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This paper extends the results of a particular capacitated vehicle routing problem with pickups and deliveries

(see Pandelis et al., 2013b) to the case in which the demands for a material that is delivered to N customers

and the demands for a material that is collected from the customers are continuous random variables instead

of discrete ones. The customers are served according to a particular order. The optimal policy that serves

all customers has a specific threshold-type structure and it is computed by a suitable efficient dynamic

programming algorithm that operates over all policies having this structure. The structural result is illustrated

by a numerical example.
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1. Introduction

In the capacitated vehicle routing problem with stochastic de-

mands the objective is to find the optimal routing of a single vehi-

cle with finite capacity or of a fleet of vehicles with finite capacity

that originate from one or several depots and deliver products to N

geographically scattered customers, whose demands for the prod-

ucts are random variables. Many exact and heuristic algorithms have

been developed for various versions of this problem (see Chepuri &

Momem-de-Mello, 2005; Goodson, Ohlmann, & Thomas, 2012;

Haugland, Ho, & Laporte, 2007; Kyriakidis & Dimitrakos, 2008; Lei,

Laporte, & Guo, 2011; Marinakis, Iordanidou, & Marinaki, 2013;

Mendoza, Castanier, Gueret, Medaglia, & Velasco, 2010; Novoa &

Storer, 2009; Rei, Gendreau, & Soriano, 2010; Secomandi & Margot,

2009; Tan, Cheong, & Goh, 2007). A dynamic programming approach

has been proposed in various capacitated single vehicle routing prob-

lems with stochastic discrete demands in which the customers are

serviced according to a predefined sequence (see Minis & Tatarakis,

2011; Pandelis, Karamatsoukis, & Kyriakidis, 2013a, 2013b; Pandelis,

Kyriakidis, & Dimitrakos, 2012; Tatarakis & Minis, 2009; Yang, Mathur,

& Ballou, 2000).

In this paper we modify a specific stochastic capacitated vehicle

routing problem with pickups and deliveries studied by Pandelis et al.

(2013b) by assuming that the demands of the customers are contin-

uous random variables instead of discrete ones. We give below the
∗ Corresponding author. Tel.: +30 210 8203585, +30 210 8203503.

E-mail addresses: dimitheo@aegean.gr (T.D. Dimitrakos), kyriak@fme.aegean.gr,
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escription of the modified problem for the case in which only one

aterial is delivered to the customers. The results can easily be ex-

ended if the vehicle delivers K > 1 materials, although the required

omputations are excessive.

We assume that a vehicle of capacity Q > 0 starts its route from

depot loaded with a quantity of material 1 that is smaller or

qual to Q and visits N customers according to a predefined or-

er 1 → 2 → · · · → N. The vehicle delivers some quantity of material

to each customer and collects some quantity of material 2 according

o his/her demands. The vehicle is allowed during its route to return to

he depot to empty the collected quantity of material 2 and to restock

ith material 1. When the vehicle returns to the depot for restocking

t is not always preferable to load it to its full capacity with material

, as there needs to be some space available in order to accommo-

ate the collected quantities of material 2 from next customers. Let
j and ψ j, j = 1, . . . , N, be the demand of customer j for material 1

nd the quantity of material 2 that is collected from customer j, re-

pectively. We suppose that ξ j and ψ j, j = 1, . . . , N, are continuous

andom variables such that max1≤j≤Nξ j ≤ Q and max1≤j≤Nψ j ≤ Q .

et φj(x, y) be the joint probability density function of ξ j and ψ j. For

ach customer the actual demand for material 1 and the actual quan-

ity of material 2 that must be picked up are revealed only when the

ehicle arrives at the customer’s site. When the vehicle visits cus-

omer j ∈ {1, . . . , N} for the first time it satisfies as much demand for

aterial 1 as possible and collects the largest possible quantity of

aterial 2. If part of the demand for material 1 is not satisfied and/or

here is not enough space for the whole quantity of material 2 that

ust be collected, the vehicle goes to the depot, empties material 2,

estocks with material 1, and returns to customer j. The vehicle returns

http://dx.doi.org/10.1016/j.ejor.2015.02.038
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o the depot after the completion of the service of all customers. Let

j0 and c0j, j = 1, . . . , N, be the travel cost from customer j to the depot

nd the travel cost from the depot to customer j, respectively. Let also

j,j+1, j = 1, . . . , N − 1, be the travel cost from customer j to customer

+ 1. It is reasonable to assume that these costs satisfy the symmet-

ic property and the triangle inequality, i.e. cj0 = c0j, j = 1, . . . , N, and

j,j+1 ≤ cj0 + c0,j+1, j = 1, . . . , N − 1. Our objective is to find a vehicle

outing strategy that minimizes the total expected cost for the service

f all customers. A realistic example that fits to this problem could

e the optimal routing of a vehicle that visits a sequence of buildings

hat are under construction, and delivers lime, which is material 1,

nd collects garbage, which is material 2. Another practical applica-

ion of the problem could be the so-called ex-van sales, in which the

river of the vehicle acts as a salesman. Suppose that his customers

re fruit stores that are supplied with a particular kind of fruit, for

xample cherries, according to a particular order. It is reasonable to

ssume that the demands of each fruit store for fresh fruits and the

uantities of expired fruits are not known in advance but they are re-

ealed as soon as the vehicle arrives at a fruit store. If the demand of

fruit store for fresh fruits exceeds the quantity that is loaded in the

ehicle or if the quantity of expired fruits exceeds the empty space

n the vehicle, the driver has to go to the depot to unload the expired

ruits and to replenish with fresh ones.

Note that the determination of the optimal routing strategy is

chieved by an appropriate dynamic programming approach as in the

ase of discrete demands that was studied in Pandelis et al. (2013b).

owever in the present problem the state space after the visit of the

ehicle to each customer is a continuous set. We propose a suitable

iscretization of the state space in order to make the dynamic pro-

ramming method applicable.

In next section we give a structural property of the optimal rout-

ng strategy and we show how it can be computed by implementing

special-purpose dynamic programming algorithm. In Section 3 we

ive a numerical example and the conclusions of the paper are pre-

ented in the last section.

. The optimal policy

Following the same approach as in Pandelis et al. (2013b), we

hoose as decision epochs of the problem, the epochs at which the

ehicle visits for the first time each customer and has satisfied as

uch of the customer’s demand for material 1 as possible and has

icked up as much of material 2 as possible. Note that it is possible at

hese decision epochs to have some demand for material 1 that has

ot been satisfied if the quantity of material 1 carried by the vehicle

s not sufficient. It is also possible at these decision epochs to have

ome quantity of material 2 that has not been collected by the vehicle

ue to lack of empty space. Let z ∈ [−Q, Q] be the load of material 1

arried by the vehicle after the first visit at a customer’s site, and let

∈ [−Q, Q] be the empty space in the vehicle. Negative values for z

nd r denote the unsatisfied demand for material 1 and lack of empty

pace for material 2. When z ≥ 0 and r ≥ 0 (demand for material 1 and

ollection of material 2 fully satisfied) the vehicle has two choices:

i) it proceeds directly to the next customer and (ii) it goes to the de-

ot, empties the collected quantity of material 2, restocks with load

∈ [0, Q] of material 1, and then visits the next customer. When z < 0

nd/or r < 0, the vehicle goes to the depot, empties material 2, and

estocks (if z < 0) the owed quantity −z of material 1. Then it has the

ollowing choices: (i) it loads an additional quantity θ ≥ 0 of material

so that at least −r (if r < 0) empty space remains after delivering

he owed quantity −z, that is θ ≤ Q + min(z, r), returns to the cus-

omer, satisfies the remaining demand and/or picks up the remaining

uantity of material 2, and then proceeds to the next customer and

ii) returns to the customer, satisfies the remaining demand for ma-

erial 1 and/or collects the remaining quantity of material 2, makes

second trip to the depot where it empties the collected quantity of
aterial 2, restocks with load θ ∈ [0, Q] of material 1 and proceeds to

he next customer. It can be seen that, when z < 0 and/or r < 0, the

ehicle makes either one or two trips to the depot before proceeding

o the next customer.

.1. The optimal routing strategy

Let fj(z, r), z, r ∈ [−Q, Q], be the minimum expected total cost

rom customer j to the end of the route, if the load of material 1

arried by the vehicle after visiting customer j for the first time is

qual to z and the empty space is equal to r. For j ∈ {1, . . . , N − 1},
his quantity satisfies the following dynamic programming equations

see e.g. Chapter 6 in Ross, 1992):

j(z, r) = min{Hj(z, r), Aj}, 0 ≤ z, r ≤ Q, (1)

nd

j(z, r) = 2cj0 + min{H̃j(z, r), Aj}, if z < 0 and/or r < 0, (2)

here,

j(z, r)= cj,j+1 +
∫ Q

0

∫ Q

0

fj+1(z − x, r + min(z, x)− y)φj+1(x, y)dx dy,

(3)

˜
j(z, r) = cj,j+1 + min

θ∈[0,Q+min(z,r)]

∫ Q

0

∫ Q

0

fj+1(θ − x, Q + min(0, r)− θ

+ min(θ, x)− y)φj+1(x, y)dx dy, (4)

j = cj0 + cj+1,0 + min
θ∈[0,Q]

∫ Q

0

∫ Q

0

fj+1(θ − x, Q − θ

+ min(θ, x)− y)φj+1(x, y)dx dy. (5)

he boundary conditions are

N(z, r) = cN0 if 0 ≤ z, r ≤ Q, (6)

nd

N(z, r) = 3cN0 if z < 0 and/of r < 0. (7)

he first term in the curly brackets in (1) and (2) corresponds to choice

i) and the second term corresponds to choice (ii). The minimum total

xpected cost is

0 = c10 + min
θ∈[0,Q]

∫ Q

0

∫ Q

0

f1(θ − x, Q − θ + min(θ, x)− y)φ1(x, y)dx dy.

It can be shown by induction on j in a similar way as in Pandelis

t al. (2013b) that Hj(z, r) and H̃j(z, r) are non-increasing in each of

heir arguments. This result enables us to prove the following proposi-

ion that describes the structure of the optimal vehicle routing strat-

gy after its first visit to customer j ∈ {1, . . . , N − 1}. Part (i) of the

roposition is a consequence of Hj(z, r)being non-increasing in its ar-

uments and Parts (ii)–(iv) follow from H̃j(z, r) being non-increasing

n its arguments.

roposition 1. After the first visit to customer j ∈ {1, . . . , N − 1} there

re four cases:

(i) For each z ∈ [0, Q] there exists a critical number s1j(z) ∈ [0, Q − z]

such that it is optimal for the vehicle to proceed to customer j + 1

if and only if r ∈ [s1j(z), Q − z]. Moreover, s1j(z) is non-increasing

in z.

(ii) There exists a critical number rj ∈ [−Q, 0] such that if z ∈ [0, Q]

and r < rj it is optimal for the vehicle to make two trips to the

depot, while if z ∈ [0, Q] and rj ≤ r < 0 it is optimal to make one

trip to the depot.
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(iii) There exists a critical number qj ∈ [−Q, 0] such that if r ∈ [0, Q]

and z < qj it is optimal for the vehicle to make two trips to the

depot, while if r ∈ [0, Q] and qj ≤ z < 0 it is optimal to make one

trip to the depot.

(iv) For each r ∈ [−Q, 0) there exists a critical number s2j(r) ∈ [−Q, 0)
such that it is optimal for the vehicle to make two trips to the depot

if and only if z ∈ [−Q, s2j(r)]. Moreover, s2j(r) is non-increasing

in r.

The state space after the first visit of the vehicle to customer

j ∈ {1, . . . , N} is the set S = {(z, r) : −Q ≤ z, r ≤ Q, z + r ≤ Q}. A dis-

cretization of the state space is necessary for the implementation of

the dynamic programming algorithm. Let ρ be a relatively small num-

ber (e.g. ρ = 0.05 or ρ = 0.01). We discretize S by restricting our at-

tention only to its points (kρ, lρ), k, l = −Q/ρ, −Q/ρ + 1, . . . , Q/ρ −
1, Q/ρ. The minimum expected cost fN(kρ, lρ), −Q/ρ ≤ k, l ≤ Q/ρ,

is found by using (6) and (7) with z = kρ and r = lρ. The minimum

expected cost fj(kρ, lρ), −Q/ρ ≤ k, l ≤ Q/ρ, and the corresponding

optimal decision are found, recursively, for j = N − 1, N − 2, . . . , 1 by

using the dynamic programming Eqs. (1) and (2) with z = kρ and

r = lρ. The double integrals in (3)–(5) are computed approximately.

The parameter θ in (4) and (5) takes values in the set {uρ : u =
0, 1, . . . , Q/ρ + min(k, l)} and in the set {0, ρ, . . . , Q − ρ, Q}, respec-

tively. For example, if k < 0 and/or l < 0 the quantity H̃j(kρ, lρ) is

computed as follows:

H̃j(kρ, lρ)

= cj,j+1 + min
θ∈{0,ρ,...,Q+min(kρ,lρ)}

Q/ρ−1∑
x=0

Q/ρ−1∑
y=0

fj+1(θ − xρ, Q + min(0, lρ)

− θ + min(θ, xρ)− yρ)φj+1(xρ, yρ)ρ2.

2.2. A special-purpose dynamic programming algorithm

In view of Proposition 1, the optimal policy, i.e. the critical num-

bers s1j(kρ) ≥ 0, 0 ≤ k ≤ Q/ρ, s2j(lρ) < 0, −Q/ρ ≤ l ≤ −1, rj ≤ 0 and

qj ≤ 0 for each customer j ∈ {1, . . . , N − 1} can be found by the fol-

lowing dynamic programming algorithm:

Algorithm for the determination of the critical numbers rj, qj,

s1j(kρ), 0 ≤ k ≤ Q/ρ, s2j(lρ), −Q/ρ ≤ l ≤ −1, for customer j ∈
{1, . . . , N}

Step 0. Set fN(kρ, lρ) = cN0, for k, l = 0, . . . , Q/ρ such that k + l ≤ Q/ρ.

Set fN(kρ, lρ) = 3cN0, for k, l = −Q/ρ, . . . , Q/ρ such that k < 0 and/or l < 0.

Set j = N − 1.

Step 1. Set rj = r − ρ.

Step 2. (Determination of critical number rj)

If H̃j(0, r) > Aj, do the following:

1. Set rj = r + ρ

2. Set fj(kρ, lρ) = 2cj0 + H̃j(0, lρ), 0 ≤ k ≤ Q/ρ, rj/ρ ≤ l < 0.

3. Set fj(kρ, lρ) = 2cj0 + Aj, 0 ≤ k ≤ Q/ρ,−Q/ρ ≤ l < rj/ρ.

4. Go to Step 3.

Otherwise, set r = r − ρ.

If r = −Q − ρ, do the following:

1. Set rj = −Q .

2. Set fj(kρ, lρ) = 2cj0 + H̃j(0, lρ), 0 ≤ k ≤ Q/ρ,−Q/ρ ≤ l < 0.

3. Go to Step 3.

Otherwise, go to Step 2.

Step 3. Set z = −ρ.

Step 4. (Determination of critical number qj)

If H̃j(z, 0) > Aj, then do the following:

1. Set qj = z + ρ.

2. Set fj(kρ, lρ) = 2cj0 + H̃j(kρ, 0), qj/ρ ≤ k < 0, 0 ≤ l ≤ Q/ρ.

3. Set fj(kρ, lρ) = 2cj0 + Aj,−Q/ρ ≤ k < qj/ρ, 0 ≤ l ≤ Q/ρ.

4. Go to Step 5.

Otherwise, set z = z − ρ.

If z = −Q − ρ, do the following:

1. Set qj = −Q .

2. Set fj(kρ, lρ) = 2cj0 + H̃j(kρ, 0),−Q/ρ ≤ k < 0, 0 ≤ l ≤ Q/ρ.

3. Go to Step 5.
Otherwise, go to Step 4.

Step 5. Set z = 0.

Step 6. Set r = Q − z.

Step 7. (Determination of critical number s1j(kρ))

If Hj(z, r) > Aj, do the following:

1. Set s1j(z) = r + ρ.

2. Set fj(z, lρ) = Aj, 0 ≤ l ≤ s1j(z)/ρ − 1.

3. Set fj(z, lρ) = Hj(z, lρ), s1j(z)/ρ ≤ l ≤ (Q − z)/ρ.

4. Set z = z + ρ. If z ≤ Q go to Step 6. Otherwise, go to Step 8.

Otherwise, set r = r − ρ.

If r = −ρ, do the following:

1. Set s1j(z) = 0.

2. Set fj(z, lρ) = Hj(z, lρ), 0 ≤ l ≤ (Q − z)/ρ.

3. Set z = z + ρ. If z ≤ Q, go to Step 6. Otherwise, go to Step 8.

Otherwise, go to Step 7.

Step 8. Set r = −ρ.

Step 9. Set z = −ρ.

Step 10. (Determination of critical number s2j(lρ))

If H̃j(z, r) > Aj, do the following:

1. Set s2j(r) = z.

2. Set fj(kρ, r) = 2cj0 + Aj,−Q/ρ ≤ k ≤ s2j(r)/ρ.

3. Set fj(kρ, r) = 2cj0 + H̃j(kρ, r), s2j(r)/ρ + 1 ≤ k ≤ −1.

4. Set r = r − ρ. If r ≥ −Q, go to Step 9. Otherwise, go to Step 11.

Otherwise, set z = z − ρ.

If z = −Q − ρ, do the following:

1. Set s2j(r) = −Q − ρ.

2. Set fj(kρ, r) = 2cj0 + H̃j(kρ, r),−Q/ρ ≤ k ≤ −1.

3. Set r = r − ρ. If r ≥ −Q, go to Step 9. Otherwise, go to Step 11.

Otherwise, go to Step 10.

Step 11. Set j = j − 1. If j ≥ 1 go to Step 1. Otherwise, stop.

. Numerical example

s illustration we present the following example.

xample. Suppose that N = 8, Q = 6. The travel costs between cus-

omers j and j + 1, j = 1, . . . , 7, are given by: c12 = 30, c23 = 26,

34 = 18, c45 = 25, c56 = 20, c67 = 18 and c78 = 26. The travel costs

etween customers j, j = 1, . . . , 8, and the depot are given by: c10 =
5, c20 = 22, c30 = 25, c40 = 20, c50 = 17, c60 = 21, c70 = 24 and

80 = 28. Note that these costs satisfy the triangle inequality. We as-

ume that, for each customer j ∈ {1, . . . , 8} the demand ξ j for material

and the quantity ψ j of material 2 that is collected are independent

ontinuous random variables which follow the Gamma distribution

ight-truncated in the interval [0, Q]. Their probability density func-

ions are given by:

hj(x) = [F1(Q)]−1 λα1

1 xα1−1

	(α1)
e−λ1x and

j(x) = [F2(Q)]−1 λα2

2 xα2−1

	(α2)
e−λ2x, x ∈ [0, Q],

espectively, where, αi, λi > 0, i ∈ {1, 2}, 	(α) = ∫ ∞
0 e−uuα−1 du,

> 0 and Fi(x) = [	(αi)]
−1

∫ λix

0 e−uuαi−1 du, x ≥ 0. The Gamma dis-

ribution seems to be a reasonable choice for the demand for material

and for the quantity of material 2 that is collected since, as men-

ioned in p. 442 in the book of Tijms (2003), in inventory applications

he Gamma distribution is often used to model demand distributions.

ue to independence of ξ j and ψ j, ϕj(x, y) = hj(x)wj(y). We set α1 =
, λ1 = 4 and α2 = 3, λ2 = 2. We choose ρ = 0.05 so that the dis-

retized state space after the first visit of the vehicle to each customer

s the set {(k × 0.05, l × 0.05) : k, l = −120, . . . , 120 and k + l ≤ 120}.
e implemented the initial dynamic programming algorithm based

n (1)–(7) and the special-purpose dynamic programming algorithm

y running the corresponding Matlab program on a personal com-

uter equipped with an Intel Core 2 Duo, 2.5 GHz processor and 4 GB

f RAM. In Fig. 1 below, we present the optimal decisions after the first

isit to customer 5. The structure of the optimal policy, as expected, is

f threshold-type described in Proposition 1. The action of proceeding

irectly to the next customer is coloured by dark blue, the action of

eturning to the depot once is coloured by red and the action of mak-

ng two trips to the depot is coloured by light green. The value of the
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Fig. 1. The optimal decisions after the first visit to customer 5. (For interpretation of

the references to colour in the text, the reader is referred to the web version of this

article.)
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inimum total expected cost f0 is found to be approximately equal to

98.04. The computation time of the special-purpose dynamic pro-

ramming algorithm is 9112 seconds. It is considerably smaller than

he computation time of the initial dynamic programming algorithm

hich is 12554 seconds.

Both algorithms enable us to determine the optimal quantity of

aterial 1 that is loaded in the vehicle when it returns to the depot

or replenishment. For example, if after the first visit of the vehicle to

ustomer 5 the state is (z, r) = (−2.75, 2), then the optimal decision

or the vehicle is to go to the depot to empty the quantity of material

that it carries and to load the owed quantity of material 1 which is

qual to 2.75. Then, it loads an additional quantity of material 1 which

s equal to 2.9, returns to customer 5, satisfies the remaining demand

f material 1 and then proceeds to customer 6. If after the first visit of

he vehicle to customer 5 the state is (z, r) = (−5, −2.5), the optimal

ecision is to go to the depot to empty the quantity of material 2 that

t carries and to load the owed quantity of material 1 which is equal

o 5. Then, it returns to customer 5 to deliver the owed quantity of

aterial 1 and pick up the remaining quantity of material 2 which is

qual to 2.5, makes a second trip to the depot, empties the remaining

uantity of material 2, loads a new quantity of material 1 equal to 3.2

nd then proceeds to customer 6.

. Conclusions

In this paper we considered a simple capacitated vehicle routing

roblem with pickups and deliveries. It was assumed that (i) the

ehicle visits each customer according to a predefined sequence,

ii) each customer demands a quantity of material 1 that is a random

ariable and (iii) each customer gives to the vehicle a quantity of ma-

erial 2 that is also a continuous random variable. It was assumed that

hese random variables are continuous with known distributions and

heir actual values become known only when the vehicle arrives at

ach customer’s site. Assumption (i) together with a suitable choice of

ecision epochs enabled us to develop a dynamic programming algo-

ithm for the determination of the routing strategy with the minimum
otal expected cost. We also gave a structural property of the optimal

outing strategy according to which the state space is divided to three

ubsets. If at a decision epoch the state belongs to the first subset then

he vehicle proceeds to the next customer, if it belongs to the second

ubset then it makes one trip to the depot before proceeding to the

ext customer and if it belongs to the third subset then it makes two

rips to the depot before proceeding to the next customer. This char-

cterization of the optimal policy enabled us to design an efficient

pecial-purpose dynamic programming algorithm for its computa-

ion by restricting our attention only to those policies having the

bove structural property. The state space, that corresponds to each

ustomer, is continuous and it was discretized before applying the

ynamic programming algorithms to specific numerical examples.
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