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ABSTRACT
We consider a vehicle with two compartments that starts its route from a depot and visits N ordered
customers in order to deliver new (or fresh or useful) products and to collect old (or expired or use-
less) products. The new products are placed in Compartment 1 and the old products are placed in
Compartment 2. The quantity of new products that each customer demands and the quantity of old
products that each customer returns are random variables with known joint distribution. The vehi-
cle is allowed during its route to return to the depot in order to replenish Compartment 1 with new
products and to unload the old products from Compartment 2. Under a suitable cost structure, it is
possible to find the optimal restocking strategy by implementing a suitable dynamic programming
algorithm. We also find the optimal restocking strategy for the corresponding infinite-time horizon
problem. We further consider the same problem without the assumption that the customers are
ordered. Numerical experiments indicate that the optimal restocking strategy can be computed for
values of N up to 9.
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1. Introduction

A vehicle routing problem that has been the topic of sig-
nificant research is the problem of finding the optimal
routing of a single vehicle with finite capacity that starts
its route from a depot and serves N ordered customers.
During its route, the vehicle may return to the depot for
replenishment or for unloading. Various versions of this
problem have been analysed. In some versions of this
problem (see Dikas, Minis, & Mamasis, 2016; Tsirim-
pas, Tatarakis, Minis, & Kyriakidis, 2008) the demands
of the customers were assumed to be deterministic and
in some other versions (see Dimitrakos & Kyriakidis,
2015; Kyriakidis & Dimitrakos, 2019; Kyriakidis, Dimi-
trakos, & Karamatsoukis, 2019; Pandelis, Kyriakidis, &
Dimitrakos, 2012, 2013; Tatarakis & Minis, 2009; Yang,
Mathur, & Ballou, 2000; Yee & Golden, 1980; Zhang,
Lam, & Chen, 2016; Zhu & Sheu, 2018) the demands
of the customers were assumed to be stochastic. The
assumption that the customers are serviced according
to a particular order makes possible the development of
suitable dynamic programming formulations for these
problems. In some problems (see e.g. Kyriakidis et al.,
2019; Pandelis, Karamatsoukis, & Kyriakidis, 2013) the
instants at which the vehicle arrives for the first time at
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each customer’s location were chosen as decision epochs
for choosing some action, while, in some other problems
(see e.g. Pandelis et al., 2012; Tatarakis & Minis, 2009;
Yang et al., 2000; Yee & Golden, 1980) the actions are
selected as soon as a customer has been served. Inmost of
these problems it was shown that the optimal restocking
strategy, for each customer, is of threshold type, i.e. it is
characterised by some critical integers. For example (see
Section 3 in Yang et al., 2000), if the remaining load in the
vehicle after the completion of the service of a customer
exceeds a critical level, then the optimal action is to pro-
ceed to the next customer, whereas, if it is smaller than
the critical level then the optimal action is to return to
the depot for replenishment and then go to the next cus-
tomer. By taking into account the structure of the optimal
restocking strategy, in many cases (see e.g. Dimitrakos &
Kyriakidis, 2015) it is possible to design a fast special-
purpose dynamic programming algorithm that operates
only on the restocking strategies that have the special
structure and leads to the optimal restocking strategy. It
is noteworthy that in the recent literature there is a sig-
nificant number of papers that consider vehicle routing
problems with stochastic demands and restocking poli-
cies (see e.g. Bertazzi & Secomandi, 2018a, 2018b; Florio,
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Hartl, & Minner, 2018; Louveaux & Juan-José Salazar-
González, 2018; Salavati-Khoshghal, Gendreau, Jabali, &
Rei, 2019).

Special attention has been paid to vehicle routing
problems with ordered customers and compartmen-
talised load. Tsirimpas et al. (2008) assumed that the
demands of the ordered customers are deterministic
and investigated the case of multiple-product deliver-
ies if each product is stored in its own compartment
in the vehicle. The optimal restocking strategy was
found by implementing a suitable dynamic programming
algorithm. Tatarakis and Minis (2009) investigated the
above problem when the demands of the ordered cus-
tomers are discrete random variables. When the vehicle
has two compartments, a structural result for the optimal
restocking strategy was obtained. This result was gener-
alised by Pandelis et al. (2012) for the case in which the
vehicle has K ≥ 2 compartments. In the present paper,
we consider a vehicle that has two compartments with
finite capacities and visits N customers according to a
predefined sequence 1 → 2 → . . . → N. New (or fresh
or useful) and old (or expired or useless) products are
placed in Compartment 1 and Compartment 2, respec-
tively. The vehicle starts its route from a depot. During
its route, new products are delivered to the customers
and old products are collected from them. We assume
that, for each customer, the quantity that is delivered and
the quantity that is collected are random variables with
known joint distribution. The actual quantities that are
delivered and collected are disclosed only when the vehi-
cle arrives at the customer’s location. The vehicle may
interrupt its route and return to the depot to restock with
new products and unload the old products. The total
cost for servicing all customers consists of travel costs
between consecutive customers and travel costs between
customers and the depot. By selecting suitable decision
epochs, it is possible to construct a dynamic program-
ming algorithm that computes the minimum expected
total cost and determines the optimal actions for the rout-
ing of the vehicle. It is possible to prove that, for each
customer, the optimal restocking strategy is of thresh-
old type, i.e. the selection of the optimal actions depends
on some critical numbers. This structural property of the
optimal restocking strategy permits us to design an effi-
cient special-purpose dynamic programming algorithm
that is restricted to restocking strategies with this struc-
ture.

A practical application of this vehicle routing prob-
lem could be the routing of a vehicle that visits N stores
in order to deliver and collect fresh and expired milk
(or ice-cream or vegetables or fruit). The vehicle is sepa-
rated into two compartments. The bottles with freshmilk
are placed in the first compartment in low temperature

while the bottles with expired milk are placed in the
second compartment in normal temperature. Another
example could be the delivery and collection of two dif-
ferent building materials (e.g. lime and pebble) that are
placed in the suitable compartments of the vehicle.

The main contribution of the present work is that
an improved dynamic programming formulation is pre-
sented for the two-compartment problem in comparison
with the dynamic programming formulations presented
in Tatarakis and Minis (2009) and in Pandelis et al.
(2012). In Tatarakis and Minis and in Pandelis et al. the
possible actions (which are only two) are selected as soon
as the service of a customer is completed, while in the
present work the possible actions (which are six) are
selectedwhen the vehicle visits each customer for the first
time and themaximum possible service has been offered.
The dynamic programming formulation that we adopt in
the present work leads to a detailed characterisation of
the optimal restocking strategy with practical usefulness.

The rest of the paper is organised as follows. In
Section 2, we give a dynamic programming formulation
of the problem when the quantities that are given to
and collected from each customer are discrete random
variables. It is shown that the structure of the optimal
restocking strategy is of threshold-type and a fast special-
purpose dynamic programming algorithm is designed. In
Section 3, we investigate the problem of optimal routing
of the vehicle when the quantities that are given to and
collected from each customer are continuous random
variables. In Section 4, we give some numerical results
that verify our analytical results. In Section 5, we inves-
tigate the corresponding infinite-time horizon problem
when the service of the customers does not stop when the
last customer has been serviced but continues indefinitely
with the same customer order. In Section 6, we consider
a generalisation of the problem without the assumption
that the customers are ordered. The conclusions of the
paper are given in the last section.

2. The problem and the optimal restocking
strategy

2.1. The problem

We consider a network consisting of a set of nodes
V = {0, 1, . . . ,N} with node 0 denoting a depot and the
nodes 1, 2, . . . ,N corresponding to ordered customers. A
vehicle starts its route from the depot and serves the cus-
tomers according to the sequence 1 → 2 → . . . → N.
The vehicle consists of two compartments, Compartment
1 and Compartment 2, with finite capacities Q1 and Q2,
respectively. The vehicle delivers new (or fresh or use-
ful) items of a product to the customers. The vehicle also
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Figure 1. The customer network.

collects old (or expired or useless) items of the same or
of a different product. We assume that (i) the items that
are delivered are placed in Compartment 1, (ii) the items
that are collected are placed in Compartment 2, (iii) the
items that are delivered have the same size, (iv) the items
that are collected have the same size, (v) the size of the
items that are delivered may be different from the size of
the items that are collected. Let cj,j+1, j = 1, . . . ,N − 1,
be the travel cost from customer j to customer j + 1. Let
also cj0 and c0j, j = 1, . . . ,N be the travel cost from cus-
tomer j to the depot and the travel cost from the depot
to customer j, respectively. It is plausible that these costs
satisfy the triangle inequality, i.e.

cj,j+1 ≤ cj0 + c0,j+1, j = 1, . . . ,N − 1.

It is assumed that, for each customer j = 1, . . . ,N,
the quantity ξj ∈ {0, . . . ,Q1} of new items that he/she
demands and the quantity ψj ∈ {0, . . . ,Q2} of old items
that he/she returns are discrete random variables. The
joint distribution of ξj andψj is known. The actual quan-
tity of new items that each customer demands and the
actual quantity of old items that each customer returns
are disclosed only when the vehicle arrives at the cus-
tomer’s location. The vehicle may interrupt its route and
return to the depot to replenish Compartment 1 with
new items and to unload the old items that are stored in
Compartment 2. After servicing the last customer N, the
vehicle returns to the depot and terminates its route. The
customer network is presented in Figure 1.

The total cost consists of travel costs between consec-
utive customers and between customers and the depot.
The problem is to find the restocking strategy that min-
imises the expected total cost for servicing all customers.

Suppose that the vehicle arrives at customer’s j ∈
{1, . . . ,N} location. The actual demand for new items

and the actual quantity of old items that are returned
are revealed. Let (q, s) be the state of the process after
the first visit to customer j and after the maximum pos-
sible quantity of new items has been delivered and the
maximum possible quantity of old items has been col-
lected. The number q is the quantity of new items that
remain in Compartment 1 and the number s is the empty
space in Compartment 2, i.e. the number of old items
that can be placed in Compartment 2. Negative values
of q and s denote unsatisfied demand for new items and
lack of empty space in Compartment 2 for old items,
respectively. There are four cases:

Case 1. 0 ≤ q ≤ Q1, 0 ≤ s ≤ Q2. In this case customer j
has been serviced completely, q new items remain
in Compartment 1 of the vehicle and there is empty
space for s old items in Compartment 2.

Case 2. −Q1 ≤ q < 0, 0 ≤ s ≤ Q2. In this case there is
unsatisfied demand for −q new items and there is
empty space for s old items in Compartment 2.

Case 3. 0 ≤ q ≤ Q1,−Q2 ≤ s < 0. In this case q new
items remain in Compartment 1 of the vehicle and
there is lack of empty space for −s old items in
Compartment 2.

Case 4. −Q1 ≤ q < 0,−Q2 ≤ s < 0. In this case there is
unsatisfied demand for −q new items and there is
lack of empty space for −s old items in Compart-
ment 2.

Suppose j ∈ {1, . . . ,N − 1}.
In Case 1, the possible actions are Action 1 and

Action 2. Action 1means that the vehicle proceeds to cus-
tomer j + 1 and Action 2 means that the vehicle goes to
the depot to restock Compartment 1 with Q1 − q new
items and unload all old items from Compartment 2
and then goes to customer j + 1. In Case 2 the possible
actions are Action 3 and Action 4. Action 3 means that
the vehicle goes to the depot to restock Compartment 1
with Q1 new items and unload all s old items from Com-
partment 2, returns to customer j to deliver −q owed
new items and then proceeds to customer j + 1. Action
4 means that the vehicle goes to the depot to restock its
Compartment 1 with −q new items and to unload all s
old items from Compartment 2, returns to customer j to
deliver −q owed new items, makes a second trip to the
depot to load Compartment 1 with Q1 new items and
then proceeds to customer j + 1. In Case 3 the possible
actions are Action 5 and Action 4. Action 5 means that
the vehicle goes to the depot to unloadQ2 old items from
Compartment 2 and restock Compartment 1 to its full
capacity, returns to customer j to load in Compartment 2
the remaining −s old items in Compartment 2 and then
goes to customer j + 1. Action 4 (in this case) means that
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the vehicle goes to the depot to unloadQ2 old items from
Compartment 2, returns to customer j to load in Com-
partment 2 the remaining −s old items, makes a second
trip to the depot to restock Compartment 1 with Q1 new
items and to empty Compartment 2 and then goes to cus-
tomer j + 1. In Case 4 the possible actions are Action 6
and Action 4. Action 6 means that the vehicle makes one
trip to the depot to restock Compartment 1 with Q1 new
items and to empty Compartment 2, returns to customer
j to deliver−q owed new items and to collect−s remain-
ing old items and then proceeds to customer j + 1. Action
4 (in this case) means that the vehicle goes to the depot
to replenish Compartment 1 with −q new items and to
empty Compartment 2, returns to customer j to deliver
−q owed new items and to load in Compartment 2 −s
remaining old items, makes a second trip to the depot to
load Compartment 1 to its full capacity with new items
and to empty Compartment 2 and then proceeds to cus-
tomer j + 1. It is assumed that if Action a ∈ {3, 4, 5, 6}
is selected, there is no extra demand for new items that
must be delivered or extra old items that must be col-
lected when the vehicle returns to customer j, i.e. ξj and
ψj remain unaltered.

Suppose that j = N.
In Case 1 the only possible action for the vehicle is to

return to the depot to terminate its route. InCases 2–4 the
only possible action is to go to the depot to load the owed
quantity of new items or/and to empty its Compartment
2, returns to customer N to deliver the owed quantity of
new items or/and to collect the remaining quantity of old
items and then returns to the depot to terminate its route.

2.2. Dynamic programming formulation

It is possible to construct a suitable dynamic program-
ming algorithm for the determination of the optimal
restocking strategy. Let fj(q, s) denote the minimum
expected future cost from the first visit of the vehicle
to customer j ∈ {1, . . . ,N} until the end of the route,
where (q, s) is the state of the process that has been
defined above. For j ∈ {1, . . . ,N − 1} we give below the
dynamic programming Equations (1–4) that correspond
to Cases 1–4.

If 0 ≤ q ≤ Q1, 0 ≤ s ≤ Q2, then

fj(q, s) = min{Aj(q, s),Bj}, (1)

where

Aj(q, s) = cj,j+1 + Efj+1(q − ξj+1, s − ψj+1),

Bj = cj0 + c0,j+1 + Efj+1(Q1 − ξj+1,Q2 − ψj+1).

If −Q1 ≤ q < 0, 0 ≤ s ≤ Q2, then

fj(q, s) = 2cj0 + min{Cj(q),Bj}, (2)

where

Cj(q) = cj,j+1 + Efj+1(Q1 + q − ξj+1,Q2 − ψj+1).

If 0 ≤ q ≤ Q1,−Q2 ≤ s < 0, then

fj(q, s) = 2cj0 + min{Dj(s),Bj}, (3)

where

Dj(s) = cj,j+1 + Efj+1(Q1 − ξj+1,Q2 + s − ψj+1).

If −Q1 ≤ q < 0,−Q2 ≤ s < 0, then

fj(q, s) = 2cj0 + min{Ej(q, s),Bj}, (4)

where

Ej(q, s) = cj,j+1 + Efj+1(Q1 + q − ξj+1,Q2 + s − ψj+1).

The boundary condition is given by the following
equation

fN(q, s) = cN0 + 1(q− + s− < 0) · 2cN0, (5)

where 1 is the indicator function, q− = min{q, 0} and
s− = min{s, 0} The minimum total expected cost during
a visit cycle is equal to

f0 = c01 + Ef1(Q1 − ξ1,Q2 − ψ1).

In the above equations the expected values are
taken with respect to the random variables ξj and ψj,
j = 1, . . . ,N. The termsAj(q, s) and Bj in the right-hand-
side of Equation (1) correspond to Action 1 and Action
2, respectively. The terms Cj(q) and Bj in the right-hand-
side of Equation (2) correspond to Action 3 and Action
4, respectively. The terms Dj(s) and Bj in the right-hand-
side of Equation (3) correspond to Action 5 and Action
4, respectively. The terms Ej(q, s) and Bj in Equation (4)
correspond to Action 6 and Action 4, respectively. The
structure of the optimal restocking strategy is given in
Theorem 1. Lemma 1 below will be used in the proof of
Theorem 1.

2.3. Structure of the optimal restocking strategy

Lemma 1: fj(q, s), j = 1, . . . ,N is non-increasing with
respect to q and s.

Proof: The proof is by induction on j. From Equation (5)
it can be seen that fN(q, s) is non-increasing in q and s.
Assuming that fj+1(q, s), 2 ≤ j ≤ N, is non-increasing in
q and swewill show that fj(q, s) is non-increasing in q and
s. In view of induction hypothesis and Equations (1–4), to
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prove that fj(q, s) is non-increasing in its arguments, it is
enough to show that

fj(0, s) ≤ fj(−1, s), 0 ≤ s ≤ Q2, (6)

fj(q, 0) ≤ fj(q,−1), 0 ≤ q ≤ Q1, (7)

fj(0, s) ≤ fj(−1, s),−Q2 ≤ s ≤ −1, (8)

fj(q, 0) ≤ fj(q,−1),−Q1 ≤ q ≤ −1. (9)

From Equation (1) and the triangle inequality we have
for s ∈ {0, . . . ,Q2}

fj(0, s) ≤ cj0 + c0,j+1 + Efj+1(Q1 − ξj+1,Q2 − ψj+1)

≤ 2cj0 + cj,j+1 + Efj+1(Q1 − ξj+1,Q2 − ψj+1)

= Hj. (10)

Note that

Hj − 2cj0 − Cj(−1)

= Efj+1(Q1 − ξj+1,Q2 − ψj+1)

− Efj+1(Q1 − 1 − ξj+1,Q2 − ψj+1) ≤ 0, (11)

where the above inequality follows from the induction
hypothesis. From (10) and (11) we have that

fj(0, s) ≤ Hj ≤ 2cj0 + Cj(−1). (12)

From (1) it is immediate that

fj(0, s) ≤ Bj ≤ 2cj0 + Bj. (13)

Relations (12) and (13) imply that

fj(0, s) ≤ 2cj0 + min{Cj(−1),Bj},

which is (6). Inequality (7) for q = 0, . . . ,Q1, is equiva-
lent to

min{Aj(q, 0),Bj} ≤ 2cj0 + min{Dj(−1),Bj},

or, equivalently,

min{cj,j+1 + Efj+1(q − ξj+1,−ψj+1),Bj} ≤ 2cj0
+ min{cj,j+1 + Efj+1(Q1 − ξj+1,Q2 − 1 − ψj+1),Bj}.

The above inequality holds if

Bj ≤ 2cj0 + cj,j+1 + Efj+1(Q1 − ξj+1,Q2 − 1 − ψj+1),

or, equivalently,

c0,j+1 + Efj+1(Q1 − ξj+1,Q2 − ψj+1)

≤ cj0 + cj,j+1 + Efj+1(Q1 − ξj+1,Q2 − 1,ψj+1),

which, in view of the induction hypothesis and the
triangle inequality, is true. Inequality (8), for s ∈
{−Q2, . . . ,−1}, is equivalent to

min{cj,j+1 + Efj+1(Q1 − ξj+1,Q2 + s − ψj+1),Bj}
≤ min{cj,j+1 + Efj+1(Q1 − 1 − ξj+1,

Q2 + s − ψj+1),Bj}.
In viewof the induction hypothesis, the above inequal-

ity is true. Inequality (9), for q ∈ {−Q1, . . . ,−1}, is equiv-
alent to

min{Cj(q),Bj} ≤ min{Ej(q,−1),Bj},
or, equivalently,

min{cj,j+1 + Efj+1(Q1 + q − ξj+1,Q2 − ψj+1),Bj}
≤ min{cj,j+1 + Efj+1(Q1 + q − ξj+1,

Q2 − 1 − ψj+1),Bj)}.
In viewof the induction hypothesis, the above inequal-

ity is true.
In the following theorem we present the optimal

restocking strategy after the first visit of the vehicle at
customer’s j ∈ {1, . . . ,N − 1} location.

Theorem 1: For each customer j ∈ {1, . . . ,N − 1} the
structure of the optimal restocking strategy is described in
the following four cases:

(i) For each q ∈ {0, . . . ,Q1} there exists an integer
k1j(q) ≥ 0 such that it is optimal for the vehicle to
proceed to customer j + 1 if and only if s ≥ k1j(q).
Moreover, k1j(q) is non-increasing in q.

(ii) There exists sj ≤ 0 such that it is optimal for the
vehicle to make two trips to the depot when q ∈
{0, . . . ,Q1} and s < sj.

(iii) There exists qj ≤ 0 such that it is optimal for the
vehicle to make two trips to the depot when s ∈
{0, . . . ,Q2} and q < qj.

(iv) For each s ∈ {−1, . . . ,−Q2} there exists an integer
k2j(s) < 0 such that it is optimal for the vehicle to
make two trips to the depot if and only if q ≤ k2j(s).
Moreover, k2j(s) is non-increasing in s.

Proof: From Lemma 1 it follows that Aj(q, s) is non-
increasing in q and s, respectively. Part (i) is a direct
consequence of this result. From Lemma 1 it follows that
Cj(q) and Dj(s) are non-increasing in q and s, respec-
tively. Part (ii) and Part (iii) are direct consequences of
this result. From Lemma 1 it follows that Ej(q, s) is non-
increasing in q and s. Part (iv) is a direct consequence of
this result. �
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Remark 1: The decision epochs for the above vehicle
routing problem are the instants at which the vehicle
arrives for the first time at each customer’s location and
the maximum possible service has been offered. It is pos-
sible to assume that the decision epochs are the instants at
which each customer has been serviced completely. This
choice leads to a different dynamic programming formu-
lation with only two possible actions: (i) proceed to next
customer and (ii) go to the depot to replenish Compart-
ment 1 with new items and to unload old items from
Compartment 2 and then go to next customer. Follow-
ing the line of proof that is used in Pandelis et al. (2012)
in stochastic vehicle routing problemswith compartmen-
talised load and deliveries, it is possible to prove that, for
a given quantity of old items in Compartment 2, it is opti-
mal to choose the action of proceeding to next customer
if the quantity of new items in Compartment 1 exceeds
some critical value. However, the dynamic programming
formulation that we have adopted in the present work led
us to the above Theorem 1 that provides a more detailed
characterisation of the structure of the optimal restock-
ing strategy with six possible actions and with greater
practical usefulness.

2.4. Special-purpose dynamic programming
algorithm

In view of the above theorem, the optimal restocking
strategy, i.e. the critical integers k1j(q), q = 0, . . . ,Q1,
k2j(s), s = −Q2, . . . ,−1, qj and sj for each customer j ∈
{1, . . . ,N − 1} can be found by the following special-
purpose dynamic programming algorithm.

Algorithm for the determination of the critical inte-
gers k1j(q), q = 0, . . . ,Q1, k2j(s), s = −Q2, . . . ,−1, qj
and sj for each customer j = 1, . . . ,N − 1

Step 0 Set fN(q, s) = cN0 + 2cN0 · 1(q− + s−), |q| ≤
Q1, |s| ≤ Q2. Set j = N − 1.

Step 1 (Determination of the critical integers k1j(q), q =
0, . . . ,Q1)

Compute Bj.
For q = 0, 1, . . . , Q1, do the following:
For s = Q2, Q2 − 1, . . . compute Aj(q, s) until Aj

(q, s) > Bj or s = −1.
Set k1j(q) = s + 1.
Set fj(q, s) = Bj, for s ∈ {0, . . . , k1j(q)− 1} and

fj(q, s) = Aj(q, s), for s ∈ {k1j(q), . . . ,Q2}.
Step 2 (Determination of critical integers k2j(s), s =

−Q2, . . . , −1)
For s = −1, −2, . . . , −Q2, do the following:
For q = −Q1,−Q1 + 1, . . . compute Ej(q, s) until

Ej(q, s) < Bj or q = 0.
Set k2j(s) = q − 1.

Set fj(q, s) = 2cj0 + Bj, q ∈ {−Q2, . . . , k2j(s)} and
fj(q, s) = 2cj0 + Ej(q, s), q ∈ {k2j(s)− 1, . . . ,
−1}.

Step 3 (Determination of the critical integers qj)
For q = −Q1, −Q1 + 1, . . . compute Cj(q) until

Cj(q) < Bj or q = 0.
Set qj = q.
Set fj(q, s) = 2cj0 + Bj, for q ∈ {−Q1, . . . , qj − 1}

and s ∈ {0, . . . ,Q2}.
Set fj(q, s) = 2cj0 + Cj(q), for q ∈ {qj, . . . ,−1} and

s ∈ {0, . . . ,Q2}.
Step 4 (Determination of critical integers sj)

For s = −Q2,−Q2 + 1, . . . compute Dj(s) until
Dj(s) < Bj or s = 0.

Set sj = s.
Set fj(q, s) = 2cj0 + Bj, for s ∈ {−Q2, . . . , sj − 1}

and q ∈ {0, . . . ,Q1}.
Set fj(q, s) = 2cj0 + Dj(s), for s ∈ {sj, . . . ,−1} and

q ∈ {0, . . . ,Q1}.
Step 5 Set j = j − 1. If j ≥ 1, go to Step 1.Otherwise, stop.

The above special-purpose dynamic programming
algorithm is based on the structure of the optimal
restocking strategy described in Theorem 1. The com-
plexity of this algorithm can be calculated by consider-
ing Definition 7.1 in Sipser (2013) and is found to be
O(NQ2

1Q
2
2). It is more efficient than the initial dynamic

programming algorithm since it requires less computa-
tions. For example, for j ∈ {1, . . . ,N − 1}, in Case 1, the
quantitiesAj(q, s), for (q, s) such that q ∈ {0, . . . ,Q1} and
s ∈ {0, . . . , k1j(q)− 1}, are not computed, while these
quantities are computed in the initial dynamic program-
ming algorithm, that is based in Equations (1–5). Thus,
the special-purpose dynamic programming algorithm
requires smaller computation time than the computa-
tion time required by the initial dynamic programming
algorithm. In Section 4, the computation times of theses
algorithms will be compared in a numerical example.

3. The problemwhen the quantities that are
delivered and collected are continuous random
variables

3.1. The optimal restocking strategywhen ξj and
ψj, j = 1, . . . ,N are continuous random variables

We modify the problem that we introduced in Section 2
by assuming that, for each customer j ∈ {1, . . . ,N} (i) the
quantity ξj of new items that he/she demands is a contin-
uous random variable which takes values in the interval
[0,Q1] and (ii) the quantity ψj of old items that he/she
returns is a continuous random variable which take val-
ues in the interval [0,Q2]. The joint distribution of ξj and
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ψj is known. A realistic situation with continuous quan-
tities could be the delivery and collection of two different
building materials (e.g. lime and pebble) that are placed
in suitable compartments of the vehicle. The states (q, s)
of the process, where |q| ≤ Q1 and |s| ≤ Q2, after the first
visit to customer j and the Actions 1–6 are the same as
those defined in Section 2. Theminimumexpected future
cost fj(q, s) for j = 1, . . . ,N, satisfies the dynamic pro-
gramming Equations (1)-(4) and the boundary condition
(5). The structure of the optimal restocking strategy is the
same as in the case of discrete quantities and is described
in the theorem below.

Theorem 2: For each customer j ∈ {1, . . . ,N − 1}, the
structure of the optimal restocking strategy is described in
the following four cases:

(i) For each q ∈ [0,Q1], there exists a critical quantity
k1j(q) ∈ [0,Q2], such that it is optimal for the vehicle
to proceed to customer j + 1 if and only if s ≥ k1j(q).
Moreover, k1j(q) is non-increasing in q.

(ii) There exists a critical quantity sj ≤ 0, such that it is
optimal for the vehicle to make two trips to the depot
when q ∈ [0,Q1] and s ≤ sj.

(iii) There exists a critical quantity qj ≤ 0, such that it is
optimal for the vehicle to make two trips to the depot
when s ∈ [0,Q2] and q ≤ qj.

(iv) For each s ∈ [−Q2, 0), there exists a critical quantity
k2j(s) < 0, such that it is optimal for the vehicle to
make two trips to the depot if and only if q ≤ k2j(s).
Moreover, k2j(s) is non-increasing in s.

3.2. Discretisation of state space

The state space after the first visit to customer j and
after the maximum possible quantity of new items has
been delivered and the maximum possible quantity of
old items has been collected is the set: S = {(q, s) : q ∈
[−Q1,Q1], s ∈ [−Q2,Q2]}. A discretisation of the state
space is necessary for the implementation of the dynamic
programming algorithm. Let ρ be a relatively small
number (e.g. ρ = 0.05 or ρ = 0.01). We discretise S by
restricting our attention only to its points that belong to
the set

S̃ = {(kρ, lρ) : k = −Q1/ρ, . . . ,Q1/ρ,

l = −Q2/ρ, . . . ,Q2/ρ}.
The minimum expected cost fN(kρ, lρ), (kρ, lρ) ∈ S̃,

is found by using (5) with q = kρ, s = lρ. The mini-
mum expected cost fj(kρ, lρ), (kρ, lρ) ∈ S̃ and the cor-
responding optimal decisions are found, recursively, for
j = N − 1,N − 2, . . . , 1, by using the dynamic program-
ming Equations (1–4). The expectations are computed

approximately. For example, the quantity Ej(kρ, lρ), in
Case 4, for−Q1/ρ ≤ k < 0 and−Q2/ρ ≤ l < 0, is com-
puted approximately as follows:

Ej(kρ, lρ) = cj,j+1 +
Q1/ρ−1∑
x=0

Q2/ρ−1∑
y=0

fj+1(Q1 + kρ − xρ,

Q2 + lρ − yρ)hj+1(xρ, yρ)ρ2,

where hj+1 is the joint probability density function of ξj+1
and ψj+1.

As in the case of discrete quantities, the optimal
restocking strategy, i.e. the critical numbers k1j(kρ), k =
0, . . . ,Q1/ρ, k2j(lρ), l = 0, . . . ,Q2/ρ, qj and sj for each
customer j ∈ {1, . . . ,N − 1} can be found by a special-
purpose dynamic programming algorithm that takes into
account the structure of the optimal restocking strategy
as given in Theorem 2.

3.3. Special-purpose dynamic programming
algorithm

Algorithm for the determination of the critical num-
bers k1j(kρ), k = 0, . . . ,Q1/ρ, k2j(lρ), l = 0, . . . ,Q2/ρ,
qj and sj for customer j = 1, . . . ,N − 1

Step 0 Set fN(kρ, lρ) = cN0 + 2cN0 · 1((kρ)− + (lρ)−),
|kρ| ≤ Q1, |lρ| ≤ Q2. Set j = N − 1.

Step 1 (Determination of the critical numbers k1j(kρ),
k = 0, . . . ,Q1/ρ)

Compute Bj.
For k = 0, 1, . . . , Q1/ρ, do the following:
For l = Q2/ρ, Q2/ρ − 1, . . . , 0 computeAj(kρ, lρ)

until Aj(kρ, lρ) > Bj or lρ = −ρ.
Set k1j(kρ) = lρ + ρ.
Set fj(kρ, lρ) = Bj, for l ∈ {0, . . . , k1j(kρ)/ρ − 1}
and fj(kρ, lρ) = Aj(kρ, lρ), for l ∈ {k1j(kρ)/ρ, . . . ,

Q2/ρ}.
Step 2 (Determination of critical numbers k2j(lρ), l =

−Q2/ρ, . . . , −1)
For l = −1, −2, . . . , −Q2/ρ, do the following:
For k = −Q1/ρ,−Q1/ρ + 1, . . . computeEj(kρ, lρ)

until Ej(kρ, lρ) < Bj or kρ = 0.
Set k2j(lρ) = kρ − ρ.
Set fj(kρ, lρ) = 2cj0 + Bj, k ∈ {−Q2/ρ, . . . ,

k2j(lρ)/ρ}
and fj(kρ, lρ) = 2cj0 + Ej(kρ, lρ), k ∈ {k2j(lρ)/ρ −

1, . . . ,−1}.
Step 3 (Determination of the critical numbers qj)

For k = −Q1/ρ, −Q1/ρ + 1, . . . compute Cj(kρ)
until Cj(kρ) < Bj or kρ = 0.

Set qj = kρ.
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Set fj(kρ, lρ) = 2cj0 + Bj, for k ∈ {−Q1/ρ, . . . ,
qj/ρ − 1} and l ∈ {0, . . . ,Q2/ρ}.

Set fj(kρ, lρ) = 2cj0 + Cj(kρ), for k ∈ {qj/ρ, . . . ,
−1} and l ∈ {0, . . . ,Q2/ρ}.

Step 4 (Determination of critical numbers sj)
For l = −Q2/ρ, −Q2/ρ + 1, . . . compute Dj(lρ)

until Dj(lρ) < Bj or lρ = 0.
Set sj = lρ.
Set fj(kρ, lρ) = 2cj0 + Bj, for l ∈ {−Q2/ρ, . . . ,

sj/ρ − 1} and k ∈ {0, . . . ,Q1/ρ}.
Set fj(kρ, lρ) = 2cj0 + Dj(lρ), for l ∈ {sj/ρ, . . . ,−1}

and k ∈ {0, . . . ,Q1/ρ}.
Step 5 Set j = j − 1. If j ≥ 1, go to Step 1.Otherwise, stop.

The above special-purpose dynamic programming
algorithm is based on the structure of the opti-
mal restocking strategy described in Theorem 2. Its
complexity is O(N[Q1/ρ]2 · [Q2/ρ]2). It requires less
computations than the initial dynamic programming
algorithm. For example, for j = 1, . . . ,N − 1, the quan-
tities Ej(kρ, lρ), in Case 4, for k such that −Q1/ρ ≤ k <
k2j(lρ)/ρ and for l such that −1 ≤ l ≤ −Q2/ρ, are not
computed, while these quantities are computed in the ini-
tial dynamic programming algorithm. In Example 2 of
Section 4, the significant difference of the computation
times of these algorithms is verified, especially for high
values of the number of customers N.

4. Numerical results

In the numerical results that we present below, we imple-
mented the initial dynamic programming algorithm and
the special-purpose dynamic programming algorithm by
running the corresponding programs inMatlab on a per-
sonal computer equipped with an Intel Core i5-3230 M,
2.6GHz processor and 4 GB of RAM. In Example 1, we
assume that the demands for new items which are stored
in Compartment 1 of the vehicle and the quantities of old
items that are placed in Compartment 2 of the vehicle
are discrete random variables. In Example 2, we assume
that the demands for new items and the quantities of old
products are continuous random variables. These exam-
ples verify the structural results presented in Theorem 1
and in Theorem 2.

Example 1: Suppose that N = 10. The capacities of
Compartment 1 and 2 areQ1 = 15 andQ2 = 12, respec-
tively. The travel costs between customer j and j + 1,
j ∈ {1, . . . , 9}, are given by: c12 = 35, c23 = 31, c34 =
32, c45 = 30, c56 = 28, c67 = 32, c78 = 34, c89 = 33 and
c9,10 = 34. The travel costs between customers j, j ∈
{1, . . . , 10} and the depot are given by: c10 = 41, c20 =
32, c30 = 36, c40 = 38, c50 = 39, c60 = 36, c70 = 32,

c80 = 35, c90 = 39 and c10,0 = 37. These costs satisfy
the triangle inequality. We also assume that, for each
customer j ∈ {1, . . . , 10}, the demand ξj for new items
which are stored in Compartment 1 and the quantity ψj
of old products that are returned and placed in Com-
partment 2 are independent discrete random variables
and follow the Binomial distributions Bin(Q1, p1) and
Bin(Q2, p2),respectively. Choosing p1 = 0.4 and p2 =
0.3, we have that

Pr(ξj = x) =
(

Q1
x

)
0.4x0.6Q1−x, x = 0, . . . ,Q1

and

Pr(ψj = y) =
(

Q2
y

)
0.3y0.7Q2−y, y = 0, . . . ,Q2.

In Table 1, we present, for Customers 3 and 6,
the critical numbers k13(q), k16(q), q ∈ {0, . . . ,Q1},
k23(s), k26(s), s ∈ {−1, . . . ,−Q2}, q3, s3, q6, s6, that cor-
respond to the optimal restocking strategy. Note that
Parts (i) and (iv) of Theorem 1 are confirmed numeri-
cally, since, for j ∈ {3, 6}, the critical numbers k1 j (q) q ∈
{0, . . . ,Q1} and k2j(s), s ∈ {−1, . . . ,−Q2} are non-
increasing with respect to q and s, respectively. For
each customer j ∈ {1, . . . ,N} and for each value of q ∈
{0, . . . ,Q1}, we define the critical number k1j(q) equal
to Q2 + 1, if Action 2 is taken for all values of s ∈
{0, . . . ,Q2}. For each customer j ∈ {1, . . . ,N} and for
each value of s ∈ {−1, . . . ,−Q2}, we also define the criti-
cal number k2j(s) equal to zero, if Action 4 is taken for all
values of q ∈ {−1, . . . ,−Q1}.

In Figures 2 and 3, we present the optimal decision, for
each state (q, s), q ∈ {−Q1, . . . ,Q1}, s ∈ {−Q2, . . . ,Q2},
after the first visit to Customers 5 and 8, respectively.
Action 1 is denoted by right-point triangles, Action 2 is
denoted by red squares, Action 3 is denoted by yellow cir-
cles, Action 4 is denoted by green rhombs, Action 5 is
denoted by cyan pentagrams and Action 6 is denoted by
magenta hexagrams.

Figures 2 and 3 confirm the structural properties of
the optimal restocking strategy that are described in
Theorem 1. The value of the minimum expected total
cost f0 is found to be approximately equal to 550.01.
The required computation time of the special-purpose
dynamic programming algorithm is approximately equal
to 9.4 s. It is considerably smaller than the corre-
sponding computation time of the initial dynamic pro-
gramming algorithm which is approximately equal to
15.25 s.

In Figure 4, for p2 = 0.35, we present a graph that
shows the variation of the minimum expected total cost
f0 as the probability p1 of the binomial distribution
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Table 1. The critical numbers of the optimal restocking strategy for Customers 3 and 6.

Customer
k1j(q), q ∈ {0, . . . , 15}
j ∈ {3, 6}

k2j(s), s ∈ {−1, . . . ,−12}
j ∈ {3, 6} qj , j ∈ {3, 6} sj , j ∈ {3, 6}

3

k13(0) = . . . = k13(4) = 13,
k13(5) = 5,
k13(6) = k13(7) = 3,
k13(8) = . . . = k13(15) = 2

k23(−1) = k23(−2) = . . .

= k23(−7) = −10,
k23(−8) = k23(−9) = −9,
k23(−10) = −7,
k23(−11) = k23(−12) = 0

q3 = −10 s3 = −10

6
k16(0) = . . . = k16(6) = 13,
k16(7) = 5,
k16(8) = . . . = k16(15) = 4

k26(−1) = . . . = k26(−7) = −8,
k26(−8) = −7,
k26(−9) = . . . = k26(−12) = 0

q6 = −8 s6 = −8

Figure 2. The optimal decisions after the first visit to Customer 5.

Figure 3. The optimal decisions after the first visit to Customer 8.

Bin(Q1, p1) for the demands ξj, j = 1, . . . , 10, takes val-
ues in the set {0.1, 0.15, . . . , 0.9, 0.95}. We see that
as p1 takes values in the set {0.3, 0.35, . . . , 0.65, 0.7}
the minimum expected total cost increases quickly and

approximately linearly. When p1 takes values in the set
{0.1, 0.15, 0.2, 0.25} and in the set {0.75, 0.8, 0.85, 0.9,
0.95} the minimum expected total cost increases rather
slowly.
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Figure 4. The minimum expected total cost as p1 varies.

Figure 5. The computation times of the algorithms as Q1 varies.

In Figure 5, for ξj ∼ Bin(Q1, 0.4),ψj ∼ Bin(20, 0.3),
j = 1, . . . , 10, we present graphs that show, as Q1 varies
in the set {10, 12, . . . , 88, 90} the variation in computa-
tion times, expressed in seconds, required by the initial
dynamic programming algorithm and by the special-
purpose dynamic programming algorithm.

We observe that, as Q1 increases, the computa-
tion times for both algorithms increase rather linearly.
The computation time required by the special-purpose
algorithm is considerably smaller than the computa-
tion time required by the initial dynamic programming
algorithm especially for high values of Q1.

Example 2: Suppose thatN = 9. The capacities of Com-
partment 1 and 2 are Q1 = 8 and Q2 = 7, respectively.
The travel costs between customer j and j + 1, j ∈
{1, . . . , 8}, are given by: c12 = 21, c23 = 16, c34 = 23,
c45 = 15, c56 = 20, c67 = 16, c78 = 24 and c89 = 19. The
travel costs between customers j, j ∈ {1, . . . , 9} and the
depot are given by: c10 = 15,, c20 = 18, c30 = 14, c40 =
19, c50 = 17, c60 = 14, c70 = 18, c80 = 21 and c90 = 17.

Table 2. The critical quantities qj and sj for Customers j ∈
{5, 6, 7, 8}.
Customer

Critical quantity qj
j ∈ {5, 6, 7, 8}

Critical quantity sj
j ∈ {5, 6, 7, 8}

5 −3.65 −2.8
6 −3.6 −2.7
7 −3.1 −2.4
8 −3.65 −2.65

These costs satisfy the triangle inequality.We also assume
that, for each customer j ∈ {1, . . . , 9}, the demand ξj for
new products, that are delivered, and the quantity ψj of
old products, that are returned, are independent contin-
uous random variables which follow truncated Normal
distributions in the intervals [0,Q1] and [0,Q2], respec-
tively. For each customer j ∈ {1, . . . , 9}, the probability
density function φj(x) of the demand for new products
is given by:

φj(x) = [F(Q1)− F(0)]−1 1
σ1

√
2π

exp
{
− (x − μ1)

2

2σ 2
1

}
,

x ∈ [0,Q1],μ1 ∈ �, σ 2
1 > 0

and the probability density function θj(x) of returned old
products is given by:

θj(x) = [F(Q2)− F(0)]−1 1
σ2

√
2π

exp
{
− (x − μ2)

2

2σ 2
2

}
,

x ∈ [0,Q2],μ2 ∈ �, σ 2
2 > 0

where F(x) = 1
σ
√
2π

x∫
−∞

exp
{
− (t−μ)2

2σ 2

}
dt is the cumu-

lative distribution function of the Normal distribution
with parameters μ ∈ � and σ 2 > 0. We choose μ1 =
6, σ1 = 4 and μ2 = 5, σ2 = 2. In Table 2, for customers
j ∈ {5, 6, 7, 8}, we present the critical quantities qj
and sj.

In Figures 6 and 7, we present the optimal decisions for
Customers 4 and 7. If q ∈ [0,Q1], s ∈ [0,Q2], Action 1 is
coloured by blue and Action 2 is coloured by red. If q ∈
[−Q1, 0), s ∈ [0,Q2], Action 3 is coloured by yellow and
Action 4 is coloured by green. If q ∈ [0,Q1], s ∈ [−Q2, 0),
Action 5 is coloured by cyan and Action 4 is coloured by
green. If q ∈ [−Q1, 0), s ∈ [−Q2, 0), Action 6 is coloured
bymagenta andAction 4 is coloured by green.We choose
ρ = 0.05 so that the discretised state space S̃ for each cus-
tomer j ∈ {1, . . . , 9} is the set {(k ∗ 0.05, l ∗ 0.05) : k =
−160, . . . , 160, l = −140, . . . , 140}.

Figures 6 and 7 confirm the structural results con-
cerning the optimal restocking strategy that were given
in Theorem 2. The value of the minimum expected total
cost f0 is found to be approximately equal to 317.7. The
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Figure 6. The optimal decisions for Customer 4.

Figure 7. The optimal decisions for Customer 7.

computation time of the special-purpose dynamic pro-
gramming algorithm is approximately equal to 1165 s. It
is considerably smaller than the corresponding computa-
tion time of the initial dynamic programming algorithm
which is approximately equal to 1729 s.

We now assume that the number of customersN takes
values in the set {5, 6, . . . , 15}. For each value of N, let
ci,i+1 = 16, i ∈ {1, . . . ,N − 1}, ci0 = 18, if i is odd and
ci0 = 14, if i is even. In Figure 8, we present graphs that
show, as N varies in the set {5, 6, . . . , 15}, the variation
in the computation times, expressed in seconds, required
by the initial dynamic programming algorithmandby the
special-purpose dynamic programming algorithm.

We observe that, as N increases, the required com-
putation times for both algorithms increase approxi-
mately linearly. The computation time required by the
special-purpose algorithm is considerably smaller than
the computation time required by the initial dynamic
programming algorithm for all values of N. The dif-
ference between the computation times increases as N
increases.

5. The infinite-horizon problem

We modify the problem that we studied in Section 2 by
considering an infinite-time horizon problem in which
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Figure 8. The computation times of the algorithms as N varies.

Figure 9. The customer network for the infinite-horizon prob-
lem.

the service of the customers does not stop when the ser-
vice of the last customer N has been completed but it
continues indefinitelywith the same customer order. This
means that, after the service of the last customer N has
been completed, the vehicle services again Customer 1,
Customer 2 and so on. Let cN1 denote the travel cost from
Customer N to Customer 1. The customer network is
presented in Figure 9.

The demands of the customers for new products, that
are delivered, and the quantities of old products, that are
collected, are renewed at successive tours of the vehi-
cle. We assume that for each customer j ∈ {1, . . . ,N} the
distribution of the quantity ξj of new products, that are
delivered, and the distribution of the quantity ψj of old
products, that are collected, remain the same at each
tour. We suppose that, at each tour, the vehicle visits
each customer, satisfies as much demand of new prod-
ucts as possible, collects the largest possible quantity of
old products and chooses one decision among some pos-
sible decisions that coincide with the possible decisions
in the finite-horizon problem.

It is assumed that the driver of the vehicle selects
his/her decisions at equidistant time epochs τ = 0, 1, . . .
(e.g. every 6 h). This means that, if, for example, the
vehicle visits the fourth customer and the decision is
selected at 2 am then the next decision is selected at 8

am after the first visit at fifth customer’s site. Although
this assumption is imposed in order to apply well-known
results from the theory of Markov decision processes,
there are situations inwhich this assumptionmay hold, as
in the practical applications that wementioned in Section
1. Specifically, in the first application, we may suppose
that the vehicle, which visits N stores in order to deliver
and collect fresh and expired milk (or ice-cream or veg-
etables or fruit), does not stop when the service of the
last customer has been completed but it continues with
the same customer order for a long time horizon. It can
be assumed that the driver selects his/her decisions at
equidistant time epochs (e.g. every 6 h). In the second
application, the vehicle delivers and collects two different
building materials. It can be assumed that the supply of
building constructions with new materials and the col-
lection of useless materials does not stop when the N-th
building construction has been serviced but it contin-
ues indefinitely at equidistant time epochs with the same
order.

The routing of the vehicle in the infinite-horizon set-
ting is controlled by a policy π that is a rule for choos-
ing decisions at epochs τ = 0, 1, . . . . The decision that
is chosen by a policy at a decision epoch may depend
on the history of the process or may be randomised in
the sense that it is chosen by specific probabilities. An
appealing class of policies is the class of stationary poli-
cies. A stationary policy chooses at each decision epoch
a decision that depends only on the current state of the
system. The usual optimisation criteria in the infinite-
horizon problem are the minimisation of the expected
total discounted cost and the minimisation of the long-
run expected average cost per unit time. The expected
total discounted cost under a policy π is defined as the
expected total cost during an infinite-time horizon if the
costs are discounted at a rate α ∈ (0, 1) per unit time
given that policy π is employed. The long-run expected
average cost per unit time of a policy π is defined as
the limit as n → ∞ of the expected cost incurred until
the n−th decision epoch divided by n, given that pol-
icy π is employed. Using well-known results of Markov
decision processes (see e.g. Ch. 6 of Ross, 1992) we
deduce that, under any one of these criteria, the opti-
mal policy is stationary and has the same structure as
the optimal policy in the finite-horizon problem. The
state space of the system is the set I = {(j, q, s) : j =
1, . . . ,N, q ∈ {−Q1, . . . ,Q1}, s ∈ {−Q2, . . . ,Q2}}, where
the state (j, q, s) represents the situation at which the
vehicle has completed the service of customer j, q is the
quantity of new items that remain in Compartment 1 and
s is the empty space for old items in Compartment 2.

Let Vαn (j, q, s), (j, q, s) ∈ I, 0 < α < 1, be the mini-
mum n−step expected discounted cost if the initial state
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is (j, q, s) ∈ I and α is the discount factor. The use of the
discount factor α ∈ (0, 1) can be explained by the eco-
nomic idea that a cost to be incurred in the future is
discounted in today’s money and thus we discount such
cost at a rate α per unit of time. For Case 1,Vαn (j, q, s) sat-
isfies the following dynamic programming equations for
n = 1, 2, . . . .

If 0 ≤ q ≤ Q1, 0 ≤ s ≤ Q2, then

Vαn (j, q, s) = min{cj,j+1 + αEVαn−1(j + 1, q − ξj+1,

s − ψj+1), cj0 + c0,j+1 + αEVαn−1

(j + 1,Q1 − ξj+1,Q2 − ψj+1)}.
The dynamic programming equations for Cases 2–4

can be written similarly. We also have that Vα0 (j, q, s) =
0, (j, q, s) ∈ I. In the above equations, we assume that
N + 1 is equal to 1 since the next customer after Cus-
tomerN is Customer 1. It can be shown by induction on n
thatVαn (j, q, s) is non-increasing with respect to q and s in
the same way as we proved that fj(q, s) is non-increasing
in its arguments in Lemma 1. Let Vα(j, q, s), (j, q, s) ∈ I,
denote the total α−discounted expected cost if the ini-
tial state is (j, q, s) ∈ I. This quantity is finite since the
state space I is finite. For Case 1, it satisfies the following
optimality equations:

If 0 ≤ q ≤ Q1, 0 ≤ s ≤ Q2, then

Vα(j, q, s) = min{cj,j+1 + αEVα(j + 1, q − ξj+1,

s − ψj+1), cj0 + c0,j+1 + αEVα

(j + 1,Q1 − ξj+1,Q2 − ψj+1)}.
The optimality equations for Cases 2–4 can be writ-

ten similarly. It is well-known (see Corollary 6.6 in Ross,
1992) that, as n → ∞, Vαn (j, q, s) → Vα(j, q, s). Hence,
Vα(j, q, s) is non-increasing in q and s. This result implies
that the α− discounted cost optimal restocking strategy
has the threshold-type structure described in Theorem 1.

We focus now on the minimisation of the expected
average cost. First, we note that the state (1, Q1, Q2) is
accessible from any other state under any stationary pol-
icy. From Corollary 6.20 in Ross (1992), it follows that
there exist numbers g and h(j, q, s), (j, q, s) ∈ I, such that,
if 0 ≤ q ≤ Q1, 0 ≤ s ≤ Q2, then

h(j, q, s) = min{cj,j+1 − g + Eh(j + 1, q − ξj+1,

s − ψj+1), cj0 + c0,j+1 − g + Eh(j + 1,

Q1 − ξj+1,Q2 − ψj+1)}.
The equations for Cases 2–4 can be written simi-

larly. The above equations are known as the average-cost
optimality equations.

The number g is theminimumaverage cost. It does not
depend on the initial state of the system. There also exists

a sequence αn → 1 (see Theorem 6.18 in Ross, 1992)
such that

h(j, q, s) = lim
n→∞[Vαn(j, q, s)− Vαn(1,Q1,Q2)],

(j, q, s) ∈ I.

The monotonicity of Vαn(j, q, s) with respect to q and
s implies that h(j, q, s) is non-increasing with respect to
q and s. This result implies that the average-cost optimal
restocking strategy has the same structure as the finite-
horizon optimal restocking strategy and the discounted-
cost optimal policy.

The average-cost optimal restocking strategy can be
found numerically by implementing the value-iteration
algorithm, the policy-iteration algorithm and the lin-
ear programming formulation. We refer to Chapter 3
in Tijms (1994) for a detailed description of these algo-
rithms. To implement these algorithms we must specify
the one-step transition probabilities and the one-step
expected costs. Let p(j,q,s)(j+1,q′,s′)(a) be the probability
that the state at the next decision epoch will be the
state (j + 1, q′, s′), if the present state is (j, q, s) and the
action a ∈ {1, . . . , 6} is selected and let C((j, q, s), a) be
the corresponding expected cost.We give these quantities
below.

If 0 ≤ q ≤ Q1, 0 ≤ s ≤ Q2, then

p(j,q,s)(j+1,q′,s′)(1) = Pr(ξj+1 = q − q′,ψj+1 = s − s′),

q′ ∈ {q − Q1, . . . , q},
s′ ∈ {s − Q2, . . . , s},

p(j,q,s)(j+1,q′,s′)(2) = Pr(ξj+1 = Q1 − q′,ψj+1 = Q2 − s′),

q′ ∈ {0, . . . ,Q1}, s′ ∈ {0, . . . ,Q2}.

If −Q1 ≤ q < 0, 0 ≤ s ≤ Q2, then

p(j,q,s)(j+1,q′,s′)(3) = Pr(ξj+1 = Q1 + q − q′,

ψj+1 = Q2 − s′), q′ ∈ {q, . . . ,
q + Q1}, s′ ∈ {0, . . . ,Q2},

p(j,q,s)(j+1,q′,s′)(4) = Pr(ξj+1 = Q1 − q′,ψj+1 = Q2 − s′),

q′ ∈ {0, . . . ,Q1}, s′ ∈ {0, . . . ,Q2}.

If 0 ≤ q ≤ Q1,−Q2 ≤ s < 0, then

p(j,q,s)(j+1,q′,s′)(5) = Pr(ξj+1 = Q1 − q′,

ψj+1 = Q2 + s − s′),

q′ ∈ {0, . . . ,Q1}, s′ ∈ {s, . . . , s + Q2},
p(j,q,s)(j+1,q′,s′)(4) = Pr(ξj+1 = Q1 − q′,ψj+1 = Q2 − s′),

q′ ∈ {0, . . . ,Q1}, s′ ∈ {0, . . . ,Q2}.
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If −Q1 ≤ q < 0,−Q2 ≤ s < 0, then

p(j,q,s)(j+1,q′,s′)(6) = Pr(ξj+1 = Q1 + q − q′,ψj+1

= Q2 + s − s′), q′ ∈ {q, . . . , q + Q1},
s′ ∈ {s, . . . , s + Q2},

p(j,q,s)(j+1,q′,s′)(4) = Pr(ξj+1 = Q1 − q′,ψj+1 = Q2 − s′),

q′ ∈ {0, . . . ,Q1}, s′ ∈ {0, . . . ,Q2}.
If 0 ≤ q ≤ Q1, 0 ≤ s ≤ Q2, then

C((j, q, s), 1) = cj,j+1,

C((j, q, s), 2) = cj0 + c0,j+1,

If −Q1 ≤ q < 0, 0 ≤ s ≤ Q2, then

C((j, q, s), 3) = 2cj0 + cj,j+1,

C((j, q, s), 4) = 3cj0 + c0,j+1,

If 0 ≤ q ≤ Q1,−Q2 ≤ s < 0, then

C((j, q, s), 5) = 2cj0 + cj,j+1,

C((j, q, s), 4) = 3cj0 + c0,j+1,

If −Q1 ≤ q < 0,−Q2 ≤ s < 0, then

C((j, q, s), 6) = 2cj0 + cj,j+1,

C((j, q, s), 4) = 3cj0 + c0,j+1.

As illustration we present the following example.

Example 3: Suppose thatN = 8. The capacities of Com-
partment 1 and 2 are Q1 = 12 and Q2 = 10, respec-
tively. The travel costs between customer j and j + 1,
j ∈ {1, . . . , 7}, are given by: c12 = 25, c23 = 22, c34 = 21,
c45 = 22, c56 = 20, c67 = 23, c78 = 24 and c81 = 25. The
travel costs between customers j, j ∈ {1, . . . , 8} and the
depot are given by: c10 = 30, c20 = 28, c30 = 26, c40 =
24, c50 = 29, c60 = 26, c70 = 31 and c80 = 28. These
costs satisfy the triangle inequality. We also assume that,
for each customer j ∈ {1, . . . , 8}, the demand ξj for new
items, that are delivered, and the quantity of old items,
that are returned, are independent discrete random vari-
ables with probability mass functions:

Pr(ξj = x) =
( Q1∑

i=0
e−λ1

λi1
i!

)−1

e−λ1
λx1
x!
, x = 0, . . . ,Q1

and

Pr(ψj = y) =
( Q2∑

i=0
e−λ2

λi2
i!

)−1

e−λ2
λ
y
2
y!
, y = 0, . . . ,Q2,

respectively.

We set λ1 = 2 and λ2 = 3. The standard value-
iteration does not converge in this example. This is due
to the periodicity (with period N) of all states of the sys-
tem under any stationary policy. This problem can be
circumvented by a perturbation of the one-step transition
probabilities so that a transition from a state to itself with
non-zero probability is allowed. Specifically, we take the
following new one-step probabilities p̃(j,q,s)(j+1,q′,s′)(a) =
τp(j,q,s)(j+1,q′,s′)(a) and p̃(j,q,s)(j,q,s)(a) = 1 − τ , where τ is
a constant such that 0 < τ < 1. A reasonable choice for
the value of τ is 0.5. The perturbed model has the same
average-cost optimal policy as the originalmodel (see e.g.
p. 209 in Tijms, 1994).

In Table 3, we present, for Customers 2 and 5,
the critical numbers k12(q), k15(q), q ∈ {0, . . . ,Q1},
k22(s), k25(s), s ∈ {−1, . . . ,−Q2} and the critical num-
bers q2, s2 and q5, s5. Note that Parts (i) and (iv)
of Theorem 1 are confirmed numerically, since, for
j ∈ {2, 5}, the critical numbers k1j(q), q ∈ {0, . . . ,Q1}
and k2j(s), s ∈ {−1, . . . ,−Q2} are non-increasing with
respect to q and to s, respectively.

In Figures 10 and 11, we present the optimal
decision, for each state (q, s), q ∈ {−Q1, . . . ,Q1}, s ∈
{−Q2, . . . ,Q2}, after the first visit to Customers 3 and 6,
respectively.

Figures 10 and 11 confirm that the average-cost opti-
mal restocking strategy has the threshold-type structure
described in Theorem 1. We implemented the value iter-
ation algorithm in the perturbed model and we choose
ε = 10−3 as the tolerance number in the stopping cri-
terion of the algorithm. The algorithm converged to the
optimal policy after 66 iterations. The required compu-
tation time was approximately equal to 5 s. The average
cost of the optimal policy was found to be approximately
equal to 35.36.

It is also possible to consider the corresponding
infinite-time horizon problems with continuous quan-
tities of new products to be delivered to the customers
and continuous quantities of old products to be collected
from them. In this case, the state space of the system
becomes:

I = {(j, q, s) : j = 1, . . . ,N, q ∈ [−Q1,Q1],

s ∈ [−Q2,Q2]}.

Using standard results of Markov decision theory (see
Ch. 6 in Ross, 1992) it is possible to prove, in the same
way as in the case of discrete quantities, that the infinite-
horizon α−discounted cost optimal restocking strategy
has the same threshold-type structure as the correspond-
ing finite-horizon problem. It seems intuitively reason-
able that the average-cost optimal restocking strategy has,
in the case of continuous quantities, the same structure
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Table 3. The critical numbers of the average-cost optimal restocking strategy for Customers 2 and 5

Customer
k1j(q), q ∈ {0, . . . , 12}
j ∈ {2, 5}

k2j(s), s ∈ {−1, . . . ,−10}
j ∈ {2, 5} qj , j ∈ {2, 5} sj , j ∈ {2, 5}

2
k12(0) = 11, k12(1) = 6,
k12(2) = 4,
k12(3) = . . . = k12(12) = 3

k22(−1) = . . . = k22(−4) = −10,
k22(−5) = k22(−6) = −9,
k22(−7) = −8,
k22(−8) = . . . = k22(−10) = 0

q2 = −10 s2 = −8

5
k15(0) = 11, k15(1) = 4,
k15(2) = . . . = k15(12) = 3

k25(−1) = . . . = k25(−6) = −10,
k25(−7) = −9,
k25(−8) = . . . = k25(−10) = 0

q5 = −10 s5 = −8

Figure 10. The optimal decisions after the first visit to Customer 3.

as in the case of discrete quantities. However, a rigor-
ous proof seems to be difficult due to the fact that the
state space I in this case is continuous, since it is not
easy to prove that the minimum expected α−discounted
total cost is equicontinuous (see p. 150 in Ross, 1992).
For the case of continuous quantities, we present below a
numerical example inwhich the optimal restocking strat-
egy is computed under the criterion of minimising the
total expected α− discounted cost.

Example 4: Suppose thatN = 6. The capacities of Com-
partment 1 and 2 are Q1 = 7 and Q2 = 6, respec-
tively. The travel costs between customer j and j + 1,
j ∈ {1, . . . , 6}, are given by: c12 = 12, c23 = 11, c34 =
10, c45 = 11, c56 = 10 and c61 = 12. The travel costs
between customers j, j ∈ {1, . . . , 6} and the depot are
given by: c10 = 15, c20 = 14, c30 = 13, c40 = 12, c50 = 15
and c60 = 13. These costs satisfy the triangle inequality.
We also assume that, for each customer j ∈ {1, . . . , 6}, the
demand ξj for new products which are stored in Com-
partment 1 and the quantity ψj of old products that are
returned from each customer and are placed in Compart-
ment 2 are independent continuous random variables

which followGammadistributions right-truncated in the
intervals [0,Q1] and [0,Q2], respectively.

The probability density function ϕj(x) of the random
variable ξj is given by:

ϕj(x) = [F(Q1)]−1λ
a1
1 xa1−1

�(a1)
e−λ1x, x ∈ [0,Q1],

and the probability density function θj(x) of the random
variable ψj is given by:

θj(x) = [F(Q2)]−1λ
a2
2 xa2−1

�(a2)
e−λ2x, x ∈ [0,Q2],

where a1, λ1 > 0, a2, λ2 > 0, �(a) = ∫∞
0 e−uua−1du,

a > 0 and F(x) = [�(a)]−1 ∫ λx
0 e−uua−1du, x ≥ 0. We

choose a1 = 4, λ1 = 2 and a2 = 5, λ = 3.We also choose
ρ = 0.05 so that the discretised state space is Ĩ =
{(j, kρ, lρ) : j = 1, . . . , 6, −140 ≤ k ≤ 140, −120 ≤ l
≤ 120}. We select α = 0.8 as the value of the discount
factor. In Figure 12, we present the optimal decisions for
Customer 1.

The structure of the optimal restocking strategy, as
expected, is of threshold-type.We implemented the value
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Figure 11. The optimal decisions after the first visit to Customer 6.

Figure 12. The optimal decisions for Customer 1.

iteration algorithm and we choose ε = 10−3 as the toler-
ance number in the stopping criterion of the algorithm.
The algorithm converged to the optimal restocking strat-
egy after 39 iterations. The required computation time
was approximately equal to 8466 s. The 0.8− discounted
total expected cost of the optimal restocking strategy was
found to be approximately equal to 27.65.

6. The problemwhen the customers are not
ordered

We generalise the problem that we introduced in Section
2 by assuming that the customers are not serviced accord-
ing to a predefined order. In this case, there areN! differ-
ent customer sequences that the vehicle may follow. For

each sequence using the suitable dynamic programming
algorithm, we can find the optimal restocking strategy
and the corresponding minimum expected total cost and
then by comparing these minimum costs we can deter-
mine the optimal customer sequence that achieves the
overall minimum cost. Numerical experiments indicate
that, if the demands of the customers for new products,
that are delivered, and the quantities of old products, that
are returned, are discrete random variables, it is possible
to find the optimal customer sequence for values of N up
to 9. If the demands of the customers for new products
and the quantities of old products are continuous random
variables, it is also possible to find the optimal customer
sequence for values of N up to 5. As illustrations, we
present below two numerical examples. In Example 5, the
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Table 4. The optimal customer sequence for N =
3, 4, 5, 6, 7, 8, 9.

N N! Minimum cost Optimal sequence Time 1 Time 2

3 6 152.44 2,1,3 0.0156 0.0123
4 24 189.47 2,4,1,3 0.8298 0.5214
5 120 236.28 2,4,5,1,3 2.0115 1.5881
6 720 280.38 2,4,5,1,6,3 16.2027 6.1533
7 5040 322.91 2,4,5,1,7,6,3 210.6245 122.3542
8 40,320 365.42 5,4,2,8,1,7,6,3 1123 509.1178
9 362,880 416.51 9,5,4,2,8,1,7,6,3 11,936 3845

demands for new products and the quantities of returned
old products are discrete random variables and in Exam-
ple 6, the demands for new products and the quantities of
returned old products are continuous random variables.

Example 5: Suppose that the capacities of Compartment
1 and 2 areQ1 = 10 andQ2 = 8, respectively.We assume
that the number of customers N takes values in the set
{3, 4, . . . , 9}. The travel costs cij between customers i, j ∈
{1, . . . , 9} and the travel costs ci0 between each customer
i ∈ {1, . . . , 9} and the depot are given by the following
symmetric matrix C = (cij), i, j = 0, . . . , 9.

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 28 30 23 22 27 25 24 26 29
28 0 23 21 20 21 22 20 18 22
30 23 0 24 18 20 23 21 17 20
23 21 24 0 19 21 17 20 18 22
22 20 18 19 0 17 21 18 19 20
27 21 20 21 17 0 23 21 19 20
25 22 23 17 21 23 0 20 22 23
24 20 21 20 18 21 20 0 20 21
26 18 17 18 19 19 22 20 0 21
29 22 20 22 20 20 23 21 21 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

These costs satisfy the triangle inequality. For each
customer j, we assume that the demand ξj for new
products and the quantity ψj of returned old prod-
ucts are independent random variables which follow
the discrete Uniform distribution in the set {0, . . . ,Q1}
and in the set {0, . . . ,Q2}, respectively, i.e. Pr(ξj = x) =
(Q1 + 1)−1, x = 0, . . . ,Q1 and Pr(ψj = y)=(Q2 + 1)−1,
y = 0, . . . ,Q2. For N ∈ {3, . . . , 9} we consider the net-
work consisting of customers 1, . . . ,N. In Table 4, we
present for N ∈ {3, . . . , 9} the number N! of all possible
customer sequences, the minimum expected cost among
all customer sequences, the optimal customer sequence,
the required computation time for the determination of
the optimal customer sequence in seconds (Time 1) if
the initial dynamic programming algorithm is used and
the required computation time in seconds (Time 2) if
the special-purpose dynamic programming algorithm is
used.

In Figure 13, we present the graphs that show, as
N takes values in the set {3, . . . , 9}, the variation in

Figure 13. The computation times of the algorithms as N varies.

required computation times, expressed in seconds, for
the determination of the optimal customer sequence, if
the initial dynamic programming algorithm and if the
special-purpose dynamic programming algorithm are
used.

We observe that, as N increases, both computation
times seem to increase exponentially. The required com-
putation time if the special-purpose dynamic program-
ming algorithm is used is considerably smaller than the
required computation time if the initial dynamic pro-
gramming algorithm is used.

Example 6: Suppose that the capacities of Compartment
1 and 2 are Q1 = 7 and Q2 = 6, respectively. We assume
that the number of customers N takes values in the set
{3, 4, 5 }. The travel costs cij between customers i, j ∈
{1, . . . , 5} and the travel costs ci0 between each customer
i ∈ {1, . . . , 5} and the depot are given by the following
symmetric matrix C = (cij), i, j = 0, . . . , 5.

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 20 22 15 17 19
20 0 18 16 15 16
22 18 0 16 15 12
15 16 16 0 17 15
17 15 15 17 0 17
19 16 12 15 17 0

⎞
⎟⎟⎟⎟⎟⎟⎠

These costs satisfy the triangle inequality. For each
customer j, we assume that the demand ξj for new
products and the quantity ψj of old products are inde-
pendent random variables which follow the continu-
ous Uniform distribution in the interval [0,Q1] and
in the interval [0,Q2], respectively, i.e. the probability
density function of ξj is given by: ϕj(x) = Q1

−1, x ∈
[0,Q1] and the probability density function of ψj is
given by: θj(x) = Q2

−1, x ∈ [0,Q2]. We choose ρ = 0.05
so that the discretised state space S̃ for each customer
is the set: {k ∗ 0.05, l ∗ 0.05) : k = −140, . . . , 140, l =
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Table 5. The optimal customer sequence for N = 3, 4, 5.

N N! Minimum cost Optimal sequence Time 1 Time 2

3 6 111.73 1,2,3 923.86 475.07
4 24 143.15 2,4,1,3 5796 2729
5 120 177.75 1,4,2,5,3 35,349 19,129

−120, . . . , 120}. For N ∈ {3, 4, 5} we consider the net-
work consisting of customers 1, . . . ,N. In Table 5, we
present for N ∈ {3, 4, 5} the number N! of all possible
customer sequences, the minimum expected cost among
all customer sequences, the optimal customer sequence,
the required computation time in seconds (Time 1) for
the determination of the optimal customer sequence if
the initial dynamic programming algorithm is used and
the required computation time in seconds (Time 2) if
the special-purpose dynamic programming algorithm is
used.

It can be seen that, as N increases, both computa-
tion times seem to increase exponentially. The required
computation time if the special-purpose dynamic pro-
gramming algorithm is used is considerably smaller than
the required computation time if the initial dynamic
programming algorithm is used.

7. Conclusions and topics for future research

In this work, a capacitated and compartmentalised
stochastic vehicle routing problem was studied. It was
assumed that (i) the customers are serviced according to
a predefined sequence, (ii) the vehicle delivers to each
customer a quantity of new (or fresh or useful) prod-
ucts and collects a quantity of old (or expired or use-
less) products, (iii) the quantities that are delivered and
collected are stochastic; the actual quantities are dis-
closed when the vehicle visits each customer, (iv) the
new and old products are placed in two different com-
partments of the vehicle. We defined six different actions
that can be selected when the vehicle arrives at each cus-
tomer’s site. The cost structure of the problem includes
travel costs between consecutive customers and travel
costs between customers and the depot. A stochastic
dynamic programming algorithm was given that leads
to the restocking strategy that minimises the expected
total cost for servicing all customers. We proved that,
for each customer, the optimal restocking strategy is of
threshold-type. According to this structural result, the set
of all possible states that correspond to each customer
is divided in eight disjoint subsets. The optimal restock-
ing strategy prescribes the same action at all states of
each subset. If the above Assumption (i) does not hold,
it is possible to compute the optimal restocking strat-
egy for moderate values of the number of customers. We

also investigated the corresponding infinite-time hori-
zon problem. We showed that the discounted-cost opti-
mal restocking strategy and the average-cost optimal
restocking strategy have the same structure as the optimal
restocking strategy in the finite-time horizon problem.

A topic for future research could be the determina-
tion of the optimal restocking strategy for a more gen-
eral problem in which (i) the customers are not serviced
according to a particular sequence and (ii) the number of
the customers is large.
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