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ABSTRACT
We consider the problem of finding the optimal routing of a single vehicle that starts its route from
a depot and delivers a product to N customers that are served according to a particular order. The
vehicle during its route can return to the depot for replenishment. It is assumed a stochastic demand
for each customer. The actual demand of each customer becomes known upon the vehicle’s arrival at
the customer’s site. It is permissible to satisfy fully or to satisfy partially or not to satisfy the demand
of a customer. The cost structure includes travel costs between consecutive customers, travel costs
between the customers and the depot and penalty costs if a customer’s demand is not satisfied or
if it is satisfied partially. A dynamic programming algorithm is developed for the determination of
the optimal routing policy. It is shown that the optimal routing policy has a specific threshold-type
structure. Furthermore, if we consider the same problemwithout the assumption that the customers
are ordered, numerical experiments indicate that the optimal routing strategy can be computed for
N smaller or equal to nine.

1. Introduction

One of the most widely studied problems in combinato-
rial optimisation is the vehicle routing problem (VRP).
The objective of the VRP is to minimise the total route
cost for one vehicle or for a fleet of identical vehicles that
depart from one or several depots and deliver goods to
N customers that are scattered in a geographical area.
The vehicle may also collect expired products from the
customers. The VRP can be considered as a generali-
sation of the classical travelling salesman problem that
aims at finding an optimal route for visiting N cities and
returning to the point of origin. A first version of the
VRP was proposed by Dantzig, and Ramser (1959). In
that paper, the authors developed a mathematical pro-
gramming formulation for its solution, and described, as
a realistic application, the design of optimal routing of
a fleet of gasoline delivery trucks between a bulk termi-
nal and a large number of service stations that are dis-
persed in a geographical area. The VRP has been exten-
sively studied in the optimisation literature during the last
55 years. Much attention has been paid to (1) the VRP
with time windows in which the delivering locations have
time windows within which the deliveries of goods must
be made and (2) the capacitated VRP (with or without
time windows) in which the vehicles have limited carry-
ing capacity of the goods that must be delivered. Various

CONTACT Theodosis D. Dimitrakos dimitheo@aegean.gr

exact algorithms (e.g. branch-and-bound, branch-and-
cut, branch-and-cut-and-price methods) that lead to the
optimal routing strategy have been developed. Heuris-
tics and metaheuristics (tabu search, simulated anneal-
ing, genetic algorithms, colony optimisation) have also
been designed that lead to a ‘good’ solution that is not
necessarily the overall optimal routing strategy. Further-
more, hybrid methods use a combination of exact algo-
rithms, heuristics ormetaheuristics to solve VRP. Surveys
of results for various versions of the VRP can be found in
Berhan, Beshah, Kitaw, and Abraham (2014), Eksioglu,
Vural, and Reisman (2009), Kumar, and Panneersel-
vam (2012), Laporte (2009), Liong, Wan Rosmanira,
Khairuddin, and Zirour (2008), Pillac, Gendreau, Gueret,
and Megaglia (2013), Psaraftis, Wen, and Kontovas
(2016), Simchi-Levi, Chen, and Bramel (2005) and Toth
and Vigo (2002).

In the last 17 years, some capacitated VRPs have been
studied in which a single vehicle starts its route from a
depot and serves N customers according to a predefined
order. This means that customer 1 is served first, then
customer 2 is served, then customer 3 is served and so
on. We refer to the papers by Dikas, Minis, and Mamasis
(2016), Dimitrakos, and Kyriakidis (2015), Kyriakidis,
and Dimitrakos (2008), Minis, and Tatarakis (2011),
Pandelis, Karamatsoukis, and Kyriakidis (2013a, 2013b),
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Pandelis, Kyriakidis, and Dimitrakos (2012), Tatarakis,
and Minis (2009), Tsirimpas, Tatarakis, Minis, and
Kyriakidis (2008), Yang, Mathur, and Ballou (2000) and
Zhang, Lam, and Chen (2016). Suitable dynamic pro-
gramming algorithms have been proposed for these prob-
lems. It was shown that the structure of the optimal rout-
ing strategy is of threshold-type. In all these problems,
it was assumed that the demands of the customers must
be satisfied completely. In the present paper, we relax this
assumption by allowing the possibility to satisfy partially
or not to satisfy the demands of the customers. If the
demand of a customer is satisfied partially, a penalty cost
is incurred. Specifically, we assume that a vehicle starts its
route from a depot loaded with items of a product to its
full capacity and visits N customers according to a pre-
defined sequence 1 → 2 → · · · → N. The demands of
the customers for the product are random variables with
known distributions. The actual demand of a customer
becomes known only when the vehicle arrives at his/her
site. The vehicle may satisfy fully the demand of a cus-
tomer or satisfy some part of the demand or not satisfy
the demand at all. The vehicle may interrupt its route by
going to the depot for replenishment. The total cost con-
sists of (1) travel costs between consecutive customers,
(2) travel costs between customers and the depot and (3)
penalty costs due to unsatisfied demands. A dynamic pro-
gramming algorithm is constructed for the determination
of the optimal routing strategy of the vehicle. It is shown
that the optimal routing strategy is characterised for each
customer by two critical numbers. This characterisation
enables us to design an efficient special-purpose dynamic
programming algorithm that operates over the routing
strategies having this structure.

We give two realistic examples that fit to the prob-
lem that we study. The first example is the so-called ex-
van sales. In ex-van sales, the driver acts as a salesman.
Suppose that his customers are groceries that are sup-
plied with a particular kind of milk according to a par-
ticular order. It is plausible to assume that the number
of bottles of milk that each grocery will demand is not
known in advance but it will be revealed as soon as the
vehicle arrives at a grocery. Therefore, in this example
the demands of the customers can be considered to be
discrete random variables. A second practical example is
the delivery of petrol to petrol stations in a geograph-
ical area. The petrol stations are serviced according to
a particular order. It is reasonable to assume that the
demand for petrol of each petrol station is stochastic,
since, when the order is issued it is unknown how much
petrol will be sold during the time between the order and
the delivery. Therefore in this case, the demands of the
customers can be considered to be continuous random
variables.

Note that the problem studied in the present paper can
be considered as a generalisation of the problem studied
in Kyriakidis, and Dimitrakos (2013). In that work it was
assumed that the vehicle visits each customer and satis-
fies as much demand as possible and then an action is
selected that depends on the number of the remaining
items of the product carried by the vehicle. A penalty cost
was imposed if the demand of the customer was satisfied
partially. In the present work, the action depends on the
load of the vehicle when it arrives at a customer’s site and
the actual demand of the customer. Note also that there
are studies (see e.g. pp. 179–180 in Bhusiri, Qureshi, and
Taniguchi (2014); Toth and Vigo (2002)) where penalty
costs are included in the cost structure in VRPs with time
windows when the deliveries of goods are materialised
before or after the time windows.

The rest of the paper is organised as follows. In Section
2, the problem is specified and analysed for the case of
discrete stochastic demands of the customers. A dynamic
programming approach is proposed for the determina-
tion of the optimal routing strategy. The structure of the
optimal routing strategy is proved and it is used for the
design of an efficient special-purpose dynamic program-
ming algorithm. In Section 3, analogous results are pre-
sented for the case of continuous stochastic demands of
the customers. In Section 4, our theoretical results are
illustrated by numerical examples. In Section 5, we con-
sider the same problem without the assumption that the
customers are ordered. A summary of results and top-
ics for future research are presented in Section 6. Note
that some results of the present paper without mathe-
matical details for the case of discrete demands were pre-
sented in the operations research conferenceOR2017 (see
Kyriakidis, and Dimitrakos (2017)).

2. The problemwhen the demands are discrete
random variables

We assume that a vehicle of capacity Q starts its
route from a depot loaded with Q items of a prod-
uct and visits N customers according to a predefined
order 1 → 2 → · · · → N. The demand of customer
j ∈ {1, . . . ,N} for a product is a discrete random vari-
able ξ j ∈ {0, . . . ,Q} with known distribution. The
actual demand of each customer becomes known only
when the vehicle visits the customer’s site. Let c j0 and
c0 j, j = 1, . . . ,N, be the travel cost from customer j to
the depot and the travel cost from the depot to customer
j, respectively. Let also c j, j+1, j = 1, . . . ,N − 1, be
the travel cost from customer j to customer j + 1.
These costs can be considered as the costs of the
required driver’s labour and of the gasoline that
the vehicle needs to cover the distances between
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Figure . The road network for the problem.

consecutive customers and the distances between
customers and the depot. It is plausible to assume
that these costs satisfy the symmetric property and
the triangle inequality, i.e. c j0 = c0 j, j = 1, . . . ,N,

and c j, j+1 ≤ c j0 + c0, j+1, j = 1, . . . ,N − 1. The road
network is depicted in Figure 1.

We summarise the parameters of themodel in Table 1.
Suppose that the vehicle arrives at customer’s j ∈

{1, . . . ,N − 1} site loaded with z ∈ {0, . . . ,Q} items of
the product and suppose that the actual demand of cus-
tomer is equal to s ∈ {0, . . . ,Q}. The variables of the
model are presented in Table 2.

If z ≥ s, the possible actions are Action 1θ , θ ∈
{0, . . . , s}, and Action 2. Action 1θ means that the vehi-
cle delivers θ items of the product to customer j and
proceeds to customer j + 1. Action 2 means that the
vehicle delivers s items of the product to customer j, it
goes to the depot, restocks with load Q and then vis-
its next customer j + 1. If z < s the possible actions
are 3θ (θ ∈ {0, . . . , z}), 4,5θ (θ ∈ {1, . . . ,s − z}) and 6.
Action 3θ means that the vehicle delivers θ items of the
product to customer j and then proceeds to customer

Table . Model parameters.

N Total number of customers

Q Capacity of the vehicle
c j0 Travel cost from customer j to the depot
c0 j Travel cost from the depot to customer j
c j, j+1 Travel cost from customer j to customer j + 1

Table . Model variables.

j Customer’s index, j ∈ {1, . . . ,N}
ξ j The demand of customer j
z The product load of the vehicle, z ∈ {0, . . . ,Q}
s The actual demand of a customer, s ∈ {0, . . . ,Q}

j + 1. Action 4 means that the vehicle delivers z items of
the product to customer j, it goes to the depot, restocks
with load Q and then visits next customer j + 1. Action
5θ means that the vehicle delivers z items of the prod-
uct to customer j, it goes to the depot, restocks with load
Q, it returns to customer j to deliver θ ∈ {1, . . . , s − z}
owed items and then proceeds to customer j + 1. Action
6 means that the vehicle delivers z items of the product
to customer j, it goes to the depot to restock with the
owed s − z items of the product, it returns to customer
j to deliver the owed s − z items of the product, it makes
a second trip to the depot to restock with Q items of the
product and then goes to next customer j + 1.Note that it
is assumed that, if Action 5θ or Action 6 is selected, there
is no extra demand when the vehicle returns to customer
j, i.e. ξ j remains unaltered.

Suppose that the vehicle arrives at customer’s N site
and its load is greater or equal to the actual demand of
customer N. In this case, it satisfies fully the demand and
terminates its route by returning to the depot. If the load
of the vehicle is less than the actual demand of customer
N, the possible actions are Action 7 and Action 8. Action
7 means that the vehicle delivers its load to customer N
and terminates its route by returning to the depot. Action
8 means that the vehicle delivers its load to customer N,
it goes to the depot to restock with the owed quantity, it
returns to customer N to deliver the owed quantity and
then it terminates its route by returning to the depot.

Note that, when Actions 1θ (θ ∈ {0, . . . , s −
1}), 3θ (θ ∈ {0, . . . , z}), 4,5θ (θ ∈ {1, . . . , s − z − 1}), 7
are selected then some part or the whole of the demand
of customer j is not satisfied. In this case, a penalty cost is
incurred that is equal to π j per item that is not delivered.
In Figure 2, a flowchart is provided with all possible
actions for the routing of the vehicle in each case.

Our goal is to determine the optimal routing strategy
of the vehicle that serves all customers fully or partially.
This routing strategy minimises the expected total cost
from the beginning of the route until its end. The total
cost consists of travel costs and penalty costs. Note that a
practical examplewith discrete demands of the customers
is the delivery of bottles of milk to a sequence of cus-
tomers (see Section 1).

Let f j(z, s), z, s = 0, . . . ,Q, denote the minimum
expected future cost if the number of items carried by the
vehicle when it arrives at customer’s j ∈ {1, . . . ,N} site
is equal to z and s is the number of items that customer
j demands. For j ∈ {1, . . . ,N − 1}, this quantity satisfies
the following dynamic programming Equations (1) and
(4) (see Chapter I in Ross (1983)).

If z ≥ s then

f j(z, s) = min{Hj(z, s),Rj}, (1)
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depot to restock the owed quantity, return to N
to del iver the owed quantity and terminate the 
route by returning to depot. 

END 

Figure . A flowchart for all possible actions.

where

Hj(z, s) = c j, j+1 + min
θ∈{0,...,s}

{π j(s − θ )

+E[ f j+1(z − θ, ξ j+1)]}, (2)

and

Rj = c0 j + c j+1,0 + E[ f j+1(Q, ξ j+1)]. (3)

If z < s then

f j(z, s) = min{Aj(z, s),Bj(z, s),Cj(z, s),Dj}, (4)
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where

Aj(z, s) = c j, j+1 + min
θ∈{0,...,z}

{π j(s − θ )

+E[ f j+1(z − θ, ξ j+1)]}, (5)

Bj(z, s) = c0 j + c0, j+1 + π j(s − z)
+E[ f j+1(Q, ξ j+1)], (6)

Cj(z, s) = 2c0, j + c j, j+1 + min
θ∈{1,...,s−z}

{π j(s − z − θ )

+E[ f j+1(Q − θ, ξ j+1)]}, (7)

Dj = 3c0 j + c0, j+1 + E[ f j+1(Q, ξ j+1)]. (8)

The boundary conditions are

fN (z, s) = c0N, z ≥ s, (9)

and

fN (z, s) = c0N + min{FN (z, s),GN}, z < s, (10)

where

FN (z, s) = πN (s − z),

GN = 2cN0.

The minimum total expected cost during a visit cycle
is equal to

f0 = c01 + E[ f1(Q, ξ1)].

In the above equations, the expected val-
ues E[ f j(z, s)], j = 1, . . . ,N, z ∈ {0, . . . ,Q},
s ∈ {0, . . . ,Q}, are taken with respect to the random
variables ξ j, j = 1, . . . ,N. Since the demand of each
customer j ∈ {1, . . . ,N} for the product is a discrete
random variable ξ j ∈ {0, . . . ,Q} with known distribu-
tion, the expected values E[ f j+1(z, ξ j+1)] are computed
in terms of sums. For example, the quantity Aj(z, s),
z < s, in Equation (5), is computed as follows:

Aj(z, s) = c j, j+1 + min
θ∈{0,...,z}

{
π j(s − θ )

+
Q∑

x=0

f j+1(z − θ, x)P(ξ j+1 = x)

}
,

where P(ξ j+1 = x) is the probability mass function of the
demand ξ j+1 of customer j + 1. The terms Hj(z, s) and
Rj in the right-hand-side of Equation (1) correspond to

Actions 1θ (θ ∈ {0, . . . , s}) and to Action 2, respectively.
The terms Aj(z, s),Bj(z, s),Cj(z, s),Dj in the right-
hand-side of Equation (4) correspond to Actions 3θ (θ ∈
{0, . . . , z}), Action 4, Action 5θ (θ ∈ {1, . . . , s − z})and
Action 6, respectively. The terms FN (z, s) and GN in the
right-hand-side of Equation (10) correspond to Action
7 and Action 8, respectively. Lemma 2.1 and Lemma
2.2 below will be used in the proof of Theorem 2.1 that
describes the structure of the optimal routing strategy.
The proofs of Lemmas 1, 2 and the proof of Theorem 2.1
are given in the Appendix.

Lemma 2.1: For j = 1, . . . ,N, for fixed s ∈ {0, . . . ,Q},
f j(z, s) is non-increasing with respect to z ∈ {0, . . . ,Q}.
Lemma 2.2: For j = 1, . . . ,N − 1, for fixed z ∈
{0, . . . ,Q}, Hj(z, s) is non-decreasing in s ∈ {0, . . . , z}
and Aj(z, s),Bj(z, s),Cj(z, s) are non-decreasing in
s ∈ {z + 1, . . . ,Q}.
Theorem 2.1: For each customer j ∈ {1, . . . ,N − 1}
and each demand s ∈ {0, . . . ,Q}, there exist two critical
integers h1( j, s), h2( j, s) (h2( j, s) < s ≤ h1( j, s)) such
that it is optimal to select (1) Action 1θ for some
θ ∈ {0, . . . , s} if z ∈ {h1( j, s), . . . ,Q}, (2) Action 2 if
z ∈ {s, . . . , h1( j, s) − 1}, (3) Action 3θ for some θ ∈
{0, . . . , z} or Action 4 or Action 5θ for some θ ∈
{1, . . . , s − z} if z ∈ {h2( j, s) + 1, . . . , s − 1} and (4)
Action 6 if z ∈ {0, . . . , h2( j, s)}. The critical integers
h1( j, s), h2( j, s) are non-decreasing in s.

Remark 2.1: Suppose that we restrict the action set when
z < s by assuming that the actions 3θ , θ ∈ {0, . . . , z −
1}, are not possible. Then

Aj(z, s) = c j, j+1 + π j(s − z) + E[ f j+1(0, ξ j+1)]. (11)

Suppose that

c j, j+1 + E[ f j+1(0, ξ j+1)] ≤ c0 j + E[ f j+1(Q, ξ j+1)].(12)

From (6), (11) and (12) we deduce that Aj(z, s) ≤
Bj(z, s), 0 ≤ z ≤ s − 1. A consequence of this inequal-
ity and the fact that Aj(z, s),Aj(z, s) −Cj(z, s) are non-
increasing in z is the existence of a third critical number
h̃2( j, s)(h2( j, s) ≤ h̃2( j, s) < s) such that it is optimal
to select Action 3z if h̃2( j, s) ≤ z < s, and Action 3θ ,

for some θ ∈ {0, . . . , z}, if h2( j, s) < z < h̃2( j, s). If (12)
does not hold, then the optimal action i h̃2( j, s) ≤ z < s
is Action 4 instead of Action 3z.

In view of Theorem 2.1, the optimal policy, i.e. the crit-
ical numbers h1( j, s), h2( j, s) for j = 1, . . . ,N − 1 and
s ∈ {0, . . . ,Q}, can be found by the following special-
purpose dynamic programming algorithm:
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Algorithm for the determination of the critical inte-
gers h1( j, s),h2( j, s), s ∈ {0, . . . ,Q} for customers j =
1, . . . ,N − 1

Step 0. Set fN (z, s) = c0N for z, s ∈ {0, . . . ,Q} such
that z ≥ s and
fN (z, s) = c0N + min{2cN0, πN (s − z)} for
z, s ∈ {0, . . . ,Q} such that z < s.
Set j = N − 1.

Step 1. (Determination of critical integers
h1( j, s), 0 ≤ s ≤ Q)

Compute Rj from (3).
For s = 0, . . . ,Q do the following:
For z = Q,Q − 1, . . . compute Hj(z, s) until
Hj(z, s) > Rj or z = s.
If z > s set h1( j, s) = z + 1.
If z = s andHj(s, s) > Rj set h1( j, s) = z + 1.
If z = s and Hj(s, s) ≤ Rj set h1( j, s) = z.
Set f j(z, s) = Hj(z, s), h1( j, s) ≤ z ≤ Q and
f j(z, s) = Rj, s ≤ z < h1( j, s).

Step 2. (Determination of critical integers
h2( j, s), 0 ≤ s ≤ Q)

Compute Dj from (8).
For s = 0, . . . ,Q do the following:
For z = s − 1, s − 2, . . . compute
Aj(z, s),Bj(z, s),Cj(z, s) until
Aj(z, s),Bj(z, s),Cj(z, s) ≥ Dj or z = 0.
If z > 0 set h2( j, s) = z.
If z = 0 and Aj(0, s),Bj(0, s),Cj(0, s) ≥ Dj
set h2( j, s) = 0; otherwise, set h2( j, s) = −1.
Set f j(z, s) = min{Aj(z, s),Bj(z, s),
Cj(z, s),Dj}, h2( j, s) < z < s
and f j(z, s) = Dj, 0 ≤ z ≤ h2( j, s).

Step 3. Set j = j − 1. If j ≥ 1 go to Step 1. Otherwise
stop.

3. The problemwhen the demands are
continuous random variables

We modify the problem that we introduced in Section 2
by assuming that the demands ξ j, j = 1, . . . ,N, of the
customers are continuous random variables and take val-
ues in the interval [0,Q] with probability density func-
tionφ j(x).Apractical examplewith continuous demands
could be the delivery of petrol to a sequence of petrol
stations that we described in Section 1. Let z, s ∈ [0,Q]
be the quantity of the product carried by the vehicle
when it arrives at customer’s j ∈ {1, . . . ,N} site and
the quantity of the product that customer j demands,
respectively. The Actions 1θ (0 ≤ θ ≤ s), 2 when z ≥ s
and the Actions 3θ (0 < θ ≤ z), 4, 5θ (0 ≤ θ ≤ s − z), 6
when z < s are the same as those defined in Section 2.
Theminimumexpected future cost f j(z, s), z, s ∈ [0,Q],

for j = 1, . . . ,N, satisfies the dynamic programming
Equations (1) and (4) and the boundary conditions (9)
and (10). Since, in this case, the demand of each cus-
tomer j ∈ {1, . . . ,N} for the product is a continuous ran-
dom variable ξ j ∈ [0,Q] with known distribution, the
expected values E[ f j+1(z, ξ j+1)] are computed in terms
of integrals. For example, the quantity Bj(z, s), z < s, in
Equation (6), is computed, in this case, as follows:

Bj(z, s) = c0 j + c0, j+1 + π j(s − z)

+
∫ Q

0
f j+1(Q, x)φ j+1(x)dx,

where φ j+1(x) is the probability density function of the
demand ξ j+1 of customer j + 1.The structure of the opti-
mal routing strategy is the same as in the case of discrete
demands and is given in the theorem below.

Theorem 3.1: For each customer j ∈ {1, . . . ,N − 1} and
each demand s ∈ [0,Q] there exist two critical numbers
h1( j, s), h2( j, s) (h2( j, s) < s ≤ h1( j, s)) such that it is
optimal to select (1) Action 1θ for some θ ∈ [0, s] if z ∈
[h1( j, s),Q], (2) Action 2 if z ∈ [s, h1( j, s)), (3) Action
3θ for some θ ∈ [0, z] or Action 4 or Action 5θ for some
θ ∈ (0, s − z] if z ∈ (h2( j, s), s) and (4) Action 6 if z ∈
[0, h2( j, s)]. The critical numbers h1( j, s), h2( j, s) are
non-decreasing in s.

The state space after the first visit of the vehicle to
customer j ∈ {1, . . . ,N} is the set S = {(z, s) : 0 ≤ z, s ≤
Q}. A discretisation of the state space is necessary for the
implementation of the dynamic programming algorithm.
Let ρ be a relatively small number (e.g. ρ = 0.05 or ρ =
0.01). We discretise S by restricting our attention only
to its points (kρ, lρ), k, l = 0, . . . ,Q/ρ − 1,Q/ρ. The
minimum expected cost fN (kρ, lρ), k, l = 0, . . . ,Q/ρ is
found by using (9) and (10) with z = kρ, s = lρ. The
minimum expected cost f j(kρ, lρ), k, l = 0, . . . ,Q/ρ,

and the corresponding optimal decision are found, recur-
sively, for j = N − 1,N − 2, . . . , 1 by using the dynamic
programming Equations (1) and (4) with z = kρ and
s = lρ. The parameter θ in (2), (5) and (7) takes val-
ues in the sets {uρ : u = 0, . . . , l}, {uρ : u = 0, . . . , k},
{uρ : u = 1, . . . , l − k}, respectively. The expectations in
(2), (3), (5), (6), (7) and (8) are computed approximately.
For example, the quantityCj(kρ, lρ), k < l, is computed
as follows:

Cj(kρ, lρ) = 2c0 j + c j, j+1 + min
θ∈{ρ,2ρ,...,(l−k)ρ}

×
{

π j(lρ − kρ − θ ) +
Q/ρ−1∑
x=0

f j+1(Q

− θ, xρ)φ j+1(xρ)ρ

}
.
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In view of Theorem 2.1, the optimal policy, i.e. the crit-
ical numbers h1( j, lρ), h2( j, lρ), l = 0, . . . ,Q/ρ, can
be found by the following special-purpose dynamic pro-
gramming algorithm:

Algorithm for the determination of the critical
numbers h1( j, lρ),h2( j, lρ), l = 0, . . . ,Q/ρ, for cus-
tomers j = 1, . . . ,N − 1

Step 0. Set fN (kρ, lρ) = c0N for k, l ∈ {0, . . . ,Q/ρ}
such that k ≥ l and
fN (kρ, lρ) = c0N + min{2cN0, πN (kρ − lρ)}
for k, l ∈ {0, . . . ,Q/ρ} such that k < l.
Set j = N − 1.

Step 1. (Determination of critical numbers
h1( j, lρ), l = 0, . . . ,Q/ρ)

Compute Rj from (3).
For l = 0, . . . ,Q/ρ do the following:
For k = Q/ρ,Q/ρ − 1, . . . compute
Hj(kρ, lρ) until Hj(kρ, lρ) > Rj or k = l.
If k > l set h1( j, lρ) = kρ + ρ.

If k = l and Hj(lρ, lρ) > Rj set h1( j, lρ) =
kρ + ρ.

If k = l and Hj(lρ, lρ) ≤ Rj set h1( j, lρ) =
kρ.

Set f j(kρ, lρ) = Hj(kρ, lρ), h1( j, lρ)/ρ ≤
k ≤ Q/ρ

and f j(kρ, lρ) = Rj, l ≤ k < h1( j, lρ)/ρ.

Step 2. (Determination of critical numbers
h2( j, lρ), 0 ≤ l ≤ Q/ρ)

Compute Dj from (8).
For l = 0, . . . ,Q/ρ do the following:
For k = l − 1, l − 2, . . . compute
Aj(kρ, lρ),Bj(kρ, lρ),Cj(kρ, lρ) until
Aj(kρ, lρ),Bj(kρ, lρ),Cj(kρ, lρ) ≥ Dj or
k = 0.
If k > 0 set h2( j, lρ) = kρ.

If k = 0 and Aj(0, lρ),Bj(0, lρ),Cj(0, lρ) ≥
Dj set h2( j, lρ) = 0; otherwise,
set h2( j, lρ) = −ρ.

Set f j(kρ, lρ) = min{Aj(kρ, lρ),

Bj(kρ, lρ),Cj(kρ, lρ),Dj}, h2( j, lρ)/ρ <

k < l
and f j(kρ, lρ) = Dj, 0 ≤ k ≤ h2( j, lρ)/ρ.

Step 3. Set j = j − 1. If j ≥ 1 go to Step 1. Otherwise
stop.

4. Numerical examples

In the following numerical examples, we implemented
the initial dynamic programming algorithm and the
special-purpose dynamic programming algorithm
by running the corresponding Matlab program on a

Table . The values of model parameters.

Parameters Values

N 
Q 
c j, j+1, j ∈ {1, . . . , 11} , , , , , , , , , , 
c j0, j ∈ {1, . . . , 12} , , , , , , , , , , , 
π j, j ∈ {1, . . . , 12} ., for each customer j ∈ {1, . . . , 12}

personal computer equipped with an Intel Core i5-
3230 M, 2.6 GHz processor and 4 GB of RAM. In
Examples 1–5, the demands of the customers for the
product are discrete random variables and in Examples
6–8 the demands of the customers for the product are
continuous random variables.
Example 4.1: We suppose that the parameters of the
model take the values given in Table 3.

Note that the travel costs c j, j+1, j = 1, . . . , 11, from
customer j to customer j + 1 and the travel costs c j0
from customer j to the depot satisfy the triangle inequal-
ity. Suppose that for each customer j ∈ {1, . . . , 12}, the
demand ξ j for the product follows the binomial distribu-
tion Bin(Q, p), i.e.

Pr(ξ j = x) =
(
Q
x

)
px(1 − p)Q−x, x = 0, . . . ,Q.

Note that the binomial distribution had been used to
model demands in VRPs. For example, we refer to the
papers of Golden, and Yee (1979) and Haugland, Ho, and
Laporte (2007). For p = 0.35, in Figures 3 and 4 below,
we present the optimal decisions for customers 3 and 7. It
can be seen from Figures 3 and 4 that the structure of the
optimal routing strategy is, as expected, of threshold-type
described in Theorem 2.1. For example, h1(3, 10) = 16,
h2(3, 17) = 2, h3(7, 6) = 10, h2(7, 18) = 1.

Note that in Figures 3 and 4, action 3θ does not appear
as optimal action. We point out that in this numerical
example action 3θ does not appear as optimal action
for any customer j = 1, . . . , 11. This is due to the cost
structure chosen in this numerical example. The value

If ,sz ≥  we denote: 

Action θ1 by blue circles. 

Action 2 by red squares. 
If ,sz <  we denote: 
Action 4 by black upper triangles. 
Action θ5  by green diamonds. 

Action 6 by cyan stars.  
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Figure . The optimal decisions for customer .
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Table . The values of model parameters.

Parameters Values

N 
Q 
c j, j+1, j ∈ {1, . . . , 11} , , , , , , , , , , 
c j0, j ∈ {1, . . . , 12} , , , , , , , , , , , 
π j, j ∈ {1, . . . , 12} , for each customer j ∈ {1, . . . , 12}

of the minimum total expected cost f0 is found to be
approximately equal to 199.96. The computation time of
the special-purpose dynamic programming algorithm is
3.4 s. It is considerably smaller than the computation time
of the initial dynamic programming algorithm which is
5.57 s.

Example 4.2: We suppose that the parameters of the
model take the values given in Table 4.

We assume that the probability mass function of the
demand ξ j, j = 1, . . . , 12, is given by

Pr(ξ j = x) =
( Q∑

i=0

e−λ λi

i!

)−1

e−λ λx

x!
, x = 0, . . . ,Q,

(13)
with parameter λ = 2. Note that, in Beckmann, and
Srinivasan (1987), a Poisson demand distribution was
assumed in a stochastic inventory system with exponen-
tially distributed delivery time. In Figure 5 below, we
present graphs that show, as Q varies, the variation in
the computation times, expressed in seconds, required by
the initial dynamic programming algorithm and by the
special-purpose dynamic programming algorithm.

We observe that, asQ increases, the computation times
for both algorithms increase non-linearly. The computa-
tion time required by the special-purpose algorithm is
smaller than the computation time required by the ini-
tial dynamic programming algorithm, especially for high
values of Q.

Example 4.3: We assume that the parameters of the
model take the values given in Table 5.

Table . The values of model parameters.

Parameters Values

N Takes values in the set {5, 10, . . . , 195, 200}
Q 
c j, j+1, j ∈ {1, . . . ,N − 1} 
c j0, j ∈ {1, . . . ,N} , if j is odd and  if j is even
π j, j ∈ {1, . . . ,N} , for each customer j ∈ {1, . . . , 12}

We also assume that, for each customer j ∈
{1, . . . ,N}, the probability mass function of the demand
ξ j is given by (13). In Figure 6 below, we present graphs
that show, as N varies, the variation in the computa-
tion times, expressed in seconds, required by the initial
dynamic programming algorithm and by the special-
purpose dynamic programming algorithm.

Weobserve that, asN increases, the computation times
for both algorithms increase approximately linearly. For
N ≥ 60, the computation time required by the special-
purpose algorithm is considerably smaller than the com-
putation time required by the initial dynamic program-
ming algorithm.

Example 4.4: We assume that the parameters of
the model take the values presented in Table 4. For
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binomial demand distributions (i.e. ξ j ∼ Bin(Q, p), j =
1, . . . , 12) in Figure 7, we present a graph that shows the
variation in the minimum total expected cost f0 as prob-
ability p varies.

We see that as p takes values in the set {0.1, . . . , 0.6},
the minimum total expected cost increases rather quickly
and approximately linearly. When p takes values in the
set {0.7, 0.8, 0.9}, the minimum total expected cost
increases rather slowly.

Example 4.5: We suppose that the parameters of the
model take the values given in Table 6.

Note that the travel costs c j, j+1, j = 1, . . . , 5, from
customer j to customer j + 1 and the travel costs c j0 from
customer j to the depot satisfy the triangle inequality.
We also assume that for each customer j ∈ {1, . . . , 6},
the demands ξ j of the customers for the product fol-
low the discrete uniform distribution, i.e. Pr(ξ j = x) =
(Q + 1)−1, x = 0, . . . ,Q. In Figure 8 below, we present
the optimal decisions for customer 1.

For customer 1, the action 1θ is optimal in the states
(z, 2), z ∈ {5, . . . , 10}. The optimal values of θ are pre-
sented in Table 7.

For customer 1, the action 5θ is optimal in the states
(z, 5), z ∈ {0, . . . , 4}. The optimal values of θ are pre-
sented in Table 8.

Table. Thevaluesofmodel parameters.

Parameters Values

N 
Q 
c j, j+1, j ∈ {1, . . . , 5} , , , , 
c j0, j ∈ {1, . . . , 6} , , , , , 
π j, j ∈ {1, . . . , 6} ., ., ., ., , .
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If ,sz <  we denote: 
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Action 6 by cyan stars.
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Figure . The optimal decisions for customer .

Table . The optimal values of θ when action 1θ is
optimal.

States (z, s) Owed quantity s Optimal value of θ

(,)  
(,)  
(,)  
(,)  
(,)  
(,)  

Table . The optimal values of θ when action 5θ is
optimal.

States (z, s) Owed quantity s − z Optimal value of θ

(,)  
(,)  
(,)  
(,)  
(,)  

If ,sz ≥  we denote: 

Action θ1 by blue circles. 

If ,sz <  we denote: 

Action θ3  by magenta x-marks. 

Action θ5  by green diamonds. 
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Figure . The optimal decisions for customer .

In Figure 9 below, we present the optimal decisions for
customer 5. As it can be seen from Figure 9, action 3θ

appears as optimal action.
For customer 5, the action 3θ is optimal in the states

(z, 7), z ∈ {5, 6}. The optimal values of θ are presented
in Table 9.

Table . The optimal values of θ when action 3θ

is optimal.

States (z, s) Owed quantity s Optimal value of θ

(,)  
(,)  
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Table . The values of model parameters.

Parameters Values

N 
Q 
c j, j+1, j ∈ {1, . . . , 9} , , , , , , , , 
c j0, j ∈ {1, . . . , 10} , , , , , , , , , 
π j, j ∈ {1, . . . , 10} , for each customer j ∈ {1, . . . , 10}

The value of the minimum total expected cost f0 is
found to be approximately equal to 37.37.

Example 4.6: We suppose that the parameters of the
model take the values given in Table 10.

Note that the travel costs c j, j+1, j = 1, . . . , 9, from
customer j to customer j + 1 and the travel costs c j0 from
customer j to the depot satisfy the triangle inequality. We
assume that, for each customer j, j ∈ {1, . . . , 10}, the
demands ξ j of the customers for the product are continu-
ous random variables which follow the Gamma distribu-
tion right-truncated in the interval [0,Q].

The probability density function ϕ j(x) of ξ j is
given by: ϕ j(x) = [F(Q)]−1 λαxα−1


(α)
e−λx, x ∈ [0, Q], re,

α, λ > 0, 
(α) = ∫ ∞
0 e−uuα−1du, α > 0 and F(x) =

[
(α)]−1 ∫ λx
0 e−uuα−1du, x ≥ 0. The Gamma distribu-

tion seems to be a reasonable choice for the demand
of a product since, as mentioned in p. 442 in the book
of Tijms (2003), in inventory applications the Gamma
distribution is often used to model demand distribu-
tions. We choose α = 4 and λ = 2. We also choose
ρ = 0.05 so that the discretised state space for each
customer j ∈ {1, . . . , 10} is the set {(k ∗ 0.05, l ∗ 0.05) :
k, l = 0, . . . , 200}. In Figures 10 and 11 below,we present
the optimal decisions for customers 3 and 4. The struc-
ture of the optimal policy, as expected, is of threshold-
type described in Theorem 3.1.

The value of the minimum total expected cost f0 is
found to be approximately equal to 287.59. The com-
putation time of the special-purpose dynamic program-
ming algorithm is 139.77 s.. It is considerably smaller than
the computation time of the initial dynamic program-
ming algorithmwhich is 293.65 s. Both algorithms enable

Figure . The optimal decisions for customer .

Figure . The optimal decisions for customer .

Table . The values of model parameters.

Parameters Values

N 
Q Takes values in the set {3, 6, . . . , 27, 30}
c j, j+1, j ∈ {1, . . . , 9} , , , , , , , , 
c j0, j ∈ {1, . . . , 10} , , , , , , , , , 
π j, j ∈ {1, . . . , 10} , for each customer j ∈ {1, . . . , 10}

us to determine the optimal value of product quantity
θ when the optimal actions are the actions 1θ , 3θ and
5θ . For example, for customer 3, if the state is (z, s) =
(7.25, 2.4), then the optimal decision for the vehicle is to
deliver to customer 3 product quantity θ equal to 1.9 and
then proceed directly to customer 4 with a penalty cost
equal to π3(s − θ ) = 3 which is incurred due to unsat-
isfied demand of the product. If, again for customer 3,
the state is (z, s) = (1, 7.5), then the optimal decision
for the vehicle is to deliver product quantity equal to 1
to customer 3, to go to the depot, to restock with load
Q = 10, to return to customer 3 to deliver product quan-
tity θ equal to 3.6 and then to proceed to customer 4 with
the remaining product quantity equal toQ − θ = 6.4 and
with a penalty cost equal to π3(s − z − θ ) = 17.4 which
is incurred due to unsatisfied demand of the product.
For customer 4, if the state is (z, s) = (2.1, 4.1), then
the optimal decision for the vehicle is to deliver product
quantity θ equal to 1.6 to customer 4 and then to pro-
ceed directly to customer 5 with the remaining product
quantity equal to z − θ = 0.5. A penalty cost equal to
π4(s − θ ) = 15 is incurred due to unsatisfied demand.
Example 4.7: We suppose that the parameters of the
model take the values given in Table 11.

We assume that for each customer j, j ∈ {1, . . . , 10},
the demand ξ j for the product is continuous random
variable which follows the uniform distribution in the
interval [0,Q]. Its probability density function φ j(x) for
each customer j, j ∈ {1, . . . , 10}, is given by: φ j(x) =
Q−1, x ∈ [0, Q]. As in Example 4.6, we again choose
ρ = 0.05. Note that, in Chien (1993), a problem of pro-
ducing and transporting a product was studied, for which
a continuous uniform demand distribution was used.
In Table 12 below, we present the computation times,
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Table . The computation times of the algorithms asQ varies.

Q          

Initial algorithm . . . . . . . . . ,
Special purpose algorithm . . . . . . . . . .
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Figure . The computation times of the algorithms asQ varies.

expressed in seconds, required by the initial dynamic
programming algorithm and by the special-purpose
dynamic programming algorithm.

In Figure 12 below, we also present the respective
graphs that show, as Q varies, the variation in the com-
putation times, expressed in seconds, required by the ini-
tial dynamic programming algorithm and by the special-
purpose dynamic programming algorithm.

We observe that, asQ increases, the computation times
for both algorithms increase non-linearly. The compu-
tation time required by the special-purpose algorithm is
considerably smaller than the computation time required
by the initial dynamic programming algorithm, especially
for high values of Q.

Example 4.8: We suppose that the parameters of the
model take the values given in Table 13.

For each customer j ∈ {1, . . . ,N}, it is assumed that
ξ j follows the continuous uniform distribution in [0, Q].
In Table 14 below, we present the computation times,
expressed in seconds, required by the initial dynamic
programming algorithm and by the special-purpose
dynamic programming algorithm.

Table . The values of model parameters.

Parameters Values

N Takes values in the set {3, 6, . . . , 27, 30}
Q 
c j, j+1, j ∈ {1, . . . ,N − 1} , j ∈ {1, . . . ,N − 1}
c j0, j ∈ {1, . . . ,N} , if j is odd and , if j is even
π j, j ∈ {1, . . . ,N} , for each customer j ∈ {1, . . . ,N}
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Figure . The computation times of the algorithms as N varies.

In Figure 13 below, we present the respective graphs
that show, as N varies, the variation in the computa-
tion times, expressed in seconds, required by the ini-
tial dynamic programming algorithm and by the special-
purpose dynamic programming algorithm.

Weobserve that, asN increases, the computation times
for both algorithms increase approximately linearly. The
computation time required by the special-purpose algo-
rithm is considerably smaller than the computation time
required by the initial dynamic programming algorithm
for all values of N.

5. The problemwhen the customers are not
ordered

We modify the problem that we introduced in Section 2
by assuming that the customers are not serviced accord-
ing to a predefined sequence. In this case, there are N!
different customer sequences that the vehicle may follow.
For each sequence using the dynamic programming algo-
rithm, we can find the optimal routing strategy and the
correspondingminimum expected total cost, and then by
comparing these minimum costs we can determine the
optimal customer sequence that achieves the overall min-
imum cost. Numerical experiments indicate that, if the
demands of the customers are discrete random variables,
it is possible to find the optimal customer sequence for
values ofN up to 9. As illustrationwe give below a numer-
ical example.
Example 5.1: Suppose that Q = 10. We assume that
the number of customers N takes values in the set
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Table . The computation times of the algorithms asN varies.

N          

Initial algorithm . . . . . . . . . .
Special purpose algorithm . . . . . . . . . .

{3, 4, 5, 6, 7, 8, 9}. The travel costs ci j between cus-
tomers i, j ∈ {1, . . . , 9} and the travel costs ci0 between
each customer i ∈ {1, . . . , 9} and the depot are given
by the following symmetric matrix C = (ci j), i, j =
0, . . . , 9.

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 24 22 23 25 22 20 21 20 19
24 0 27 25 26 23 27 22 24 29
22 27 0 18 20 22 19 23 25 24
23 25 18 0 27 24 20 24 19 26
25 26 20 27 0 22 18 25 21 22
22 23 22 24 22 0 24 22 18 23
20 27 19 20 18 24 0 25 26 24
21 22 23 24 25 22 25 0 23 24
20 24 25 19 21 18 26 23 0 21
19 29 24 26 22 23 24 24 21 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

These costs satisfy the triangle inequality. We assume
that, for each customer j ∈ {1, . . . , 9}, the penalty costπ j
incurred when an item is not delivered is equal to 4.5. We
further assume that the demand ξ j of each customer j ∈
{1, . . . , 9} is a random variable which follows the discrete
uniform distribution, i.e. Pr(ξ j = x) = (Q + 1)−1, x =
0, . . . ,Q. For N ∈ {3, . . . , 9} we consider the network
consisting of customers 1, . . . ,N. In Table 15, we present
for N ∈ {3, . . . , 9} the number N! of all possible cus-
tomer sequences, the minimum expected cost among
all customer sequences, the optimal customer sequence,
the required computation time in seconds (Time 1)
if the initial dynamic programming algorithm is used
and the required computation time in seconds (Time 2)
if the special-purpose dynamic programming algorithm
is used.

In Figure 14, we present the graphs that show, as
N takes values in the set {3, . . . , 9}, the variation in
required computation times, expressed in seconds, if the
initial dynamic programming algorithm and the special-
purpose dynamic programming algorithm are used.

We observe that, as N increases, both computation
times seem to increase exponentially. The required com-
putation time if the special-purpose dynamic program-
ming algorithm is used is smaller than the required
computation time if the initial dynamic programming
algorithm is used. The difference in computation times
between the algorithms becomes significant for higher
values of N.
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Figure . The computation times of the algorithms as N varies.

6. Summary of results and topics for future
research

In this paper, a capacitated VRP was studied in which (1)
the customers are served according to a predefined order,
(2) the demands of the customers are stochastic and each
customer’s demand is less or equal to the vehicle capac-
ity and (3) partial satisfaction of demand is allowed. The
cost structure included travel costs between consecutive
customers, travel costs between customers and the depot
and penalty costs due to unsatisfied demands.We selected
as decision epochs the epochs at which the vehicle visits
for the first time each customer. A dynamic programming
approach was proposed for the determination of the opti-
mal routing strategy. It was proved that according to the
optimal routing strategy, for a given value of a customer
demand, the set of all possible loads carried by the vehicle
is divided into four disjoint sets. If the load of the vehi-
cle belongs to the first set, then the optimal action is to
satisfy (fully or partially) or not to satisfy the demand of
the customer and to proceed to the next customer. If it
belongs to the second set, then the optimal action is to sat-
isfy fully the demand of the customer, go to the depot for
replenishment and, then proceed to the next customer.
If it belongs to the third set, then the optimal action is
to make one trip to the depot for restocking, return to
the customer to satisfy fully or partially the demand of
the customer and, then proceed to the next customer. If
it belongs to the fourth set, then the optimal action is to
go to the depot to restock the owed quantity, return to
the customer to deliver the owed quantity, make a second
trip to the depot for restocking and then go to the next
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Table . The optimal customer sequence forN = 3, 4, 5, 6, 7, 8, 9.

N N! Minimum Cost Optimal Sequence Time  Time 

  . ,, . .
  . ,,, . .
  . ,,,, . .
  . ,,,,, . .
  . ,,,,,, . .
 , . ,,,,,,, . .
 , . ,,,,,,,, . 

customer. If the above Assumption (1) does not hold, it is
possible to compute the optimal routing strategy formod-
erate values of the number of customers.

A possible topic for future research could be the study
of a more general problem in which (1) the vehicle deliv-
ers new products to the customers, (2) the vehicle collects
expired products from the customers and (3) partial ser-
vice is permissible.
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Appendix
Proof of Lemma 2.1: The proof is by induction on j.
First, the induction basis is established by fN (z, s) being
non-increasing in z (see Equations (9) and (10)). Thus,
assuming that f j+1(z, s) is non-increasing in z, we will
show that f j(z, s) is non-increasing in z. Let some fixed
s ∈ {0, . . . ,Q}. From (2) and the induction hypothesis
it follows that Hj(z, s) is non-increasing in
z ∈ {s, . . . ,Q}. �

Hence, in view of (1), we deduce that f j(z, s) is
non-increasing in z ∈ {s, . . . ,Q}. From (1) and (4),
it follows that to prove that f j(s, s) ≤ f j(s − 1, s) it
is enough to show that Hj(s, s) ≤ Aj(s − 1, s), Rj ≤
Bj(s − 1, s),Rj ≤ Cj(s − 1, s),Rj ≤ Dj. From (2) and
(5), it follows that the inequality Hj(s, s) ≤ Aj(s − 1, s)
is equivalent to

min
θ∈{0,...,s}

{π j(s − θ ) + E[ f j+1(s − θ, ξ j+1)]}
≤ min

θ∈{0,...,s−1}
{π j(s − θ ) + E[ f j+1(s − 1 − θ, ξ j+1)]},

which is valid in view of the induction hypothesis. From
(3) and (6), it follows that the inequalityRj ≤ Bj(s − 1, s)
is equivalent to π j ≥ 0,which clearly holds. The inequal-
ity Rj ≤ Cj(s − 1, s), in view of (3) and (7), is equivalent
to

c j+1,0 + E[ f j+1(Q, ξ j+1)]
≤ c0 j + c j, j+1 + E[ f j+1(Q − 1, ξ j+1)],

which is true in view of the triangle inequality and the
induction hypothesis. From (3) and (8) it follows that
the inequality Rj ≤ Dj clearly holds. It remains to prove
that Aj(z, s),Bj(z, s),Cj(z, s) are non-increasing in z ∈
{0, . . . , s − 1}. Bj(z, s) is clearly non-increasing in z ∈
{0, . . . , s − 1}. For 0 ≤ z ≤ s − 2, in view of induction
hypothesis, we have

Aj(z + 1, s) = c j, j+1 + min
θ∈{0,...,z+1}

{π j(s − θ )

+E[ f j+1(z + 1 − θ, ξ j+1)]}
≤ c j, j+1 + min

θ∈{0,...,z}
{π j(s − θ )

+E[ f j+1(z − θ, ξ j+1)] = Aj(z, s).

For 0 ≤ z ≤ s − 2,

Cj(z + 1, s)
= 2c0 j + c j, j+1 + min

θ∈{1,...,s−z−1}
{π j(s − z − 1 − θ )

+E[ f j+1(Q − θ, ξ j+1)]}
= 2c0 j + c j, j+1 + min

[
min

θ∈{1,...,s−z−1}
{π j(s − z − 1 − θ )
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+E[ f j+1(Q − θ, ξ j+1)
]}

, E[ f j+1(Q − s + z + 1, ξ j+1)]]

≤ 2c0 j + c j, j+1 + min[ min
θ∈{1,...,s−z−1}

{π j(s − z − θ )

+E[ f j+1(Q − θ, ξ j+1)]}, E[ f j+1(Q − s + z, ξ j+1)]]
= 2c0 j + c j, j+1 + min

θ∈{1,...,s−z}
{π j(s − z − θ )

+E[ f j+1(Q − θ, ξ j+1)]} = Cj(z, s), (14)

where (14) is a consequence of the inequality E[ f j+1(Q −
s + z + 1, ξ j+1)] ≤ E[ f j+1(Q − s + z, ξ j+1)], which fol-
lows from the induction hypothesis.

Proof of Lemma 2.2: Consider some j ∈ {1, . . . ,N −
1} and some z ∈ {0, . . . ,Q}. For s ∈ {0, . . . , z − 1} we
have

min
θ∈{0,...,s}

{π j(s − θ ) + E[ f j+1(z − θ, ξ j+1)]}
= min[ min

θ∈{0,...,s}
{π j(s − θ ) + E[ f j+1(z − θ, ξ j+1)]},

E[ f j+1(z − s − 1, ξ j+1)]]
= min[ min

θ∈{0,...,s}
{π j(s + 1 − θ ) + E[ f j+1(z − θ, ξ j+1)]},

E[ f j+1(z − s − 1, ξ j+1)]]
= min

θ∈{0,...,s+1}
{π j(s + 1 − θ ) + E[ f j+1(z − θ, ξ j+1)]}, (15)

�

where (15) follows from E[ f j+1(z − s, ξ j+1)] ≤
E[ f j+1(z − s − 1, ξ j+1)], which holds from Lemma
2.1. Hence, Hj(z, s) is non-decreasing in s ∈ {0, . . . , z}.

For s ∈ {z + 1, . . . ,Q − 1}, we have

min
θ∈{1,...,s−z}

{π j(s − z − θ ) + E[ f j+1(Q − θ, ξ j+1)]}

= min
[

min
θ∈{1,...,s−z}

{π j(s − z − θ )

+E[ f j+1(Q − θ, ξ j+1)
]}

,

E[ f j+1(Q − s − 1 + z, ξ j+1)]]

= min
[

min
θ∈{1,...,s−z}

{π j(s + 1 − z − θ )

+E[ f j+1(Q − θ, ξ j+1)
]}

,

E[ f j+1(Q − s − 1 + z, ξ j+1)]]
= min

θ∈{1,...,s+1−z}
{π j(s+1−z−θ )

+E[ f j+1(Q − θ, ξ j+1)]}, (16)

where (16) follows from E[ f j+1(Q − s + z, ξ j+1)] ≤
E[ f j+1(Q − s − 1 + z, ξ j+1)], which holds from
Lemma 2.1. Hence, Cj(z, s) is non-decreasing in
s ∈ {z + 1, . . . ,Q}. From (5), (6) it can be seen that
the quantities Aj(z, s) and Bj(z, s) are non-decreasing in
s ∈ {z + 1, . . . ,Q}.
Proof of Theorem 2.1: The existence of the critical inte-
ger h1( j, s) is a direct consequence of f j(z, s) being non-
increasing in z (see Lemma 2.1). The existence of h2( j, s)
is a direct consequence ofAj(z, s),Bj(z, s),Cj(z, s) being
non-increasing in z. Note that the monotonicities of
Aj(z, s) and Cj(z, s) in z have been shown in the proof
of Lemma 2.1. The fact that h1( j, s) and h2( j, s) are non-
decreasing in s is a direct consequence of Lemma 2.2. �
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