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Abstract

We consider a model consisting of a deteriorating installation (I) that transfers a raw material to a production unit and a
buffer, which has been built between the 1 and the production unit to cope with unexpected failures of the I that may cause
delays in production. The problem of the optimal preventive maintenance of the I is considered. It is assumed that the
repair times follow some known continuous distributions. It seems intuitively reasonable that, for fixed buffer level, the
optimal policy is of control-limit type, i.e. it initiates the preventive maintenance of the I if and only if the degree of its
deterioration exceeds a critical level. An efficient semi-Markov decision algorithm, which operates on the class of control-
limit policies, is developed. Numerical examples provide strong evidence that the algorithm converges to the optimal

policy.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Markov decision process is a mathematical
model, which is used to describe a stochastic process
controlled by a sequence of actions. Many papers
have appeared dealing with Markov decision
models for the optimal maintenance or replacement
of a device, which operates in time and is subject to
deterioration. The papers of Scarf (1997) and Wang
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(2002) give a summary of the research done in this
area.

In many such models (see e.g. Federgruen and So
(1989), Douer and Yechiali (1994), Chen and
Feldman (1997), Love et al. (2000)) it can be shown
that the optimal policy initiates a repair or a
replacement of the device if the degree of its
deterioration is greater than or equal to a critical
level. Such a policy is usually called control-limit
policy and the critical level the control limit.

Van Der Duyn Schouten and Vanneste (1995)
considered a finite-state Markov decision process
for the optimal preventive maintenance of an
installation (I) in a production line with an
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intermediate buffer. They assumed that a shortage
cost is incurred when a repair of the I is performed
and the buffer is empty and they represented the
state of the production system by the age of the I
and the buffer level. Under the assumption that the
repair times of the I are geometrically distributed,
they proved that, for each fixed buffer level, the
average-cost optimal policy is of control-limit form.

In a previous paper (see Sections 4 and 5 in
Kyriakidis and Dimitrakos, 2006), we considered a
generalization of Van Der Duyn Schouten’s and
Vanneste’s model. We represented the state of the
production system by the working condition of the I
and the buffer level and we introduced operating
costs and repair costs of the I, shortage costs and
storage costs. Under the assumption that the repair
times are geometrically distributed we proved that
the average-cost optimal policy has the same
structure as in Van Der Duyn Schouten’s and
Vanneste’s model.

In the present paper, we study the case in which
the repair times of the I follow some known
continuous distributions (e.g. Exponential, Gamma,
Weibull). It seems again intuitively reasonable that,
for any fixed buffer level, the optimal policy is of
control-limit type. A proof of this conjecture seems
to be difficult. However, a computational approach
is possible. We formulate an approximate semi-
Markov decision process with discrete state space
and, then, we design an efficient tailor-made policy
iteration algorithm that generates a sequence of
improving control-limit policies. There is strong
numerical evidence that the final policy obtained by
the algorithm is the optimal one. Furthermore, the
computational time required by our algorithm is
considerably smaller than any standard Markov
decision algorithm.

We point out that four similar models have been
studied by Meller and Kim (1996), Salameh and
Ghattas (2001), Ribeiro et al. (2007) and Charlot et
al. (2007). In Meller’s and Kim’s model the failure
time of the I was assumed to be exponentially
distributed. The aim of that study was to determine
the optimal buffer level that triggers preventive
maintenance of the I. A cost model was developed
and the average cost was calculated as a function of
the critical buffer level. In Salameh’s and Ghattas’s
model the optimal just-in-time buffer level was
determined by minimizing the sum of the holding
cost per unit of time and the shortage cost per unit
of time. The objective of the work of Ribeiro et al.
was to jointly optimize the maintenance of the I, the

production unit and the buffer size, by developing a
suitable mixed integer linear programming model.
No stochastic elements were contained in this
model. In the model of Charlot et al., it was
assumed that there are two different kinds of repairs
of the I: repairs requiring prior lockout/tagout and
repairs carried out without lockout/tagout. The
objective was to control the transition rates between
the different modes of the system so as to minimize
the expected total discounted cost.

The rest of the paper is organized as follows. The
description of the model and the specification of the
parameters are given in Section 2. In Section 3, we
present the special-purpose policy iteration algo-
rithm. Three numerical examples are presented in
Section 4 and the effect of varying the buffer
capacity is studied in Section 5. In the last section,
the conclusions of this work are given.

2. The model

We consider a deteriorating I, which supplies a
raw material to a subsequent production unit (P). A
buffer (B) has been built between the production
unit and its input generating I to cope with
unexpected failures of the I which may cause
interruptions in production. The capacity of the
buffer is equal to K units. The production unit pulls
the raw material from the buffer with a constant
demand rate equal to d units per unit of time. As
long as the buffer capacity is not reached, the I
operates at a constant rate of p units per unit of time
(p>d) and the excess output is stored in the buffer.
When the buffer is full, the I reduces its speed from
p to d. Henceforth, we assume that p—d = 1. This
assumption can be relaxed without problem. The
three components of the production system are
depicted in Fig. 1.

As mentioned in Van Der Duyn Schouten and
Vanneste (1995), an example of this production
system could be an offshore oil exploration plat-
form, which provides the crude oil to onshore
refineries. The crude oil is transported by pipelines
from the platform to storage tanks, from which is
further transported to the refineries. In this case the
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Fig. 1. The three components of the system.
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crude oil, the exploration platform, the refineries
and the storage tanks are the raw material, the I, the
production unit and the buffer, respectively.

We suppose that the I deteriorates as time evolves
and it is monitored at discrete, equidistant time
epochs 7 =0,1,... (say every day) and a decision
must be made at each epoch. There are three
possible actions ae€{0,1,2}, which are selected at
each time epoch. The possible actions are the action
of doing nothing (a = 0) the action of starting a
preventive maintenance of the I (a=1) and the
action of starting a corrective maintenance of the I
(a = 2). A policy is any rule for choosing actions at
each decision epoch. A policy is said to be
stationary, if at each decision epoch it chooses one
action, which depends only on the current state of
the process.

The state of the I at each decision epoch is
classified into one of the m+2 working conditions
0,1, ...,m+1, which represent increasing degrees of
deterioration. State 0 denotes a new I (or function-
ing as good as new). State m+ 1 denotes a failed
(inoperative) I. The intermediate states 1, ..., m are
operative. If at a decision epoch the I is found to be
at the working condition i, 0<i<m, and the action
of doing nothing is selected, the working condition
of the I at the next decision epoch is r, i<r<m+1
with probability p,. We further assume that the I
can eventually reach the working condition m+ 1
from any working condition i with non-zero
probability.

If at a decision epoch the working condition of
the I is i<m+ 1, the content of the buffer is x< X
and the action of doing nothing is chosen, then the
content of the buffer at the next decision epoch will
be min(X,x+1). This increase of the buffer will
happen even if the working condition of the T at the
next decision epoch is m+ 1.

If at a decision epoch the I is found to be at the
working condition m+1 then the action of
starting a corrective maintenance is compulsory.
If at a decision epoch the I is found to be at any
state i, 0<i<m, either the action of doing
nothing or the action of starting a preventive
maintenance may be selected. We suppose that
both actions of preventive and corrective main-
tenance are non-preemptive, i.e. they cannot be
interrupted and bring the I to the working condition
0. It is assumed that the preventive and the
corrective repair times are continuous random
variables with probability density functions f;(x)
and f5(x), respectively.

We describe the state of the production system in
terms of two variables (i, x), where i denotes the
working condition of the I at a decision epoch and x
the content of the buffer at that decision epoch. The
state space S of the production system is the
following set:

S={@Gx), 0<ism+1, 0<x<K)

Note that S is a two-dimensional state space with
one discrete state variable, the working condition i
of the I, and one continuous state variable, the
content of the buffer x. In order to discretize the
continuous state variable x the parameter ¢ is
introduced and the interval [0,K] is divided into K/¢
slices such that the content of the buffer at each
decision epoch is represented by the variable jZ,
where j =0, 1, ..., K/¢. Thus, the state space of the
production system can be rewritten approximately
as follows:

S = {(i, /&), 0<<K/éE}.

The approximation becomes better as the para-
meter ¢ takes very small values (e.g. & = 0.001).

We suppose that, during any maintenance (pre-
ventive or corrective) of the I, the supply of the raw
material to the buffer is interrupted. If during a
maintenance the buffer contains some raw material,
the production unit operates normally pulling the
raw material from the buffer at a constant rate of d
units/time. If during a maintenance the buffer is
empty then the operation of the production unit
stops. A shortage cost is incurred when a preventive
or a corrective maintenance is performed and the
buffer is empty. The unit of cost has been chosen in
such a way so that the shortage cost is equal to the
lost demand d for each unit of time during which a
preventive or a corrective repair is performed. We
also suppose that the cost of holding a unit of the
raw material in the buffer for one unit of time is
equal to h>0.

If at a decision epoch the I is found to be at the
working condition i, 0<i<m, and the action of
doing nothing is selected an operating cost is
incurred until the next decision epoch which is
equal to ¢, if the buffer is not full, or to &, if the
buffer is full. If the action of preventive or corrective
maintenance is selected, a repair cost is incurred
which is equal for each unit of time to ¢, or to c5
respectively.

Let mpp and mcy be the expected times required
for a preventive maintenance and a corrective
maintenance, respectively. The following conditions

O<ism+1,
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on the cost structure and the transition probabilities
are assumed to be valid:

Condition 1. co<e1< <y, GG K- K.
That is, as the working condition of the I
deteriorates, the operating cost increases.

Condition 2. ¢;<¢;, 0<i<m. That is, the reduction
of the speed from p (units/time) to d (units/time) of
the I, as soon as the buffer is filled up, causes a
reduction of its operating cost.

Condition 3. mpy <mcy. That is, the expected time
required for a preventive maintenance is smaller
than the expected time required for a corrective
maintenance.

Condition 4. c,<c. That is, the cost rate of a
preventive maintenance does not exceed the cost
rate of a corrective maintenance.

Condition 5. (An increasing failure rate assumption).
For each k =0,1, ..., m+ 1, the function

m+1

D)= _p,
r=k
is non-decreasing in i, 0<i<m.

This condition implies that I;<q i+, 0<i<m,
where I; is a random variable representing the next
working condition of the I if its present working
condition is i and “<gy” means ‘stochastically
smaller than or equal to” (see, for example, Ross
(1983, p. 153)).

If at a decision epoch the production system is at
a state (m+ 1, j&), 0<jE< K, the action of corrective
maintenance (a = 2) brings the system either to the
state (0, 0) or to one of the states (0, j¢), where
I1<j/<j. If at a decision epoch the production
system is at a state (4, j&), 0<i<m, 0<jé<K, then
either the action of preventive maintenance (a = 1)
or the action of doing nothing (¢ = 0) may be
chosen. If the action a = 1 is chosen, the production
system makes a transition either to the state (0, 0) or
to one of the states (0, //¢), where 1< <j. If the
action @ =0 is chosen and 0<jé<K—1, then the
production system makes a transition to one of the
states (r, jE+1) where i<r<m+1. If the action
a =0 is chosen and j¢ > K~—1, then the production
system makes a transition to one of the states (r, K),
iSr<m—+1.

We consider a semi-Markov decision process with
state space S in which we aim to find a policy that
minimizes the long-run expected average cost per

unit time. The relevant theory can be found in
Chapter 3 in Tijms (1994). The expected long-run
average cost per unit time of a policy = is defined as
the limit as — oo of the expected cost incurred in
the time interval [0,7] divided by ¢, given that the
policy m is employed. The decision epochs in our
problem are all time epochs 7 = 0,1,... at which the
system enters a state in S. Note that under any
policy the state (0, 0) can be reached from every
initial state in S. Hence, since S is finite, it follows
(see Ross (1983, p. 98)) that there exists an average-
cost optimal stationary policy.

Let p,.(a) be the probability that the next state of
the system will be ue S, if the present state is se S
and the action a is chosen and let 7, (a) and ¢, (a) be
the corresponding expected transition time and cost,
respectively.

The transition probabilities of the production
system for the three possible actions are given in
Egs. (1)+6) below:

Pimt1,j600)(2) = /6 /df 2(0dr,  0<jé<K, 0))
J
EG-)+/2))/d
Pomstooro(@) = / Faodr,
(X070 (EG=—&/2)/d
E<jE<K, 1<) 2)
[e 0]
Pasooo(D) = / £iDd1, 0<jE<K, 3
iesa
EG-7)+¢/2)/d
Pasoorel) = / £1(0dr,
W09 &G-~E/2)/d
(<JELK, 1)), 0<ism, ©)

isr<m+1,
0<i<m, (%)

Pajoxrje+n(©) = i,

Pujerk)0) = py,  ISr<m+1,
K—-1+¢<5jé<K, 0<ism. (6)

The expected transition times for the three
possible actions are given in Egs. (7)~(9) below:

Tmt1jo(2) = /0 fods, 0<jE<K, ™)

T(ijc)(1)=/o if(nde, 0<ism, 0<ji<K,
®

T4,0(0) = 1, 0<j¢<K. ©)
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The expressions for the expected transition costs
¢s(a), which correspond to the actions of corrective
(a=2) and preventive (a=1) maintenance are
more complicated. When the maintenance actions
ae{l,2} are performed on the I, the expected
transition costs c(a) consist of expected mainte-
nance costs c}(a), expected shortage costs ¢3H(a)
and expected holding (storage) costs ctl(a). These
quantities are given in Egs. (10)—~(12) below for the
case of corrective maintenance a = 2. They can be
derived by conditioning on the time that the
maintenance lasts. By substituting m+1 by i
0<i<m, ¢y by ¢, and f; by f} in Egs. (10)~(12) we
obtain the corresponding expressions for the action
of preventive maintenance a = 1:

o0
hp@=q [ 10 o<k, a0

[o¢]
c(s,f+1,,¢)(2)=/ﬁ/d(td - jOf(ndt,  0<jE<K,
(an

jé/d
0

c(}rln+l,1‘§)(2) = / [/0 h(j¢ — sd) ds]fz(t) dr

00 jé/d
+ / / h(jf—sd)ds:' fy(0ds,
esa | Jo

0<j¢<K. (12)

The expected transition costs cy(a) for the three
possible actions ae{0,1,2} are given in Egs.
(13)-(16) below:

Cont179(2) = €179 + oo 5D + S oD,
0<jé<K, (13)

C(i,if)(l) = c('f,-g)(l) + C(Si?g)(l) + C(P,-{,-f)(l),

0<ism, 0<jé<K, (14)

cijpy0) =ci+ b, 0<ism, 0<jESK-¢,
1s)

cix0) =& +hK, 0<i<m. (16)

Note that in expressions (15) and (16), which
correspond to the action a = 0, the expected cost
¢s(a) consists of operating costs and holding costs.

In Section 3, we will present an efficient semi-
Markov decision algorithm to compute the optimal
stationary policy.

3. The algorithm

Kyriakidis and Dimitrakos (2006) assumed that
the maintenance times of the I are geometrically
distributed. Under the Conditions 1-5 they have
shown that, for fixed buffer level, the policy that
minimizes the expected long-run average cost per
unit time is of control-limit form. That is, for fixed
buffer content x, 0<x<K, there exists a critical
working condition i*(x) such that the optimal policy
initiates the preventive maintenance if and only if
the working condition i of the I is equal to or greater
than i*(x).

When the maintenance times of the I are
continuous random variables, it seems intuitively
reasonable that, if Conditions 1-5 hold, the optimal
policy, for any fixed buffer content, is again of
control-limit form. A rigorous proof of this
conjecture seems to be difficult. The optimal policy
can be computed by implementing the value
iteration algorithm, the standard policy iteration
algorithm and the linear programming algorithm.
We refer to Chapter 3 of Tijms’s (1994) book for the
description of these algorithms and for various
applications.

The standard policy-iteration algorithm generates
a sequence of strictly improving stationary policies,
which converges to the optimal one. Each iteration
of the algorithm consists of the value-determination
step and the policy-improvement step. At the value-
determination step, the average cost and the relative
values that correspond to the current stationary
policy are computed, by solving a system of linear
equations in which the number of unknowns is
equal to the number of the elements of the state
space. At the policy-improvement step, a strictly
better policy is determined. The relative values of
the various states play a key role in improving the
policy and are defined as follows. If the stationary
policy = is employed and r is a state that can be
reached from any initial state of the system, then the
relative value w(s) that correspond to the state s is
defined as the number C,,—g(n)T,,, where g(r) is the
average cost of the policy = and T, C,, are the
expected time and cost, respectively, until the
process reaches the state r if the initial state is s. It
can be proved that w(s)—w()) is the difference in
total expected costs over an infinite planning
horizon by starting in state s rather than in state /
when = is used.

It is possible to develop for our problem a
computationally tractable special-purpose
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policy-iteration algorithm, which generates a se-
quence of improving control-limit policies (i.e.
policies that, for some buffer level j¢,
J=0,1, ..., K/¢, initiate the preventive maintenance
if and only if the working condition of the I is equal
to or greater than some critical level i(j¢)). The
design of the algorithm is based on the embedding
technique of Tijms (1994, p. 234), which reduces the
system of linear equations for the average cost and
the relative values of a particular control-limit
policy to a considerably smaller system of linear
equations on an embedded set of states. Similar
algorithms have been developed in various queue-
ing, inventory, maintenance and pest control
models. We refer to the book of Tijms (1994,
pp. 234-248) and the papers of Tijms and Van Der
Duyn Schouten (1984), Kyriakidis (1993) and Nobel
and Tijms (1999). Note that the embedding techni-
que is especially useful in problems in which the
state space is infinite since in this case, the standard
policy-iteration algorithm is not applicable (see e.g.
Nobel and Tijms, 1999).

The description of the algorithm follows. Con-
sider a particular control-limit policy R which is
characterized by the critical numbers (),
Jje{0,1,...,K/¢}. We define the set of states E as
follows:

K/¢
E=|JIGjO: 0<i<i(Go)

Jj=0

Note that the set E can be reached from every
initial state se S if the policy R is employed. The
embedding technique can be applied if we take the
set E as the embedded set of states. Let g(R) be the
long-run expected average cost per unit time under
the policy R and T%, CE be the expected time and
the expected cost, respectively, until the first entry in
the set E when the initial state of the production
system is 5. Let also p£ be the probability that the
first entry state in the set E equals r given that the
policy R is employed and the initial state of the
production system is s. It is assumed that for the
initial state se E the first entry state in the set E is
the state at the next return to the set E.

According to relation (3.6.1) in Tijms (1994, p.
235) the relative values w(s), seS, associated with
the policy R (see Tijms, 1994, p. 188) satisfy the
following system of linear equations:

ws) = C — g(RITE+ ) pEw(n), seS, (17
reE

together with the equation
w(0,0) = 0. (18)

The quantities Tf , Cf and pf,, seS, reE, can be
computed by using simple conditional arguments
and by taking into account the transitions of the
production system under the policy R. We give
below some of these expressions:

m o0 x
Tip=1+ Y. ps [/0 tfl(t)dt] +Pi,m+l/0 1f5(n)de,

r=iE+1)+1
0<i<i(jé), 0<jé<K -1,

m
E . M SH
Cisp=ci+hi+ > p; [C(i,i:+1>(1) + Gzan(D
r=ijé+1+1

+CZ‘[J4‘+I)(1)] +Pimt [C?fwucﬂ)(z)

+C(S:+1,j§+l)(2) + C:;[n+1‘,'§+1)(2)] s

Clio = (D) + iy + cllig (1),
iGO<ism, 0<jé<K,

P(E,-,jg)(r,,'zﬂ) =P 0<i<i(l), O<r<iGé+1),
0<jé<K -1,

o0
Pljevoo =L/df1(t)dt, GO)<ism, 0<jE<K.
j

The relative values w(s), se E and the average cost
g(R) can be computed by solving the system of
linear equations:

ws) = C7 — g(RT; + ) phw(), seE,  (19)
rek

together with the Eq. (18). Once this system of
linear equations has been solved we can compute
each relative value w(s), ie S—E, from (17) by a
single-pass calculation. The so-called policy im-
provement quantity Qg(s;a) associated with the
policy R will be used in the policy-improvement step
of our algorithm. It is defined as follows:

O&(5;0) = ¢(@) — g(R)1s(@) + > p,(@w(r),
reS
s € {(,jO), 0<ism, 0<j<K/¢), ae{0,1),

(20)

where p,(a) is the probability that the next state of
the production system will be r given that the
present state is s and the action a is chosen and ¢,(a)
and t4(a) are the corresponding expected cost and
time, respectively. The transition probabilities p,,(a)
are given by Eqs. (1)+6), the expected times 7,(a)
are given by Eqs. (7)~(9) and the expected costs c¢,(a)
are given by Eqs. (13)-(16).



758 T.D. Dimitrakos, E.G. Kyriakidis / Int. J. Production Economics 111 (2008) 752-762

Suppose that for some buffer content ¢,
0<]§ <K, there exists an integer i(j¢) such that
0<IGO)<i(E) and Qp((i,j&); D)<w(i,jé), HjE)<
i<i(j¢). Then, according to Theorem 3.2.1 on
p- 192 in Tijms (1994), the control-limit policy that
is characterized by the critical numbers i(0),..
iGE - &), (&), iGE+ &),...,i(K) achieves smaller
average cost than g(R).

Similarly, if for some buffer content j¢, 0< JELK,
there exists an integer i(j¢!) such that
G <IGO<m+1 and Qx((0,j&):0)<w(i,j&), i(jé)
<t<z(]£) then, according again to Theorem 3.2.1
in Tijms (1994), the control-limit policy that is
characterized by the critical numbers i(0),.
iGE — &), (&), iGE+ &), ..., i(K) achieves smaller
average cost than g(R).

The above remarks lead us to develop the
following special-purpose policy iteration algorithm
which generates a sequence of strictly improving
control-limit policies.

Special-purpose algorithm:

Step 1 (initialization): Choose an initial control-
limit policy R characterized by the critical numbers
i(j¢), j=0,1, ..., K/¢.

Step 2 (value-determination step): For the current
control-limit policy R compute the average cost
g(R) and the associated relative values w(s), se E, by
solving the system of linear equations (18) and (19).

Step 3 (policy improvement step): For each buffer
content j¢, j=0,1, ..., K/¢&:

(a) Find, if it exists, the smallest integer i(j¢) such
that 0<i(i$)<i(jé) and Qg((i,j&); 1) <w(i, jé),
l(]§)<t<z(]£) Otherwise,

(b) Find, if it exists, the largest integer #(j¢) such
that 1(1§)<1(/§)<m+ 1 and Qx((i,j&);0)<
w(i, j&), (&) <i < (jé).

The quantities Qx((i,7¢); 1) and Qg((i,j&);0) are
given by (20), where, if it is necessary, w(s), se S—E,
can be computed from Eq. (17).

Replace i(j¢) by i(j¢) for those buffer contents J&,
0<j¢<XK, for which it is possible to find an integer
i(j¢) and go to Step 2.

Step 4 (convergence test): If it is not poss1ble to
find any i(j¢), 0<j¢é <K, the algorithm is stopped.
The final policy is the policy R with average cost g(R).

The algorithm generates a sequence of strictly
improving control-limit policies and stops after a

finite number of iterations since the set of control-
limit policies is finite. There is strong numerical
evidence that the algorithm converges to the
optimal policy, since, in all examples that we have
tested, the final policy obtained by the algorithm
coincides with the final policy obtained by the
standard policy iteration algorithm. The computa-
tional time required by the algorithm is consider-
ably smaller than the computational time required
by the standard policy iteration algorithm. This is
due to the fact that the number of the unknowns in
the value determination step of our algorithm is
equal to the number of the elements of the
embedded set of states E while the number of the
unknowns in the value determination step of the
standard policy iteration algorithm is equal to the
number of elements of the entire state space S.
From a great number of examples that we have
tested, there is strong evidence that the number of
iterations of the special-purpose policy iteration
algorithm is not especially influenced by the initial
control-limit policy.

4. Numerical examples

As illustrations of the algorithm we present three
examples. In Examples 1-3 below, we assume that
the maintenance times of the I follow the Exponen-
tial, the Gamma and the Weibull distribution,
respectively.

Example 1. Suppose that m = 50, K = 30, p = 16,
d=15, ¢=028, =04, ¢;=0.1(G+1) and
¢;i=0050+1), 0<i<m. We assume that the
non-zero transition probabilities p;,, 0<i, r<m+ 1
are given by p;, = (m+2—i)~!, i<r<m+1. This
means that if the present state of the I is i then
the next state is uniformly distributed in the set
{i, i+1,...,m+1}. These probabilities satisfy Con-
dition 5 since, for eachk =0, ..., m+ 1, the quantity

& m+2— max(k, i)
; e T m42—i

is increasing in i, 0<<i<50. We assume that the
preventive repair time and the corrective repair time
of the I are exponentially distributed with mean
0.125 and 0.25, respectively. We choose ¢ = 0.05 so
that the interval [0,K] is divided into K/¢ = 600
slices. As initial control-limit policy we choose the
policy that is characterized by the critical numbers
(&) = 50, 0<,<600.
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In Table 1, we present the critical numbers i*(j&),
0</<600, of the final control-limit policy obtained
by our special-purpose algorithm for various values
of the holding cost A. This policy is the optimal one
since it coincides with the final policy obtained by
the standard policy iteration algorithm.

From Table 1, it can be secen that for fixed buffer
level j&, the critical number *(j¢) decreases as A
increases.

In Table 2, we present the average cost of the final
control-limit policy obtained by the algorithm, the
number of iterations required by the special-
purpose algorithm and the CPU time (in s) of the
corresponding Matlab program that we run on a PC
Acer Aspire 1605DLC for he{0.2, 0.8, 1.4, 2}. In
parentheses we present the CPU time required by
the standard policy iteration algorithm.

Note that in all cases the CPU time required by
the special-purpose policy iteration algorithm is
considerably smaller than the CPU time required by
the standard policy iteration algorithm. It can also
be seen that, as expected, the average cost of the
final policy increases as A increases.

Example 2. Suppose that m =30, K= 15, p =11,
d=10, ¢,=12, ¢,=0.7 and h=04. We also

Table 1
The final policy as 4 varies

Critical numbers i*(j¢), 0</ <600

hoj *Go) Jj *Go) Jj *G) J *(jé)

02 0 18 14-17 13 3640 8 61-66 3
1 17 18-22 12 41-44 7 67-73 2
2-5 16 23-26 11 4549 6 74-82 1
69 15 27-30 10 50-55 5 83-600 0
10-13 14 31-35 9 56-60 4

08 0 18 6-7 13 13-14 8 22-23 3
1 17 8 12 15-16 7 24-26 2
2 16 9 11 17-18 6 27-28 1
34 15 10-11 10 19 5 29-600 0
5 14 12 9 20-21 4

14 0 18 5 12 10 7 16-17 2
1 17 6 11 11-12 6 18 1
2 15 7 10 13 5 19-600 0
3 14 8 9 14 4
4 13 9 8 15 3

20 0 17 5 11 10 5
1 16 6 9 i1 3
2 15 7 8 12 2
3 13 8 7 13 1
4 12 9 6 14-600 0

Table 2

The effect of varying &

Holding Average Number of CPU times
cost i cost iterations

0.2 0.9621 4 208.6 (520.7)
0.8 1.3053 5 240.4 (538.1)
1.4 1.4734 4 205.2 (493.1)
2.0 1.5714 4 220.3 (528.7)

suppose that the operating costs ¢;, ¢, 0<i<m, and
the non-zero transition probabilities p;, 0<i,
r<m+1, are the same as in Example 1. We assume
that the preventive and the corrective repair times
follow the Gamma distribution with parameters
a;>0, by >0 and a,>0, by>0, respectively. Their
probability density functions are given by

1100 = "~ exp(~tb7") and

I(a)b}

-1 exp(—tbz_l), t=0,

[ = F(an)b®
respectively, where, I'(a) = [;°e~'+*~" dt, is the Gam-
ma function. We assume that a; =3 and a; =2,
b, = 8. We choose ¢ = 0.05 so that the interval [0, K]
is divided into K/& = 300 slices. As initial control-limit
policy we choose the policy that is characterized by the
critical numbers i(¢) = 30, 0<7<300.

In Table 3, we present the critical numbers i*(j¢),
0<7<300, of the final control-limit policy obtained
by our algorithm for b, €{3,4,5}. The final policy is
also the optimal one since it coincides with the final
policy obtained by the standard policy-iteration
algorithm. Note that Condition 3 is satisfied for the
above values of b, since the mean of the Gamma
distribution with parameters a>0 and >0 is ab. By
increasing the parameter b, of the Gamma distribu-
tion we increase the expected time required for a
preventive maintenance.

From the Table 3, it can be seen that for fixed
buffer level j¢, the critical number j*(j¢) increases as
the expected time of the preventive maintenance
increases.

In Table 4, we present the average cost of the final
control-limit policy obtained by the algorithm, the
number of iterations required by our special-
purpose algorithm and the CPU time (in s) of the
corresponding Matlab program for b,€{3,4,5}. In
parentheses we present the CPU time required by
the standard policy iteration algorithm.
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Note that in all cases the CPU time required by
the special-purpose policy iteration algorithm is
considerably smaller than the CPU time required by
the standard policy iteration algorithm. It can also
be seen, as expected, that the average cost of the
final policy increases as the expected time for the
preventive maintenance increases.

Example 3. Suppose that m =20, K=10, p =9,
d =28, ¢y=2.5and h = 0.3. We also assume that the
operating costs ¢;, &, 0<i<m, and the non-zero
transition probabilities p;, 0<i, r<m+1, are the
same as in the Examples 1 and 2 above. We assume
that the preventive and the corrective repair times of
the I follow the Weibull distribution with para-
meters o; >0, 4,>0 and a,>0, 4,>0, respectively.
Their probability density functions are given by

1) = a1 2y~ exp[—(410)™] and
[2() = 022a(at)* ™" exp[—(20)*], 120,

respectively. We assume that oy =1, Ay =3 and
o, = 0.5, A, = 5. Note that Condition 3 is satisfied
since the mean of the Weibull distribution with

Table 3
The final policy as b, varies

Critical numbers *(j¢), 0</<300

by j e j ey J *e) J *(jo)

3 04 27 3640 20 6669 13 9497 6
5-11 26 4144 19 70-73 12 98-101 5
12-16 25 4548 18 7477 11 102-105 4
17-21 24 49-52 17  78-81 10 106-109 3
22-26 23 53-56 16  82-85 9 110-114 2
27-31 22 5761 15  86-89 8 115119 1
32-35 21 62-65 14 90-93 7 120-300 O

4 0-5 30 50-54 22 84-87 14 117-120 6
6-15 29  55-58 21 88-91 13 121-124 5
16-23 28 59-62 20 9295 12 125-128 4
24-29 27 6366 19 9699 11 129-133 3
30-35 26 67-71 18 100-103 10 134-137 2
36-40 25  72-75 17 104-108 9 138-142 1
4145 24 76719 16 109-112 8 143-300 0
4649 23  80-83 15 113-116 7

5 0-34 30 69-712 22 102-105 14 134-137 6
3540 29  73-76 21 106-109 13 138-142 5
4145 28 7780 20 110-113 12 143-146 4
46-50 27  81-84 19 114-117 11 147-150 3
51-55 26 85-88 18 118-121 10 151-155 2
56-59 25  89-92 17 122-125 9 156-159 1
60-64 24  93-96 16 126-129 8 160-300 0
6568 23 97-101 15 130-133 7

Table 4

The effect of varying b,

b, Average cost Number of iterations CPU time

3 2.6347 4 139.2 (386.9)
4 3.0621 5 152.4 (420.8)
5 3.3903 4 135.1 (380.6)

parameters a>0 and A>0is A7'I'(1 + «~"), where,
I'(x) is the Gamma function. We again choose
¢ = 0.05 so that the interval [0, K] is divided into
K/¢ = 200 slices. As initial control-limit policy we
choose the policy that is characterized by the critical
numbers i(j¢) = 20, 0<;<200.

In Table 5, we present the critical numbers i*(j¢),
0<j <200, of the final control-limit policy obtained
by the algorithm for different values of the cost rate
¢, of a preventive maintenance. The final policy is
also the optimal one since it coincides with the final
policy obtained by the standard policy iteration
algorithm.

From the Table 5, it can be seen that for fixed
buffer level j¢, the critical number #*(j¢) increases as
¢, increases. In Table 6, we present the average cost
of the final control-limit policy obtained by the
algorithm, the number of iterations required by the
special-purpose algorithm and the CPU time (in s)
of the corresponding Matlab program for
¢, € {0.8, 1.5, 2, 2.5}). In parentheses, we present
the CPU time required by the standard policy
iteration algorithm.

Note that in all cases the CPU time required by
the special-purpose policy iteration algorithm is
considerably smaller than the CPU time required by
the standard policy iteration algorithm. It can also
be seen, as expected, that the average cost of the
final policy increases as c, increases.

Remark. There is strong evidence from the above
three examples and from all the examples that we
have tested that the critical number i*(j¢) that
corresponds to the optimal policy is non-increasing
inje{0,1,..., K/¢&.

5. The effect of varying the buffer size

In Sections 2-4, we assumed that the buffer
capacity is fixed. However, it would be interesting to
examine the effect of the variation of K on the
average cost of the optimal policy. The result of this
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Table 5
The final policy as ¢, varies

Table 6
The effect of varying c,

Critical numbers i*(j&), 0/ <200 [ Average cost Number of iterations CPU times
& *GE) j *GE) j *GE) j *G&) 08  1.3923 4 134.3 (288.9)
1.5 1.5125 4 149.2 (313.1)
08 02 18 19-22 13 38341 8 5963 3 2.0 1.5967 4 142.6 (325.5)
3-6 17 23-26 12 4245 7 64-68 2 25 1.6794 4 152.7 (340.4)
7-10 16  27-29 11 46-50 6 69-74 1
11-14 15  306-33 10 51-54 5 75-200 0
15-18 14 3437 9 5558 4
1.5 02 19 1922 14 3741 9 58-62 4
36 18 2325 13 4245 8 6366 3 Table 7
710 17 1629 12 4649 7 67-72 2 The effect of varying K
11-14 16 30-33 11  50-53 6 73-718 1
15-18 15  34-37 10 5457 § 79-200 0 K 9(K) K 9(K)
200 200 2124 14 4447 8 70-74 2 1 8.6340 11 8.6318
-5 19 2528 13 4851 7 75-80 1 2 8.6338 12 8.6315
69 18 2932 12 52-55 6 81-200 0 3 8.6335 13 8.6320
10-13 17 3335 11 56-59 5 4 8.6333 14 8.6325
14-17 16 3639 10 6064 4 5 8.6331 15 8.6328
1820 15 4043 9 6569 3 6 8.6329 16 8.6332
7 8.6327 17 8.6337
25 03 20 2427 14 4649 8 72-76 2 8 8.6324 18 86344
47 19 2830 13 50-53 7 77-82 1 9 8.6321 19 8.6351
812 18 31-34 12 5457 6 83-200 0 10 8.6319 2 8 6356
13-15 17 35-38 11  58-62 5
16-19 16 3942 10 6366 4
2023 15 4345 9 67-71 3

investigation could be useful for the determination
of the optimal buffer capacity in the design phase of
the system.

For example, let m = 20, p = 16, d = 15, ¢, = 30,
¢, =10 and A = 100. The operating costs ¢; &,
0<i<m and the non-zero transition probabilities
Dir, 0<i, r<m + 1 are the same as in Examples 1-3
of the previous section. We assume that the
preventive repair time and the corrective repair
time of the I are exponentially distributed with
means 0.25 and 1, respectively. We choose & = 0.05
so that the interval [0, K] is divided into K/¢& slices.
In Table 7, we give the minimum average cost g(K),
for various values of K.

From the Table 7, we see that g(K) is decreasing
with respect to K when 1<K<12, and ¢g(K) is
increasing with respect to K when K> 12, Hence, it
is deduced that the optimal buffer capacity is 12.

6. Conclusions
A great number of replacement/maintenance

models have been introduced and analyzed in the
literature. The optimal maintenance of a system can

result in substantial saving in operation and, also, in
increased availability of the system. In this article,
we consider a production system in which a buffer
has been built between a production unit and its
input generating I. The purpose of the buffer is to
avoid frequent interruptions of the production
process due to failures of the I. A semi-Markov
decision model is constructed for the optimal
preventive maintenance of the I. It is assumed that
the repair times of the I are continuous random
variables with known distributions. An intuitively
appealing class of policies consists of those policies
that, for fixed buffer level, initiate the preventive
maintenance of the I if and only if its degree of
deterioration exceeds some critical level. An efficient
algorithm that generates a sequence of this kind of
policies is developed. There is strong numerical
evidence that the final policy obtained by the
algorithm is the average-cost optimal policy.

In the present work, we assumed that the produc-
tion unit operates without risk provided that it pulls
the raw material from the buffer at a constant rate of
d units/time. The construction and analysis of a more
general model in which the production unit could fail
might be a subject for future research. In this case, the
main problem would be the determination of the
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policy that optimizes jointly the maintenance of the I
and the production unit.
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