Assume that we manage a fleet of vehicles that origi-
nate from one or several depots, and deliver goods to N geograph-
ically dispersed customers. Each vehicle starts its route from a
depot, visits a subset of the customers, satisfies their demands
and, finally, returns to the depot. The VRP is the problem of deter-
mining the optimal delivery route for each vehicle. The cost struc-
ture includes the costs of travelling from one customer to another
and the costs of travelling from a customer back to a depot for
restocking. The usual optimization criterion is the minimization
of the total travel cost. A different interpretation of the VRP is
the determination of the optimal collection route for each vehicle
if the vehicles collect expired products instead of delivering new
products. Collection of household waste, delivery of goods to
supermarkets, petrol delivery to petrol stations, stocking of vend-

ing machines, supply of baked foods at food stores can be consid-
ered as applications of the VRP. Three important variants of the
VRP that have been studied extensively are (i) the capacitated
VRP, (ii) the VRP with time-windows and (iii) the VRP with pick-
up and delivery. In the first problem all vehicles are identical with
finite capacity, in the second problem the vehicles deliver goods to
the customers during specific time-windows and in the third prob-
lem at each customer a pickup of expired products is performed
before the delivery of new products. It is also possible to consider
stochastic versions of the VRP if we assume that one or more
parameters of the problem are random variables. For example,
the number of customers to be serviced, the demands of the
customers and the travel times can be random variables. The VRP
and its variants are NP-hard problems and, therefore, many
researchers have developed heuristics and metaheuristics (tabu
search, simulated annealing, genetic algorithms, ant colony opti-
mization) that reach a ‘‘good solution’’ (see e.g. [1,3,4,13]). Exact
algorithms (for example branch-and-bound, branch-and-cut,
branch-and-price methods) have also been applied to the VRP that
give the optimal solution (see e.g. [2,5,7,10]).

In the present paper we consider a simple interesting variant of
the VRP that was introduced by Tatarakis and Minis [16]. In this
variant it is assumed that a single vehicle starts its route from a
depot and delivers K different products to N customers according
to a predefined customer sequence 1 ? 2 ? � � �? N. The vehicle
is divided into K sections and each section is suitable for one type
of product only. The demand of the customer j 2 {1, . . . ,N} for
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product i 2 {1, . . . ,K} is a discrete random variable. The demand of
each customer for a specific product cannot exceed the capacity of
the corresponding section of the vehicle. The objective is to find the
policy that minimizes the expected total travel cost. Tatarakis and
Minis [16] developed a suitable dynamic programming algorithm
for this problem and, for K = 2, proved that the optimal policy
has the following threshold-type structure. Denote zi, i = 1,2, as
the load of product i 2 {1,2} carried by the vehicle after the de-
mands of customer j 2 {1, . . . ,N � 1} have been satisfied. There ex-
ists a critical number sj(z1) P 0 such that it is optimal for the
vehicle to proceed to the next customer if and only if z2 P sj(z1);
otherwise, it is optimal to return to the depot for stock replenish-
ment, and then resume the route. Note that the problem studied in
[16] is a generalization of the problem introduced by Yang et al.
[20] in which it is assumed that the vehicle delivers to the custom-
ers only one product, i.e. K = 1. Yang et al. proved that for each cus-
tomer j 2 {1, . . . ,N � 1} there exists a critical number sj such that
the optimal decision, after serving customer j, is to continue to cus-
tomer j + 1 if the remaining quantity in the vehicle is greater than
or equal to sj, or return to the depot for stock replenishment if it is
less than sj. Kyriakidis and Dimitrakos [8] proved an analogous re-
sult if the demands of the customers are continuous random vari-
ables and developed a suitable dynamic programming algorithm
for the determination of the critical numbers sj, j = 1, . . . ,N � 1.
Tsirimbas et al. [19] studied the case of multiple-product deliveries
when the demand of each customer for product i 2 {1, . . . ,K} is not
a random variable but a constant number. They also assumed that
the vehicle visits each customer only once and they designed a
suitable dynamic programming algorithm for the determination
of the optimal policy. It is noteworthy that Mendoza et al. [11]
investigated recently a problem in which a fleet of identical mul-
ti-compartment vehicles serves N customers whose demands for
each product i 2 {1, . . . ,K} is stochastic. In this work it is assumed
that the fleet size is unlimited. It is not assumed that the customers
are served according to a particular order. Mendoza et al. proposed
a memetic algorithm for the determination of the optimal routing
strategy. This algorithm couples genetic operators and local search
procedures.

The main contribution in the present paper is that the structure
of the optimal policy for the problem studied in [16] is proved for
any positive integer K. Our proof is much simpler and more elegant
than that given in [16] for K = 2. We also study a corresponding infi-
nite time-horizon problem in which the service of the customers
does not stop when the demands of the last customer N are satisfied
but it continues indefinitely with the same customer order. It is as-
sumed that, when the vehicle completes a tour, the demands of the
customers for the products are renewed for the next tour and follow
the same distributions. Using well-known results of the Markov
decision theory we prove that the policy that minimizes the total
expected discounted cost and the policy that minimizes the long-
run expected average cost per unit time have the same threshold-
type structure as the optimal policy in the initial finite-horizon
problem. Furthermore, if we assume that the demand of the
customer j 2 {1, . . . ,N} for the product i 2 {1, . . . ,K} is a continuous
random variable, it is possible to show that the optimal policy has
again the same threshold-type structure for the finite-horizon
problem and for the discounted cost infinite-horizon problem.

The rest of the paper is organized as follows. In Section 2 we for-
mulate the finite-horizon compartmentalized load problem and we
develop two alternative dynamic programming algorithms that
compute the optimal policy. The structure of the optimal policy
is proved. In Section 3 we present the infinite-horizon problem
and we prove the structure of the discounted-cost optimal policy
and the structure of the average-cost optimal policy. We give
numerical results for the computation of the average-cost optimal
policy. In Section 4 we consider the case of stochastic continuous

demands and we prove the structure of the finite-horizon optimal
policy and the structure of the infinite-horizon discounted-cost
optimal policy. In the last section the conclusions of the paper
are summarized.

2. The finite-horizon problem

We consider a set of nodes V = {0,1, . . . ,N} with node 0 denoting
the depot and nodes 1, . . . ,N corresponding to customers. The cus-
tomers are serviced in the order 1,2, . . . ,N by a vehicle consisting of
K compartments with capacities Q1,Q2, . . . ,QK. Each compartment is
suitable for one type of product only. There are K different products
to be delivered to the customers. The vehicle starts its route from
the depot loaded with Qi items of product i 2 {1, . . . ,K} and after
servicing all customers it returns to the depot. The demand of cus-
tomer j, j = 1,2, . . . ,N, for product i, i = 1,2, . . . ,K, is a discrete ran-
dom variable nj

i; we assume that the joint probability distribution
of each customer’s demands is known. The actual demand of each
customer becomes known upon the vehicle’s arrival at the cus-
tomer’s site. We assume that the demand of each customer for a
specific product cannot exceed the capacity of this product’s com-
partment, that is, max

j¼1;2;...;N
nj

i 6 Qi, for i 2 {1, . . . ,K}. When the vehicle

visits customer j for the first time it satisfies as much demand as
possible. If part of the demand for product i 2 {1, . . . ,K} is not satis-
fied, the vehicle goes to the depot, fills its compartments with loads
Q1, . . . ,QK and returns to the customer to satisfy the demand. After
satisfying the demand of the last customer, the vehicle returns to
the depot. We denote by cj,j+1, j = 1,2, . . . ,N � 1, the travel cost be-
tween customers j and j + 1, and by cj0, j = 1,2, . . . ,N, the travel cost
between customer j and the depot. We naturally assume that these
costs satisfy the triangle inequality, i.e.,

ci;iþ1 6 ci0 þ c0;iþ1; i ¼ 1; . . . ;N � 1:

The road network is depicted in Fig. 1.
Let zi 2 {0, . . . ,Qi}, i = 1,2, . . . ,K, be the load of product i carried

by the vehicle after the demand for some customer has been
satisfied. Then, the vehicle either (i) proceeds directly to the next
customer or (ii) goes to the depot, restocks with loads Qi,
i = 1,2, . . . ,K, of products 1,2, . . . ,K, and then visits the next cus-
tomer. Our objective is to determine a vehicle routing policy that
minimizes the expected cost covered during a visit cycle. As men-
tioned in [19] a practical application of this problem could be the
so called ex-van sales. In ex-van sales, the driver of the vehicle acts
as a salesman. She visits her customers (supermarkets, kiosks, etc.)
typically according to a predefined sequence. The demands of each

Fig. 1. The road network.
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customer for the products are not known in advance but they are
revealed upon arrival. If a customer’s demand for a product ex-
ceeds the quantity that is loaded in the vehicle, the driver has to
go to the depot for replenishment. We define vectors �z ¼ ðz1;

z2; . . . ; zKÞ; Q ¼ ðQ 1;Q 2; . . . ;QKÞ; �nj ¼ nj
1; n

j
2; . . . ; nj

K

� �
, and denote

by Pjð�nÞ ¼ Prð�nj ¼ �nÞ; �n ¼ ðn1; . . . ; nKÞ 2 S ¼ f0; . . . ;Q1g � � � � �
f0; . . . ;QKg; the joint probability mass function for the demand of
customer j 2 {1, . . . ,N}.

2.1. The optimal routing strategy

Let fjð�zÞ be the minimum expected future cost when the load of
product i carried by the vehicle after having satisfied demand for
customer j is equal to zi, and N�z ¼ f�n : ni 6 zi;1 6 i 6 Kg. Then, an
optimal routing strategy can be determined by the following
dynamic programming equations (Algorithm 1). For j = 1, 2, . . . ,
N � 1 we have

fjð�zÞ ¼minfHjð�zÞ;Ajg; �z 2 f0; . . . ;Q1g � � � � � f0; . . . ;QKg; ð1Þ

where

Hjð�zÞ ¼ cj;jþ1 þ
X
�n2N�z

fjþ1ð�z� �nÞPjþ1ð�nÞ þ
X
�nRN�z

½2cjþ1;0

þ fjþ1ðQ þ ð�z� �nÞ�Þ�Pjþ1ð�nÞ; ð2Þ

Aj ¼ cj0 þ cjþ1;0 þ
X
�n2S

fjþ1ðQ � �nÞPjþ1ð�nÞ: ð3Þ

In the boundary we have

fNð�zÞ ¼ cN0; �z 2 S ð4Þ

and the minimum expected cost during a cycle is

f0 ¼ c10 þ
X
�n2S

f1ðQ � �nÞP1ð�nÞ:

The left-hand-side term in the curly brackets in (1) corresponds to
the action of proceeding to the next customer and the right-
hand-side term corresponds to the action of going to the depot
for restocking. In Eq. (2) the quantity ð�z� �nÞ� is defined as
(min(z1 � n1,0), . . . ,min(zK � nK,0)). Before we proceed to prove the
main result, we need the following lemma.

Lemma 1. For j = 1,2, . . . ,N we have fjð�zÞ 6 2cj;0 þ fjðQÞ.

Proof. For j = N the result is trivial. For j < N we have from Eq. (1)

fjð�zÞ 6 Aj ¼ cj;0 þ cjþ1;0 þ
X
�n2S

fjþ1ðQ � �nÞPjþ1ð�nÞ: ð5Þ

When the vehicle is fully loaded it is obviously optimal to proceed
to the next customer. Therefore,

fjðQÞ ¼ cj;jþ1 þ
X
�n2S

fjþ1ðQ � �nÞPjþ1ð�nÞ: ð6Þ

The result follows from Eqs. (5) and (6), and the triangle
inequality. h

The following theorem characterizes the optimal vehicle routing
strategy after the demand of customer j has been satisfied.

Theorem 1

(i) For given zi 2 {0, . . . ,Qi}, i = 1, . . . ,K � 1, there exists an integer
sj(z1, . . . , zK�1) 2 {0, . . . ,QK + 1} such that it is optimal for the
vehicle to proceed to customer j + 1 if zK P sj(z1, z2, . . . , zK�1).

(ii) sj(z1,z2, . . . , zK�1) is non-increasing in each of its arguments.

Proof. In view of (1), for both parts of the theorem it suffices to
show that Hjð�zÞ is non-increasing in its arguments. We will also
need to prove that fjð�zÞ is non-increasing in its arguments. The
proof is by induction on j. First, the induction base is established
by fNð�zÞ being non-increasing (Eq. (4)). Then, assuming that fjþ1ð�zÞ
is non-increasing, we will show that Hjð�zÞ and fjð�zÞ are non-
increasing. Once we show that Hjð�zÞ is non-increasing, the mono-
tonicity of fjð�zÞ follows directly from Eq. (1). Therefore, we focus
on Hjð�zÞ.

Let �ei be a vector of size K whose components are equal to 0
except the i-th component that is equal to one. Because of
symmetry, to prove that Hjð�zÞ is non-increasing in each of its
arguments, it suffices to show that Hjð�zÞP Hjð�zþ �eiÞ. We have
from Eq. (2)

Hjð�zÞ ¼ cj;jþ1 þ
X
�n2N�z

fjþ1ð�z� �nÞPjþ1ð�nÞ

þ
X

�nRN�z :ni6zi

½2cjþ1;0 þ fjþ1ðQ þ ð�z� �nÞ�Þ�Pjþ1ð�nÞ

þ
X

�n2N�zþ�ei
:ni¼ziþ1

½2cjþ1;0 þ fjþ1ðQ þ ð�z� �nÞ�Þ�Pjþ1ð�nÞ

þ
X

�nRN�zþ�ei
:ni¼ziþ1

½2cjþ1;0 þ fjþ1ðQ þ ð�z� �nÞ�Þ�Pjþ1ð�nÞ

þ
X

�n:ni>ziþ1

½2cjþ1;0 þ fjþ1ðQ þ ð�z� �nÞ�Þ�Pjþ1ð�nÞ ð7Þ

and

Hjð�zþ �eiÞ ¼ cj;jþ1 þ
X
�n2N�z

fjþ1ð�zþ �ei � �nÞPjþ1ð�nÞ

þ
X

�n2N�zþ�ei
:ni¼ziþ1

fjþ1ð�zþ �ei � �nÞPjþ1ð�nÞ

þ
X

�nRN�zþ�ei
:ni6zi

½2cjþ1;0 þ fjþ1ðQ þ ð�zþ �ei � �nÞ�Þ�Pjþ1ð�nÞ

þ
X

�nRN�zþ�ei
:ni¼ziþ1

½2cjþ1;0 þ fjþ1ðQ þ ð�zþ �ei � �nÞ�Þ�Pjþ1ð�nÞ

þ
X

�n:ni>ziþ1

½2cjþ1;0 þ fjþ1ðQ þ ð�zþ �ei � �nÞ�Þ�Pjþ1ð�nÞ: ð8Þ

We compare Hjð�zÞ and Hjð�zþ �eiÞ term by term. The first, fourth, and
fifth sums in Eq. (7) are at least equal to the respective sums in Eq.
(8) by the induction hypothesis. The second sum in Eq. (7) is at least
equal to the third sum in Eq. (8), also by the induction hypothesis. It
remains to compare the third sum in Eq. (7) with the second sum in
Eq. (8). We have

fjþ1ð�zþ �ei � �nÞ 6 2cjþ1;0 þ fjþ1ðQÞ 6 2cjþ1;0 þ fjþ1ðQ þ ð�z� �nÞ�Þ;

where the first inequality follows from Lemma 1 and the second
from the induction hypothesis. h

Remark 1. If sj(z1, . . . ,zK�1) = QK + 1, it is optimal for the vehicle to
return to the depot for all zK 2 {0, . . . ,QK}.

Remark 2. Tatarakis and Minis [16] proved Part (i) of the above
result for K = 2. Their proof involves complicated algebraic expres-
sions and cannot be extended for K > 2. They also assumed that for
j 2 {1, . . . ,N} the random variables nj

1; . . . ; nj
K are independent. In our

proof we did not impose this assumption.

2.2. An improved special-purpose dynamic programming algorithm

In view of the above theorem for K = 2 the optimal policy (i.e.
the critical numbers sj(z1) for j = 1, . . . ,N � 1, z1 = 0, . . . ,Q1)
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can be found by the following algorithm that is presented as a
flowchart.

Algorithm 2. Algorithm for the determination of sj(z1), z1 =
0, . . . ,Q1

The above algorithm is faster than the initial dynamic program-
ming algorithm based on Eqs. (1)–(4) since it does not calculate for
j = 1, . . . ,N � 1 and z1 = 0, . . . ,Q1 the quantities Hj(z1,z2),
0 6 z2 < sj(z1) � 1.

2.3. Numerical results

As illustration we present the following example. Suppose that
N = 10 and Q1 = Q2 = 5. The travel costs between customers j and

j + 1, j = 1, . . . ,9, are given by: c12 = 27, c23 = 18, c34 = 27, c45 = 22,
c56 = 24, c67 = 25, c78 = 23, c89 = 22 and c9,10 = 25. The travel costs
between customers j, j = 1, . . . ,10, and the depot are given by:
c10 = 24, c20 = 22, c30 = 23, c40 = 25, c50 = 22, c60 = 20, c70 = 21,
c80 = 20, c90 = 19 and c10,0 = 24. Note that these costs satisfy the tri-

angle inequality. We assume that for each customer j = 1, . . . ,10 the

demands nj
1 and nj

2 for products 1 and 2 are independent and follow
the discrete uniform distribution in the set {0, . . . ,Q1} and the bino-
mial distribution B(Q2,p), respectively. This means that for each

customer j ¼ 1; . . . ;10; Pr nj
1 ¼ x

� �
¼ ðQ1 þ 1Þ�1

; x ¼ 0; . . . ;Q 1,

and Pr nj
2 ¼ y

� �
¼ Q2

y

� �
pyð1� pÞQ2�y

; y ¼ 0; . . . ;Q 2; p 2 ð0;1Þ. In

Table 1 below we present the critical numbers sj(z1), z1 = 0, . . . ,Q1,

D.G. Pandelis et al. / European Journal of Operational Research 217 (2012) 324–332 327



Author's personal copy

that correspond to the optimal policy for each customer j,
j = 1, . . . ,N � 1 and for each value of p 2 {0.1,0.2, . . . ,0.9}. In each
cell of the table, the first critical number corresponds to p = 0.1,
the second critical number corresponds to p = 0.2, . . . , the ninth
critical number corresponds to p = 0.9.

Note that Part (ii) of Theorem 1 is confirmed numerically since,
for fixed p, sj(z1) is non-increasing in z1 2 {0, . . . ,5} for each cus-
tomer j 2 {1, . . . ,9}. We also observe that, for each customer
j 2 {1, . . . ,N � 1}, sj(z1) is non-decreasing as p increases. This is intu-
itively reasonable since, as p increases, the expected value of the
demand for product 2 increases and, therefore, the action of
returning to the depot for restocking becomes more favourable.

In Table 2 above we give for each p 2 {0.1, . . . ,0.9}, (i) the mini-
mum total expected cost

f0 ¼ c10 þ
P
ðn1 ;n2Þ2Sf1ðQ1 � n1;Q 2 � n2ÞP1ðn1; n2Þ; (ii) the total ex-

pected cost h0 that we would have if the vehicle after serving cus-
tomer j 2 {1, . . . ,N � 1} always proceeds directly to customer j + 1
and (iii) the total cost C that we would have if the vehicle, after
serving each customer j 2 {1, . . . ,N � 1} always returns to the depot
for stock replenishment before proceeding to customer j + 1. Note
that C is equal to 2

P10
i¼1c0i and does not depend on p. The quantity

h0 can be computed from the following equations

h0 ¼ c10 þ
X

ðn1 ;n2Þ2S

eH1ðQ 1 � n1;Q 2 � n2ÞP1ðn1; n2Þ; where

eHjðz1; z2Þ ¼ cj;jþ1 þ
X

ðn1 ;n2Þ2Nðz1 ;z2 Þ

eHjþ1ðz1 � n1; z2 � n2ÞPjþ1ðn1; n2Þ

þ
X

ðn1 ;n2ÞRNðz1 ;z2 Þ

2cjþ1;0 þ eHjþ1 Q1 þ ðz1 � n1Þ�;Q2ð
h

þ z2 � n2Þ�ð Þ
i
Pjþ1ðn1; n2Þ; ðz1; z2Þ 2 S; j ¼ 1; . . . ;N � 1;

eHNðz1; z2Þ ¼ cN0; ðz1; z2Þ 2 S:

From the above table we see that, for all values of p 2 {0.1, . . . , 0.9},
f0 is considerably smaller than h0 and C. We also observe that f0 and
h0 increase as p increases. Note that for p 6 0.3 (p > 0.3) the policy
that chooses always the action of proceeding to the next customer
is better (worse) than the policy that always chooses the action of
returning to the depot for restocking.

Consider in our example the optimal routing strategy for e.g.
p = 0.5. The critical numbers sj(z1), z1 = 0, . . . ,Q1, for j = 1, . . . ,N � 1
that correspond to this strategy are given by the fifth numbers in

the cells of Table 1. From Table 2 we see that the total expected
cost of this strategy is equal to 384.45. If we perturb slightly this
strategy by increasing the critical numbers by one unit (if
sj(z1) < Q1) or by decreasing them by one unit (if sj(z1) > 0) we find
that the total expected cost becomes 387.21 and 387.89, respec-
tively. Therefore we can conclude that slight changes of the opti-
mal critical numbers do not cause a significant increase of the
total expected cost.

We implemented the initial dynamic programming algorithm
based on Eqs. (1)–(4) and the special-purpose dynamic program-
ming algorithm by running the corresponding Matlab programs
on a personal computer equipped with an Intel� Core™ 2 Duo,
2.5 GHz processor and 4 GB of RAM. We will compare the efficien-
cies of these algorithms by considering again the same example
with p = 0.5 but with variable Q = Q1 = Q2. In Fig. 2 we present the
graphs that show, as Q varies, the variation of the computation
times (expressed in seconds) required by the initial dynamic pro-
gramming algorithm (Algorithm 1) and by the special-purpose
algorithm Algorithm 2.

From the figure below we observe that, as Q increases, the com-
putation times for both algorithms increase non-linearly. The com-
putation time required by the special-purpose algorithm is

Table 1
The critical numbers sj(z1) of the optimal policy for each value of p 2 {0.1, . . . ,0.9}.

Customer j sj(0) sj(1) sj(2) sj(3) sj(4) sj(5)

1 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 2,3,3,3,3,3,4,5,5 0,1,2,2,2,3,3,4,5 0,1,1,2,2,3,3,4,5
2 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 2,2,3,3,3,3,4,4,5 0,1,1,2,2,3,3,4,5 0,0,1,1,2,2,3,4,5 0,0, 1,1,2,2,3,4,5
3 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 2,3,3,3,3,3,4,4,5 1,1,2,2,3,3,4,4,5 0,1,1,2,2,3,3,4,5
4 6,6,6,6,6,6,6,6,6 6,6,6,6,6 6,6,6,6 3,3,3,3,3,4,4,5,5 0,1,2,2,2,3,3,4,5 0,1,1,2,2,3,3,4,5 0,0, 1,1,2,2,3,4,5
5 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 1,2,3,3,3,4,4,5,5 0,1,2,2,3,3,4,4,5 0,1,1,2,2,3,3,4,5
6 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 4,4,4,4,4,4,4,5,5 1,1,2,2,3,3,4,4,5 0,1,2,2,3,3,4,4,5
7 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 1,2,3,3,3,3,4,5,5 0,1,2,2,3,3,4,4,5 0,1,1,2,2,3,3,4,5
8 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 1,2,3,3,3,4,4,5,5 0,1,2,2,2,3,4,4,5 0,1,1,2,2,3,3,4,5
9 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 6,6,6,6,6,6,6,6,6 2,2,3,4,4,5,5,5,5 1,2,2,3,3,4,4,5,5 1,1,2,2,3,3,4,4,5

Table 2
The values of f0, h0, C for each value of p.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f0 365.68 367.13 371.98 380.94 384.45 389.33 394.66 398.20 403.99
h0 429.61 430.65 433.58 444.01 451.19 472.20 500.03 543.34 591.86
C 440 440 440 440 440 440 440 440 440
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Fig. 2. The computation times of the algorithms as Q varies.
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considerably smaller than the computation time required by our
initial algorithm, especially for high values of Q.

3. The infinite-horizon problem

We modify the problem that we introduced in the previous sec-
tion by considering an infinite-time horizon problem in which the
service of the customers does not stop when the last customer N is
serviced but it continues indefinitely with the same customer or-
der. This means that after the service of customer N, the vehicle
services again customer 1, customer 2, and so on. Let cN1 denote
the travel cost from customer N to customer 1. The road network
is depicted in Fig. 3.

The demands of the customers for all products are renewed at
successive tours of the vehicle. We assume that the demand nj

i of
customer j 2 {1, . . . ,N} for product i 2 {1, . . . ,K} is a discrete random
variable with the same distribution at each tour. As in the initial
problem, the vehicle driver after the completion of the service of
a customer has to choose among two decisions: (i) to proceed to
the next customer and (ii) to go to the depot for restocking and
then resume the route. It can be assumed that the driver selects
her decisions at equidistant time epochs (e.g. every hour) after
the completion of the service of the customers. This means that
if, for example, the service of the 4th customer has been completed
and the decision (i.e. proceed to the 5th customer or return to the
depot for replenishment and then proceed to the 5th customer) is
selected at 1 pm then the next decision (i.e. proceed to the 6th cus-
tomer or return to the depot for replenishment and then proceed to
the 6th customer) is selected at 2 pm. Although we impose this
assumption in order to apply well-known results from the theory
of Markov decision processes, there are situations in which this
assumption may hold, as the so-called ex-van sales. As mentioned
in Tsirimpas et al. [19], in ex-van sales the driver of the vehicle acts
as a salesman. She visits her customers (supermarkets, stores,
kiosks, etc.) in an area typically according to a predefined se-
quence. The demands of each customer for new products are not
known in advance but they are revealed upon arrival. If the prod-
ucts must be consumed in a short period (e.g. milk, fruits, vegeta-
bles), it seems reasonable that the supply of the customers with
new products continues with the same customer order for a long
time horizon. It can be assumed that the driver selects her deci-
sions at equidistant time epochs (e.g. every hour). Another exam-
ple could be the routing of a self propelled vehicle in a
manufacturing shop that transfers discrete parts to workcenters
in a predefined sequence (see Rembold et al. [12]). Note that in

addition to the main pathway connecting the workcenters, there
are spurs connecting each workcenter with the material ware-
house, allowing the return and the reloading of the vehicle. It can
be assumed that this process continues for a long time without
interruption and the decisions for the routing of the vehicle are se-
lected after the completion of the service at the workcenters at
equidistant time epochs. A third application of this system could
be the situation in which a vehicle collects at equidistant time
epochs waste from specific points according to a predefined order.
When the vehicle is filled up with waste it must go to a specific
area to empty it and then return to its route.

3.1. The structure of the discounted-cost optimal policy and of the
average-cost optimal policy

The usual optimization criteria in the infinite-horizon setting are
the minimization of the expected total discounted cost and the min-
imization of the expected long-run average cost per unit time. Using
well-known results of Markov decision processes (see Chapter 6 in
Ross [14]) we will see that, under any one of these criteria, the opti-
mal policy has the same structure as the optimal policy in the finite-
horizon problem. The state space of the system is

I ¼ fðj;�zÞ : j ¼ 1; . . . ;N;�z 2 f0; . . . ;Q 1g � � � � � f0; . . . ;QKgg:

The state ðj;�zÞ represents the situation at which the vehicle has
completed the service of customer j and the remaining load of prod-
uct i 2 {1, . . . ,K} is zi. Let Va

nðj;�zÞ; 1 6 j 6 N; 0 < a < 1; be the mini-
mum n-step expected discounted cost if the initial state is ðj;�zÞ 2 I.
The use of the discount factor a 2 (0,1) can be explained by the eco-
nomic idea that a cost to be incurred in the future is discounted in
today’s money, and thus we discount such costs at a rate a per unit
of time. The quantity Va

nðj;�zÞ satisfies the following dynamic pro-
gramming equation for n = 1,2, . . .

Va
nðj;�zÞ¼min Ha

nðj;�zÞ;cj0þc0;jþ1þa
X
�n2S

Va
n�1ðjþ1;Q ��nÞPjþ1ð�nÞ

( )
;

where,

Ha
nðj;�zÞ ¼ cj;jþ1 þ a

X
�n2N�z

Va
n�1ðjþ 1;�z� �nÞPjþ1ð�nÞ

þ
X
�nRN�z

½2cjþ1;0 þ aVa
n�1ðjþ 1;Q þ ð�z� �nÞ�Þ�Pjþ1ð�nÞ;

Va
0ðj;�zÞ ¼ 0:

In the above equation we assume that N + 1 is equal to 1 since the
next customer of customer N is customer 1. It can be shown by
induction on n that Va

nðj;�zÞ and Ha
nðj;�zÞ are non-increasing in zi,

i = 1, . . . ,K, in the same way as we showed the monotonicity of
fjð�zÞ and Hjð�zÞ in the proof of Theorem 1. Let Vaðj;�zÞ be the minimum
expected a-discounted total cost if ðj;�zÞ is the initial state of the sys-
tem. This quantity is finite since a 2 (0,1) and the state space is fi-
nite. It satisfies the following optimality equation:

Vaðj;�zÞ ¼min Haðj;�zÞ; cj0 þ c0;jþ1 þ a
X
�n2S

Vaðjþ 1;Q � �nÞPjþ1ð�nÞ
( )

;

where,

Haðj;�zÞ ¼ cj;jþ1 þ a
X
�n2N�z

Vaðjþ 1;�z� �nÞPjþ1ð�nÞ þ
X
�nRN�z

½2cjþ1;0 þ aVaðj

þ 1;Q þ ð�z� �nÞ�Þ�Pjþ1ð�nÞ:
Fig. 3. The road network for the infinite-horizon problem.
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The left-hand side term in the curly brackets of the optimality equa-
tion corresponds to the decision of going directly to the next cus-
tomer while the other term corresponds to the decision of
returning to the depot for restocking. It is well-known (see Corol-
lary 6.6 in [14]) that, as n!1; Va

nðj;�zÞ ! Vaðj;�zÞ and
Ha

nðj;�zÞ ! Haðj;�zÞ. Hence, Vaðj;�zÞ and Haðj;�zÞ are non-increasing in
zi, i = 1, . . . ,K. This implies that the a-discounted cost optimal policy
has the threshold-type structure described in Theorem 1.

We focus now on the minimization of the expected average
cost. First we note that the state ð1; �0Þ is accessible from any other
state under any stationary policy. From Corollary 6.20 in Ross [14]
it follows that there exist numbers g and hðj;�zÞ; ðj;�zÞ 2 I; such that

hðj;�zÞ ¼min Hðj;�zÞ; cj0 þ c0;jþ1 � g þ
X
�n2S

hðjþ 1;Q � �nÞPjþ1ð�nÞ
( )

;

ðj;�zÞ 2 I; ð9Þ

where,

Hðj;�zÞ ¼ cj;jþ1 � g þ
X
�n2N�z

hðjþ 1;�z� �nÞPjþ1ð�nÞ þ
X
�nRN�z

½2cjþ1;0

þ hðjþ 1;Q þ ð�z� �nÞ�Þ�Pjþ1ð�nÞ:

Eq. (9) is known as average-cost optimality equation. The number g
is the minimum average cost. There also exists a sequence an ? 1
(see Theorem 6.18 in [14]) such that

hðj;�zÞ ¼ lim
n!1
½Van ðj;�zÞ � Van ð1; �0Þ�; ðj;�zÞ 2 I: ð10Þ

The monotonicity of Han ðj;�zÞ with respect to zi, i = 1, . . . ,K, implies
that the expression

an

X
�n2N�z

½Van ðjþ 1;�z� �nÞ � Vanð1; �0Þ�Pjþ1ð�nÞ

þ
X
�nRN�z

½2cjþ1;0 þ an½Van ðjþ 1;Q þ ð�z� �nÞ�Þ � Van ð1; �0Þ��Pjþ1ð�nÞ

is non-increasing in zi, i = 1, . . . ,K. This property is valid if we take
the limit as n ?1. In view of (10) it is deduced that Hðj;�zÞ is
non-increasing in zi, i = 1, . . . ,K. From (9) it follows that the aver-
age-cost optimal policy has the same threshold structure as the fi-
nite-horizon optimal policy and the discounted-cost optimal policy.

3.2. Computation of the average-cost optimal policy

The average-cost optimal policy can be found numerically by
the value-iteration algorithm, the policy-iteration algorithm and
the linear programming formulation. We refer to Chapter 3 of
Tijms’s [17] book for a detailed description of these algorithms.
To implement these algorithms we must specify the one-step tran-
sition probabilities and the one-step expected transition costs. Let
a 2 {0,1} be the action that is selected when the system at a deci-
sion epoch is at state ðj;�zÞ 2 I. We assume that the action a = 0

means that the vehicle goes to the next customer while the action
a = 1 means that it goes to the depot for stock replenishment. Let
pðj;�zÞðjþ1; �wÞðaÞ be the probability that the state at the next decision
epoch will be the state ðjþ 1; �wÞ if the present state is ðj;�zÞ and
the action a is selected, and let Cððj;�zÞ; aÞ be the corresponding ex-
pected cost. Taking into account the structure of the model it is
possible to specify these quantities. We give below when K = 2
some of these quantities:

pðj;z1 ;z2Þðjþ1;w1 ;w2Þð0Þ ¼ P njþ1
1 ¼ z1 �w1; n

jþ1
2 ¼ z2 �w2

� �
; 0 < z1

< Q 1; 0 < z2 < Q 2; 0 6 w1 < z1; 0 6 w2 < z2;

pðj;z1 ;z2Þðjþ1;z1 ;w2Þð0Þ ¼ P njþ1
1 ¼ Q 1; n

jþ1
2 ¼ z2 þ Q2 �w2

� �
; 0 < z1

< Q 1; 0 < z2 < Q 2; z2 < w2 < Q 2;

pðj;z1 ;z2Þðjþ1;z1 ;z2Þð0Þ ¼ P njþ1
1 ¼ 0; njþ1

2 ¼ 0
� �
þ P njþ1

1 ¼ Q 1; n
jþ1
2 ¼ Q2

� �
;

0 < z1 < Q 1; 0 < z2 < Q 2;

pðj;z1 ;z2Þðjþ1;Q1 ;w2Þð0Þ ¼ P njþ1
1 6 z1; n

jþ1
2 ¼ z2 þ Q 2 �w2

� �
; 0 < z1

< Q 1; 0 < z2 < Q 2; z2 < w2 < Q 2;

pðj;0;Q2Þðjþ1;w1 ;Q2Þð0Þ ¼ P njþ1
1 ¼ Q 1 �w1

� �
; 0 < w1 6 Q1;

pðj;0;Q2Þðjþ1;w1 ;w2Þð0Þ ¼ 0;0 < w1 6 Q 1; 0 6 w2 < Q 2;

pðj;z1 ;z2Þðjþ1;w1 ;w2Þð1Þ ¼ P njþ1
1 ¼ Q 1 �w1; n

jþ1
2 ¼ Q 2 �w2

� �
; 0 6 z1

6 Q 1; 0 6 z2 6 Q 2; 0 6 w1 6 Q 1; 0 6 w2 6 Q 2;

Cððj; z1; z2Þ;0Þ ¼ cj;jþ1 þ 2cjþ1;0 1� P njþ1
1 6 z1; n

jþ1
2 6 z2

� �h i
;

0 6 z1 6 Q 1; 0 6 z2 6 Q 2;

Cððj; z1; z2Þ;1Þ ¼ cj;0 þ c0;jþ1; 0 6 z1 6 Q 1; 0 6 z2 6 Q2:

As illustration we present the following example. We suppose that
N = 10, K = 2 and Q1 = Q2 = 10. The travel costs between customers j
and j + 1, j = 1, . . . ,10, are given by: c12 = 17, c23 = 18, c34 = 20,
c45 = 19, c56 = 19, c67 = 13, c78 = 10, c89 = 15, c9,10 = 19 and
c10,1 = 16. The travel costs between customer j, j = 1, . . . ,10, and
the depot are given by: c10 = 10, c20 = 12, c30 = 13, c40 = 15,
c50 = 17, c60 = 12, c70 = 17, c80 = 20, c90 = 18 and c10,0 = 13. The de-
mands of the customers for products 1 and 2 are independent dis-
crete uniformly distributed random variables, such that for each

customer j ¼ 1; . . . ;N; P nj
1 ¼ x

� �
¼ ðQ1 þ 1Þ�1

; x ¼ 0; . . . ;Q1, and

Table 3
The critical numbers of the optimal policy.

Customer j sj(0) sj(1) sj(2) sj(3) sj(4) sj(5) sj(6) sj(7) sj(8) sj (9) sj(10)

1 11 11 11 11 11 11 11 11 10 9 8
2 11 11 11 11 11 11 11 10 9 8 7
3 11 11 11 11 11 11 11 10 8 8 7
4 11 11 11 11 11 11 9 8 7 6 6
5 11 11 11 11 11 8 7 6 5 4 4
6 11 11 11 11 8 6 5 5 4 4 4
7 11 11 8 6 4 4 3 3 2 2 2
8 11 11 11 9 7 6 5 4 4 3 3
9 11 11 11 11 11 10 8 7 6 6 5
10 11 11 11 11 11 11 11 9 8 7 7
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P nj
2 ¼ y

� �
¼ ðQ2 þ 1Þ�1; y ¼ 0; . . . ;Q2. We implemented the stan-

dard policy-iteration algorithm for the determination of the optimal
average-cost policy. After four iterations this algorithm converges
to the optimal stationary policy with average cost equal to
215.01. The structure of the optimal policy, as expected, is of
threshold-type described in Theorem 1. In Table 3 above we present
the critical numbers sj(z1), z1 = 0, . . . ,Q1, that correspond to the opti-
mal policy for each customer j, j = 1, . . . ,N.

The computation time of the corresponding Matlab program re-
quired by the above algorithm is 12.84 seconds. The standard va-
lue-iteration algorithm does not converge in this example. This is
due to the periodicity (with period N) of all states of the system un-
der any stationary policy. This problem can be circumvented by a
perturbation of the one-step transition probabilities so that a tran-
sition from a state to itself with non-zero probability is allowed.
Specifically, we take the following new one-step probabilities

~pðj;z1 ;z2Þðjþ1;w1 ;w2ÞðaÞ ¼ spðj;z1 ;z2Þðjþ1;w1 ;w2Þ;
~pðj;z1 ;z2Þðj;z1 ;z2ÞðaÞ ¼ 1� s;

where s is a constant such that 0 < s < 1. A reasonable choice for the
value of s is 0.5. The perturbed model has the same average-cost
optimal policy as the original model (see [17, p. 209]). We imple-
mented the value-iteration algorithm in the perturbed model and,
as expected, we obtained the above optimal policy. The required
computation time is 6.16 seconds which is considerably smaller
than the computation time required by the policy-iteration
algorithm.

4. The problem with stochastic continuous demands

We modify the problem that we introduced in Section 2 by
assuming that the demand of customer j 2 {1, . . . ,N} for product
i 2 {1, . . . ,K} is a continuous random variable nj

i. The joint probabil-
ity density function gjð�nÞ; �n ¼ ðn1; . . . ; nKÞ 2 eS ¼ ½0;Q1� � � � � � ½0;QK �
of nj

1; . . . ; nj
K

� �
is known. A realistic interpretation of this model

could be the situation in which the vehicle delivers K different
kinds of petrol to a sequence of petrol stations. The vehicle has K
compartments and each compartment is suitable for a particular
kind of petrol. Note that Kyriakidis and Dimitrakos [8] investigated
this problem when K = 1. Using the notation of Section 2, the opti-
mal routing strategy in the modified problem can be determined
by the following dynamic programming equations. For
j = 1, . . . ,N � 1 we have:

fjð�zÞ ¼minfHjð�zÞ;Ajg; �z ¼ ðz1; . . . ; zKÞ 2 ½0;Q 1� � � � � � ½0;QK �;

where,

Hjð�zÞ ¼ cj;jþ1 þ
Z

�n2N�z

fjþ1ð�z� �nÞgjþ1ð�nÞd�n

þ
Z

�nRN�z

½2cjþ1;0 þ fjþ1ðQ þ ð�z� �nÞ�Þ�gjþ1ð�nÞd�n;

Aj ¼ cj0 þ cjþ1;0 þ
Z

�n2eS fjþ1ðQ � �nÞgjþ1ð�nÞd�n:

In the boundary we have

fNð�zÞ ¼ cN0; �z 2 ½0;Q 1� � � � � � ½0;Q K �

and the minimum total expected cost is

f0 ¼ c10 þ
Z

�n2eS f1ðQ � �nÞg1ð�nÞd�n:

The structure of the finite-horizon optimal policy is the same as in
the case of discrete demands since Lemma 1 and Theorem 1 are va-
lid in this modified problem. The proof of Lemma 1 is identical to
the corresponding proof of Section 2. The proof of Theorem 1 is sim-
ilar to that of Section 2 with the following difference. Instead of

showing that Hjð�zÞP Hjð�zþ �eiÞ in the modified model it suffices
to show that Hjð�zÞP Hjð�z�Þ; where �z ¼ ðz1; . . . ; zi; . . . ; zKÞ and
�z� ¼ ðz1; . . . ; zi þ y; . . . ; zKÞ with y > 0 such that zi + y 6 Qi. It can be
seen that

Hjð�zÞ ¼ cj;jþ1 þ
Z

�n2N�z

fjþ1ð�z� �nÞgjþ1ð�nÞd�n

þ
Z

�nRN�z :ni6zi

½2cjþ1;0 þ fjþ1ðQ þ ð�z� �nÞ�Þ�gjþ1ð�nÞd�n

þ
Z

�n2N�z� :zi<ni6ziþy
½2cjþ1;0 þ fjþ1ðQ þ ð�z� �nÞ�Þ�gjþ1ð�nÞd�n

þ
Z

�nRN�z� :zi<ni6ziþy
½2cjþ1;0 þ fjþ1ðQ þ ð�z� �nÞ�Þ�gjþ1ð�nÞd�n

þ
Z

�n2eS:ni>ziþy
½2cjþ1;0 þ fjþ1ðQ þ ð�z� �nÞ�Þ�gjþ1ð�nÞd�n;

Hjð�z�Þ ¼ cj;jþ1 þ
Z

�n2N�z

fjþ1ð�z� � �nÞgjþ1ð�nÞd�n

þ
Z

�n2N�z� :zi<ni6ziþy
fjþ1ð�z� � �nÞgjþ1ð�nÞd�n

þ
Z

�nRN�z� :ni6zi

½2cjþ1;0 þ fjþ1ðQ þ ð�z� � �nÞ�Þ�gjþ1ð�nÞd�n

þ
Z

�nRN�z� :zi<ni6ziþy
½2cjþ1;0 þ fjþ1ðQ þ ð�z� � �nÞ�Þ�gjþ1ð�nÞd�n

þ
Z

�n2eS:ni>ziþy
½2cjþ1;0 þ fjþ1ðQ þ ð�z� � �nÞ�Þ�gjþ1ð�nÞd�n

By comparing Hjð�zÞ and Hjð�z�Þ term by term as in the proof of The-
orem 1 we deduce that Hjð�zÞP Hjð�z�Þ.

It is also possible to consider the corresponding infinite-horizon
problems with stochastic continuous demands. The state space of
the system becomes:

I ¼ fði;�zÞ : i ¼ 1; . . . ;N;�z ¼ ðz1; . . . ; zKÞ 2 ½0;Q 1� � � � � � ½0;QK �g:

Using standard results of Markov decision theory (see Chapter 6 in
[14]) it is possible to prove in the same way as in Section 3 that the
infinite-horizon a- discounted cost optimal policy has the same
threshold-type structure as the corresponding finite-horizon prob-
lem. It seems intuitively reasonable that the average-cost optimal
policy has the same structure. However a rigorous proof seems to
be difficult due to the fact that the state space I is continuous, since
it is not easy to prove that the minimum expected a- discounted
total cost is equicontinuous (see p.150 in [14]).

5. Conclusions

In this paper we investigated a simple variant of the classical
capacitated vehicle routing problem. We assumed that a single
vehicle starts its route from a depot and delivers K different prod-
ucts to N customers according to a particular order. The vehicle is
divided into K sections. Each product is stored in its own section in
the vehicle. The demands of the customers for each product were
assumed to be discrete or continuous random variables with
known distributions. A suitable dynamic programming algorithm
was proposed for the determination of the policy that minimizes
the total expected cost for the service of all customers. It was
proved that the optimal policy divides the set of all possible loads
carried by the vehicle into two disjoint subsets. If after servicing a
customer the loads carried by the vehicle belong to the first subset
then it is optimal to proceed to the next customer, while if these
loads belong to the second subset it is optimal to return to depot
for restocking and then go to the next customer.
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We point out that the development of the dynamic program-
ming algorithm relies heavily on the fact that only one vehicle is
available and on the assumption that the vehicle visits the custom-
ers according to a predefined sequence.

We also studied a corresponding infinite-horizon problem in
which the service of the customers is not completed when the last
customer’s demands are satisfied but it continues periodically with
the same customer order. The times between the decision epochs
are constant. The demands of the customers for each product are
renewed in each cycle and follow the same distribution. We prove
that the total discounted-cost optimal policy and the average-cost
optimal policy have the same threshold-type structure as in the fi-
nite-horizon case.

A subject for future research could be the investigation of a
more general problem in which the vehicle delivers new products
to each customer and collects expired or useless products, and the
demands for both kinds of products are random.

Acknowledgment

The authors thank the referees whose useful comments im-
proved the content of the present work.

References

[1] B.M. Baker, M.A. Ayechew, A genetic algorithm for the vehicle routing problem,
Computers and Operations Research 30 (2003) 787–800.

[2] R. Baldacci, E.A. Hadjiconstantinou, A. Mingozzi, An exact algorithm for the
capacitated vehicle routing problem based on a two-commodity network flow
formulation, Operations Research 52 (2004) 723–738.

[3] B. Bullnheimer, R.F. Hartl, C. Strauss, An improved ant system algorithm for the
vehicle routing problem, Annals of Operations Research 89 (1999) 319–328.

[4] W. Chiang, R.A. Russell, Simulated annealing metaheuristics for the vehicle
routing problem with time windows, Annals of Operations Research 63 (1996)
3–27.

[5] C.H. Christiansen, J. Lysgaard, A branch-and-price algorithm for the capacitated
vehicle routing problem with stochastic demands, Operations Research Letters
35 (2007) 773–781.

[6] G. Dantzig, R. Ramster, The truck dispatching problem, Management Science 6
(1959) 80–91.

[7] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Aragao, M. Reis, E. Uchoa, R.F.
Werneck, Robust branch-and-cut-and-price for the capacitated vehicle routing
problem, Mathematical Programming A 106 (2006) 491–511.

[8] E.G. Kyriakidis, T.D. Dimitrakos, Single vehicle routing problem with a
predefined customer sequence and stochastic continuous demands,
Mathematical Scientist 33 (2008) 148–152.

[9] C.Y. Liong, I. Wan Rosmanira, O. Khairuddin, M. Zirour, Vehicle routing
problem: Models and solutions, Journal of Quality Measurement and Analysis
4 (2008) 205–218.

[10] J. Lysgaard, A. Letchford, R.W. Eglese, A new branch-and-cut algorithm for the
capacitated vehicle routing problem, Mathematical Programming 100 (2004)
423–445.

[11] J.E. Mendoza, B. Castanier, C. Gueret, A.L. Medaglia, N. Velasco, A memetic
algorithm for the multi-compartment vehicle routing problem with stochastic
demands, Computers and Operations Research 37 (2010) 1886–1898.

[12] U. Rembold, C. Blume, R. Dillmann, Computer Integrated Manufacturing
Technology and Systems, Marcel Dekker, New York, 1985.

[13] Y. Rochat, R.E. Taillard, Probabilistic diversification and intensification in local
search for vehicle routing, Journal of Heuristics 1 (1995) 147–167.

[14] S.M. Ross, Applied Probability Models with Optimization Applications, Dover,
New York, 1992.

[15] D. Simchi-Levi, X. Chen, J. Bramel, The Logic of Logistics, second ed., Theory,
Algorithms and Applications for Logistics and Supply Chain Management,
Springer, New York, 2005.

[16] A. Tatarakis, I. Minis, Stochastic single vehicle routing with a predefined
customer sequence and multiple depot returns, European Journal of
Operational Research 197 (2009) 557–571.

[17] H.C. Tijms, Stochastic Models: An Algorithmic Approach, Wiley, New York,
1994.

[18] P. Toth, D. Vigo (Eds.), The Vehicle Routing Problem, Siam, Philadelphia, PA,
2002.

[19] P. Tsirimpas, A. Tatarakis, I. Minis, E.G. Kyriakidis, Single vehicle routing with a
predefined customer sequence and multiple depot returns, European Journal
of Operational Research 187 (2008) 483–495.

[20] W.-H. Yang, K. Mathur, R.H. Ballou, Stochastic vehicle routing problem with
restocking, Transportation Science 34 (2000) 99–112.

332 D.G. Pandelis et al. / European Journal of Operational Research 217 (2012) 324–332


