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Abstract

We consider a system which deteriorates with age and may experience a failure at any time instant. On failure, the sys-
tem may be replaced or repaired. The repair can partially reset the failure intensity of the unit. Under a suitable cost struc-
ture it has been proved in the literature that the average-cost optimal policy is of control-limit type, i.e. it conducts a
replacement if and only if, on the nth failure, the real age of the system is greater than or equal to a critical value. We
develop an efficient special-purpose policy iteration algorithm that generates a sequence of improving control-limit poli-
cies. The value determination step of the algorithm is based on the embedding technique. There is strong numerical evi-
dence that the algorithm converges to the optimal policy.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A great number of stochastic models have been introduced to describe the behavior of a repairable system
that is subject to failure. In most of these models (see e.g. [1,7,11,9,10]) it was assumed that there are only two
types of repair, the perfect repair and the minimal repair. The former results in a functioning system, which is
as good as new, while the latter restores the system to its functioning condition just prior to failure.

Kijima et al. [3] studied the general repair model, in which the repair brings the state of the system to a
certain better state. The minimal repair and the perfect repair are two special cases. They assumed that the
repair and replacement costs are constant and considered a periodical replacement problem where the system
is replaced at only scheduled times kT, k = 0,1, . . . and is repaired whenever it fails. The long-run average cost
per unit time was derived and an approximation procedure, which can be used to find the optimal replacement
period, was proposed.
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Makis and Jardine [6] generalized the above repair/replacement process by formulating a suitable semi-
Markov decision model. The system failure instants are the decision epochs. A two dimensional infinite state
space was utilized, where the state of the process consists of the number of failures and the real age of the
system. The first state variable is discrete while the second one is continuous. The replacement cost was
assumed to be fixed and the repair cost was assumed to depend on the number of failures and the age of
the system. Under some conditions on the costs and the failure rate of the system, Makis and Jardine showed
that the policy that minimizes the long-run expected average cost per unit time is of control-limit type, i.e. it
replaces the system at the nth failure if and only if its age is greater than or equal to some critical value that
depends on n.

Love et al. [5] approximated the semi-Markov decision model of Makis and Jardine with a finite-state dis-
crete semi-Markov decision model, by truncating the state space and by discretizing the second state variable.
They determined the one-step transition probabilities and transition times for the reformulated model and
developed an algorithm that generates a sequence of strictly improving control-limit policies. In the last par-
agraph of Section 3 of their paper, they mention that the algorithm determines the optimal control-limit pol-
icy. As we will explain in Section 3 of the present article, there is no proof of this assertion, though there is
strong numerical evidence that it is true.

The main purpose of the present paper is to improve the algorithm of Love et al. by applying Tijms’s [13, p.
234] embedding technique. In our problem it is possible to find explicit expressions for all quantities that are
needed for the application of the embedding technique. This technique reduces considerably the calculations in
the value determination step of the algorithm, which have been increased considerably because of the discret-
ization of the second state variable.

The rest of the paper is organized as follows. The description of the problem and the relevant finite-state
semi-Markov decision model are given in the next section. In Section 3 we develop the special-purpose policy
iteration algorithm by applying Tijms’s embedding technique. Some numerical results are presented in Section
4.

2. Model formulation

Consider a system that deteriorates over time and is subject to failures. The state of the system is repre-
sented by the pair of variables (n, tn), where n denotes the nth failure and tn the real age of the system at that
instant. The first variable (n) is discrete and the second one (tn) is continuous. The state space is the following
continuous set:
I ¼ fðn; tnÞjn ¼ 1; 2; . . . ; tn P 0g:
A maximum number N of failures before replacement and a number B, as the upper bound on the real age of
the system, are assumed. Following Love et al. [5] we discretize the second state variable as follows. The real
age axis is divided into a set of equally spaced age slices and we regard that the nth failure occurs at the age
slice in. A scaling parameter n is also defined as the number of time slices in a real time unit to relate the time
slice in to the real time tn. Thus, if the nth failure occurs at the age slice in, we assume that the real age of the
system at that failure instant is between in/n and (in + 1)/n.

Henceforth we suppress the subscript n on the age slices in and simply refer to the age slice as i. The state
space I is approximated by the following finite and discrete set:
S ¼ fðn; iÞj1 6 n 6 N ; 0 6 i 6 Mg;
where M = Bn. Note that we can increase the accuracy of this approximation by increasing the values of N, B,
n.

The decision epochs are the system failure instants. At each decision epoch two actions a 2 {0,1} may be
taken. The system either can be repaired (a = 1) or can be replaced by a new identical one (a = 0). It is
assumed that both maintenance activities are executed in negligible time.

In states (N, i),0 6 i 6M, and (n,M),1 6 n 6 N, the action of replacement is mandatory and brings the sys-
tem to the states (1, j), where 0 6 j 6M. If at a decision epoch, the system is in states (n, i), 1 6 n 6 N � 1,
0 6 i 6M � 1, and the action of repair is selected, the system makes a transition to the states (n + 1, j), where
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i 6 j 6M. If at a decision epoch, the system is in states (n, i), 1 6 n 6 N � 1, 0 6 i 6M � 1, and the action of
replacement is selected, the system makes a transition to the states (1, j), where 0 6 j 6M.

We suppose that a fixed cost C0 is incurred when at a decision epoch the system is replaced by a new one. A
cost C1(n, i) is also incurred if at a decision epoch the system is in state (n, i) and the repair action is selected.
We assume that C1(n, i) is non-decreasing in n and i.

Let Xn,2 6 n 6 N � 1, be the time between the (n � 1)th and the nth failure of the system. Let also f(x) and
F(x) be the probability density function and the distribution function, respectively, of the time to the first fail-
ure. Following Kijima et al. [3], Makis and Jardine [6] and Love et al. [5], if the repair action a = 1 is chosen in
state (n, i),1 6 n 6 N � 1, 0 6 i 6M � 1, the virtual age of the system after the repair is assumed to be (hi)/n,
where 0 6 h 6 1, and the probability density function of Xn+1 is
fhi
n
ðxÞ ¼

f xþ hi
n

� �
F hi

n

� � ; x > 0;
where F ðxÞ ¼ 1� F ðxÞ; x > 0: Note that the parameter h represents the degree of repair. If h = 1, the virtual
age of the system after the nth repair is equal to its real age which means that a minimal repair was performed.
If h < 1, the virtual age of the system is strictly smaller than i, meaning that the system is rejuvenated by the
repair.

Our assumptions imply that we have a semi-Markov decision model with state space S. Our goal is to find
the policy that minimizes the expected long-run average cost per unit time. Note that the state (1,0) can be
reached from every state under every stationary policy. Hence, there exists an optimal stationary policy
(see [12, p. 149]). Makis and Jardine [6] proved that, if the function f(x) and the failure rate of the system sat-
isfy some suitable conditions, the optimal policy is of control-limit type, i.e. it replaces the system at the nth
failure, n = 1, . . . ,N � 1, if and only if the corresponding age slice i is greater than or equal to some critical
value s�n. They also proved that s�1 P s�2 P � � �P s�N�1.

In Section 3 we will present an efficient semi-Markov decision algorithm to compute the optimal stationary
policy.
3. The algorithm

We can compute the optimal policy by implementing the standard policy iteration, value iteration and lin-
ear programming algorithms. For a description and various applications of these algorithms we refer to Chap-
ter 3 of Tijms’s [13] book. It is also possible to develop a computationally tractable algorithm which operates
on the class of control-limit policies and generates a sequence of improving control-limit policies. The algo-
rithm generates policies such that for each n, 1 6 n 6 N � 1, and given a degree of repair h, 0 6 h 6 1, initiate
the replacement of the system if and only if the corresponding age slice is equal to or greater than some critical
number sn. By comparing the results of our algorithm with those of the standard policy iteration and value
iteration algorithms there is strong numerical evidence that the final policy obtained by the algorithm is the
optimal one, since it coincides with the final policy obtained by the standard algorithms. The design of the
algorithm is based on the embedding technique of Tijms (see [13, p. 234]). Similar algorithms have been pro-
posed in various queueing, inventory, maintenance and pest control models. We refer to the book of Tijms [13,
pp. 234–248] and the papers of Nobel and Tijms [8] and Kyriakidis [4].

The description of the algorithm follows. We consider a particular control-limit policy R which for each
number of failures n, 1 6 n 6 N � 1, and given a degree of repair h is characterized by the critical numbers
sn, 1 6 n 6 N � 1. We define the set of states E as
E ¼ fðn; iÞj1 6 n 6 N � 1; 0 6 i 6 sn � 1g:
Note that the set E can be reached from every initial state (n, i) 2 S if the policy R is employed. The embedding
technique can be applied if we take the set E as the embedded set of states. Let g(R) be the long-run expected
average cost per unit time and, sE

s and cE
s be the expected time and the expected cost, respectively, until the first

entry in the set E, if the initial state of the system is s 2 S and the policy R is employed. Let also pE
sr be the
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probability that the first entry state in the set E equals r given that the policy R is employed and the initial state
of the system is s 2 S. It is assumed that for the initial state s 2 E the first entry state in the set E is the state at
the next return to the set E.

According to the relation (3.6.1) in [13, p. 235] the relative values h(s), s 2 S, associated with the policy R
satisfy the following system of linear equations:
hðsÞ ¼ cE
s � gðRÞsE

s þ
X
r2E

pE
srhðrÞ; s 2 S; ð1Þ

hð1; 0Þ ¼ 0: ð2Þ
The quantities sE
s , cE

s and pE
sr; s 2 S; r 2 E, can be computed by using simple conditional arguments and by

taking into account the transitions of the system under the policy R. The expressions for these quantities
are given below. The derivation of the expression (3) is given in detail in the appendix. The other expressions
can be obtained similarly.
sE
ðn;iÞ ¼

Z 1

0

xfhi
n
ðxÞdxþ

Z 1

snþ1�i
n

fhi
n
ðxÞdx

R1
0

xf ðxÞdxR s1
n

0 f ðxÞdx
; ðn; iÞ 2 E;

sE
ðn;iÞ ¼

R1
0

xf ðxÞdxR s1
n

0 f ðxÞdx
; ðn; iÞ 2 S � E;

cE
ðn;iÞ ¼ C1ðn; iÞ þ C0

R1
snþ1�i

n
fhi

n
ðxÞdxR s1

n

0 f ðxÞdx
; ðn; iÞ 2 E;

cE
ðn;iÞ ¼

C0R s1
n

0 f ðxÞdx
; ðn; iÞ 2 S � E;

pE
ðn;iÞðnþ1;jÞ ¼

Z j�iþ1
n

j�i
n

fhi
n
ðxÞdx; 0 6 i < sn; i 6 j < snþ1; 1 6 n 6 N � 2;

pE
ðn;iÞð1;jÞ ¼

Z 1

snþ1�i
n

fhi
n
ðxÞdx

Z jþ1
n

j
n

f ðxÞdx
Z s1

n

0

f ðxÞdx

 !�1

; 0 6 i < sn; 0 6 j < s1; 1 6 n 6 N � 2;

pE
ðn;iÞð1;jÞ ¼

Z jþ1
n

j
n

f ðxÞdx
Z s1

n

0

f ðxÞdx

 !�1

; sn 6 i 6 M ; 0 6 j < s1; 1 6 n 6 N � 2;

pE
ðN�1;iÞð1;jÞ ¼

Z jþ1
n

j
n

f ðxÞdx
Z s1

n

0

f ðxÞdx

 !�1

; 0 6 i 6 M ; 0 6 j < s1: ð3Þ
The relative values h(s), s 2 E, and the average cost g(R) can be computed by solving the system of linear
equations:
hðsÞ ¼ cE
s � gðRÞsE

s þ
X
r2E

pE
srhðrÞ; s 2 E; ð4Þ
together with Eq. (2). The so-called policy improvement quantity QR(s;a) associated with the policy R is de-
fined by
QRðs; aÞ ¼ csðaÞ � gðRÞssðaÞ þ
X
r2S

pðaÞsr hðrÞ; s 2 f1; . . . ;N � 1g � f0; . . . ;M � 1g; a 2 f0; 1g; ð5Þ
where psr(a) is the probability that the next state of the process is the state r 2 S, given that the present state of
the system is s and the action a 2 {0,1} is chosen, and ss(a), cs(a) are the corresponding one-step expected tran-
sition time and cost, respectively. The transition probabilities psr(a) are given by the following relations:
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pðn;iÞðnþ1;jÞð1Þ ¼
Z j�iþ1

n

j�i
n

fhi
n
ðxÞdx; 1 6 n 6 N � 1; 0 6 i 6 j 6 M � 1; ð6Þ

pðn;iÞðnþ1;MÞð1Þ ¼
Z 1

M�i
n

fhi
n
ðxÞdx; 1 6 n 6 N � 1; 0 6 i 6 M � 1; ð7Þ

pðn;iÞð1;jÞð0Þ ¼
Z jþ1

n

j
n

f ðxÞdx; 1 6 n 6 N ; 0 6 i 6 M ; 0 6 j 6 M � 1; ð8Þ

pðn;iÞð1;MÞð0Þ ¼
Z 1

M
n

f ðxÞdx; 1 6 n 6 N ; 0 6 i 6 M : ð9Þ
The expression (6) can be easily explained by noting that, if the system is repaired when it is in state (n, i), then
the next state is (n + 1, j) if the time between the nth failure of the system and the (n + 1)th failure of the system
belongs to the interval [(j � i)/n, (j � i + 1)/n]. The expression (8) is derived similarly. In Eqs. (7) and (9) we
have consolidated all cases where j P M into the states (n + 1,M) and (1, M), respectively, such that the fail-
ures occurring beyond M are put on M. The one-step expected transition times are given by expressions (8)
and (9) of Love et al.[5]. The quantities cs (a), s 2 S, a 2 {0,1} are given by c(n, i)(1) = C1(n, i) and c(n, i)(0) = C0.

Suppose that for some number of failures n(1 6 n 6 N � 1), there exists a number ~sn such that 0 6 ~sn < sn

and QR((n, i);0) < h(n, i), ~sn 6 i < sn. Then, according to the semi-Markov version of Theorem 3.2.1 in Tijms
[13, p. 192], the control-limit policy that is characterized by the critical numbers: s1; . . . ; sn�1;~sn; snþ1; . . . ; sN�1,
achieves smaller average cost than g(R). Similarly, if for some number of failures n(1 6 n 6 N � 1) there exists
a number ~sn such that sn < ~sn 6 M and QRððn; iÞ; 1Þ < hðn; iÞ; sn 6 i < ~sn, then, according again to the semi-
Markov version of Theorem 3.2.1 in [13, p. 192], the control-limit policy that is characterized by the critical
numbers: s1; . . . ; sn�1;~sn; snþ1; . . . ; sN�1 achieves smaller average cost than g(R).

The above remarks lead us to design the following special-purpose policy iteration algorithm which gener-
ates a sequence of strictly improving control-limit policies. The corresponding Matlab program can be found
in the Web site: http://www.actuar.aegean.gr/Faculty/Algorithm2.html.

3.1. Special-purpose algorithm

Step 1: (Initialization). Choose a limit on the number of repairs N, an upper bound of the real age of the sys-
tem B, a scaling parameter n and a degree of repair h 2 [0,1]. Choose an initial control-limit policy R

characterized by the critical numbers sn, 1 6 n 6 N � 1.
Step 2: (Value-determination step). For the current control-limit policy R compute the average cost g(R) and

the associated relative values h(s), s 2 E, by solving the system of linear Eqs. (4) and (2).
Step 3: (Policy improvement step). For each n = 1, . . . ,N:

(a) Find, if it exists, the smallest number ~sn such that 0 6 ~sn < sn and QRððn; iÞ; 0Þ < hðn; iÞ;~sn 6 i < sn.
Otherwise,

(b) find, if it exists, the largest number ~sn such that sn < ~sn 6 M and QRððn; iÞ; 1Þ < hðn; iÞ; sn 6 i < ~sn.

The quantities QR((n, i);1) and QR((n, i);0) are given by (5), where, if it is necessary, the relative values
h(s), s 2 S � E, can be computed from Eq. (1).
Replace sn by ~sn for those n, 1 6 n 6 N � 1, for which it is possible to find a number ~sn and go to Step
2.

Step 4: (Convergence test). If it is not possible to find any ~sn; 1 6 n 6 N � 1, the algorithm is stopped. The
final policy is R with average cost g(R).

The algorithm generates a sequence of strictly improving control-limit policies and stops after a finite num-
ber of iterations since the set of control-limit policies is finite. It differs from the algorithm proposed by Love
et al. (see Section 3 in [5]) in the value determination step. Specifically, in the value determination step of our
algorithm, the average cost of the current control-limit policy and the associated relatives values, that corre-
spond to the set E, are computed, while in the value determination step of the algorithm of Love et al., the
average cost of the current control-limit policy and the associated relative values, that correspond to the ele-

http://www.actuar.aegean.gr/Faculty/Algorithm2.html


780 T.D. Dimitrakos, E.G. Kyriakidis / European Journal of Operational Research 182 (2007) 775–782
ments of the entire state space S, are computed. In the policy improvement step of our algorithm, the relative
values that correspond to the set S � E can be computed from (1), if it is necessary. Note also that in our algo-
rithm the upper bound Bof the real age of the system is not needed when computing the average cost and the
relative values of a specific control-limit policy. There is strong numerical evidence that the algorithm con-
verges to the optimal policy. The computational time required by our algorithm is smaller than the computa-
tional time required by the standard policy iteration algorithm and by the algorithm proposed by Love et al.
This is due to the fact that the number of the unknowns in the value determination step of our algorithm is
equal to the number of the elements of the embedded set of states E while the number of the unknowns in the
value determination step of the standard policy iteration algorithm and of the algorithm of Love et al. is equal
to the number of elements of the entire state space S. Note also that from a great number of examples that we
have tested, there is strong evidence that the number of iterations of the special-purpose policy iteration algo-
rithm is not especially influenced by the initial control-limit policy.

Love et al. mention that the final policy of the algorithm is the optimal one. Although there is strong evi-
dence, from a great number of examples that we have tested, that the assertion is true, a rigorous proof seems
to be difficult. Note that in other Markov decision models (see e.g. [2,4]) it was possible to prove that the final
policy obtained by similar special-purpose policy iteration algorithms is the optimal one. However in these
models the state space was one-dimensional and it was possible to prove that the average cost under a con-
trol-limit policy is a unimodal function with respect to the critical point. A consequence of this result is the
optimality of the final policy.

4. Numerical examples

As illustrations of the algorithm we present two examples. In Examples 1 and 2 below we assume that the
lifetime distribution of a new system is Gamma and Weibull, respectively. For the determination of the one-
step transition probabilities and of the one-step expected transition times in the following examples we refer to
Appendix A of Love et al. [5].

Example 1. We assume that the lifetime distribution of a new system follows the Gamma (a,k) distribution,
where a > 0 is the shape parameter and k > 0 is the scale parameter. The probability density function is given
by: f ðxÞ ¼ kaxa�1

CðaÞ expð�kxÞ; x > 0, where, C(Æ) denotes the gamma function. Suppose that N = 9, B = 10,
h = 0.3, a = 3, k = 3. We further assume that the scaling parameter n may take the values 10, 20, 50, 100 and
C0 = 4. Let also C1ðn; iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

; 1 6 n 6 8; 0 6 i 6 Bn� 1. As initial control-limit policy we choose the
policy that is characterized by the critical numbers sn = 10n, 1 6 n 6 8. In Table 1 below we present the
successive control-limit policies generated by the algorithm. We point out that for each value of n, 1 6 n 6 8, a
control-limit policy that is characterized by the numbers sn, prescribes the replacement of the system if and
only if the real age of the system is equal to or greater than sn/n.

In Table 2 we present for each value of n 2 {10,20,50,100} the CPU time (in seconds) of the Matlab pro-
gram for our special-purpose algorithm that we run on a PC Acer Aspire 1605 DLC. We also give the required
CPU times for the standard policy iteration algorithm and the algorithm of Love et al. Furthermore, the aver-
age cost of the final policy obtained by the three algorithms is given.

Example 2. We assume that the lifetime distribution of a new system is Weibull (a,k) where a > 0 is the shape
parameter and k > 0 is the scale parameter. The probability density function is given by: f(x) =
ak(kx)a�1exp[ � (kx)a], x > 0. Suppose that N = 9, B = 5, a = 5, k = 2, h = 0.8. We further assume that the
scaling parameter n may take the values 10, 20, 50, 100 and C0 = 6. Let also C1(n, i) = i/n,
Table 1
The critical numbers sn, 1 6 n 6 8 of the successive policies for Example1

s1 = s2 = � � � = s8 = 10n
s1 = 5n, s2 = 0.6n, s3 = 0.3n, s4 = � � � = s8 = 0
s1 = 5n, s2 = 2.6n, s3 = 1.7n, s4 = 1.1n, s5 = 0.8n, s6 = 0.5n, s7 = 0.3n, s8 = 0.1n
s1 = 5n, s2 = 2.3n, s3 = 1.4n, s4 = n, s5 = 0.6n, s6 = 0.4n, s7 = 0.1n, s8 = 0



Table 2
The minimum average costs and CPU times for Example 1 for different values of n

n Minimum average
cost

Our algorithm
(seconds)

Policy iteration algorithm
(seconds)

Algorithm of Love et al.
(seconds)

10 2.8996 16 50 44
20 2.9033 34 135.1 123
50 2.9054 79.5 275.6 254.5

100 2.9096 166.2 565.8 550.3

Table 3
The critical numbers sn, 1 6 n 6 8 of the successive policies for Example 2

s1 = s2 = � � � = s8 = 5n
s1 = 3.7n, s2 = 3.3n, s3 = 2.9n, s4 = 2.5n, s5 = 2.2n, s6 = 1.9n, s7 = 1.6n, s8 = 1.4n
s1 = � � � = s5 = 2.5n, s6 = 2.3n, s7 = s8 = 2.2n
s1 = � � � = s8 = 2.4n

Table 4
The minimum average costs and CPU times for Example 2 for different values of n

n Minimum average
cost

Our algorithm
(seconds)

Policy iteration algorithm
(seconds)

Algorithm of Love et al.
(seconds)

10 2.0803 17 48 42
20 2.0828 36.7 135.3 123
50 2.0863 73.2 281.1 254.6

100 2.0898 152.6 574.5 557.2
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1 6 n 6 8,0 6 i 6 Bn � 1. As initial control-limit policy we choose the policy which is characterized by the
critical numbers sn = 5n, 1 6 n 6 8. As in the previous example, in Table 3 we present the successive control-
limit policies generated by the algorithm and in Table 4 we give the minimum average costs and the required
CPU times for each value of n 2 {10,20,50,100}.

In both examples the successive policies generated by our algorithm are the same for all values of
n 2 {10,20,50,100}. However, as n varies, there is a slight difference between the values of the average cost
of the final policy of the algorithms. This can be explained since the discrete state space S approximates better
the initial continuous state space I, as the scaling parameter n increases. In Example 2 the critical numbers sn of
the final policy are the same for all n, 1 6 n 6 8, since the repair cost C1 (n, i) does not depend on n.

It can be seen from Tables 2 and 4 that, for both examples, the computation time required by our algorithm
is considerably smaller than the computational times required by the algorithm of Love et al. and by the stan-
dard policy iteration algorithm. This difference increases as the scaling parameter n increases.

Appendix. Derivation of expression (3)

Assume that the control-limit policy R that is characterized by the critical points s1, . . . , sN�1 is used and the
initial state is (n, i), 0 6 i 6 sn � 1, 1 6 n 6 N � 2. For the first entry state into the set E to be the state (1, j),
0 6 j 6 s1 � 1, it is necessary that the real age of the system at its (n + 1)th failure is greater than sn+1/n. The
probability of this event is equal to
P 1 ¼
Z 1

snþ1�i
n

fhi
n
ðxÞdx: ð10Þ
Hence,
pE
ðn;iÞð1;jÞ ¼ P 1P 2; ð11Þ
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where P2 is the probability that the first entry state in the set E under the policy R is the state (1, j), given that
the initial state is some state (n + 1, i 0), i 0 > sn+1.

Suppose that (n + 1, i 0), i 0 > sn+1, is the initial state. The system is replaced and its real age at its first failure
may be greater than or smaller than s1/n. If it is greater than s1/n, it will be replaced again. The probability that

the first entry state in E is the state (1, j) after one replacement is equal to
R ðjþ1Þ=n

j=n f ðxÞdx, the probability

that the first entry state in E is the state (1, j) after two replacements is P 3

R ðjþ1Þ=n
j=n f ðxÞdx, where

P 3 ¼
R1

s1=n
f ðxÞdx, the probability that the first entry state in E is the state (1, j) after three replacements is

P 2
3

R ðjþ1Þ=n
j=n f ðxÞdx and so on. Hence, summing all these probabilities we have that
P 2 ¼
Z jþ1

n

j
n

f ðxÞdxþ P 3

Z jþ1
n

j
n

f ðxÞdxþ P 2
3

Z jþ1
n

j
n

f ðxÞdxþ � � � ¼ 1

1� P 3

Z jþ1
n

j
n

f ðxÞdx: ð12Þ
The relations (10)–(12) yield the expression (3).
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