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OPTIMAL CONTROL OF TWO COMPETING DISEASES
WITH STATE-DEPENDENT INFECTION RATES
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: Abstract

A two-dimensional simple stochastic epidemic process is introduced in which the
infection rates depend on a power of the number of the infectives. It is assumed that one
of the diseases is serious while the other is relatively harmless. Policies for introducing
infection by the harmless disease or for isolating infectives with the serious disease are
considered: Suitable dynamic programming algorithms are given for the determination of
the policy, which minimises the expected future cost at any stage. For the corresponding
deterministic model, the optimal policy is found analytically in two cases, and is compared
numerically with the optimal policy for the stochastic model.
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1. The model

Consider a population of size N in continuous time ¢+ > 0, in which susceptibles are
simultaneously exposed to two diseases. It is assumed that at any time r at most one susceptible
can become infected. Once an individual becomes infected by disease r (r = 1, 2), he or she
remains an infective for that disease and cannot be infected by the other.

Let X(t), Y(#) (0 < X(t) + Y(r) < N) be the random numbers of infectives at time ¢
having the diseases 1 and 2, respectively. It is assumed that the probabilities for a new infective
with disease 1 and 2 in a ime interval (1, ¢ + 1) when X (t) = x and Y (1) = y are equal to
cix*(N — x — y)ét 4+ o(ét) and Czy”(N — x — y)dt, respectively, where ¢y, c3,a, 8 > 0.
All other transitions have probability o(8r). The process terminates when the total number of
infectives with diseases 1 and 2 becomes N, which will almost surely happen within finite time.
The random walk embedded in the process has transitions
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If « = B = 1, the model coincides with the two-dimensional simple epidemic process
introduced by Billard er al. (1979). The parameters @ and B are referred to as the infection
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powers of diseases 1 and 2, respectively. The notion of infection power was introduced by
Severo (1969), who considered a generalization of the simple stochastic epidemic process and
obtained its transient probabilities.

Suppose that disease 1 causes serious symptoms which reduce the productivity of the infected
individual. The cost to society of an individual becoming infected by disease 1 is assumed to
be fixed, and we define this to be the unit of cost. Disease 2 is assumed to be relatively harmless
and no cost is assigned to individuals infected by it. We shall consider policies which at any
time allow us to infect deliberately any number of the remaining susceptibles with disease 2.
each at a cost K. For example, this controlling action could be carried out by vaccinating some
or all of the remaining susceptibles with the milder disease 2. We shall also consider policies
that, at any time, isolate any number of the infectives with disease 1. The cost of isolating each
infective with disease 1 is equal to L > 0. We state four optimization problems for this model.

Problem 1. Find the policy which minimises the expected future cost for every initial state,
if it is possible at any time to infect deliberately with disease 2 any number of the remaining
susceptibles.

Problem 2. Find the policy which minimises the expected future cost for every initial state, if
it is possible at any time to isolate any number of the infectives with disease 1.

Problem 3. Find the policy which minimises the expected future cost for every initial state, if
it is possible at any time to isolate all or none of the infectives with disease 1.

Problem 4. Find the policy which minimises the expected future cost for every initial state,
if it is possible at any time to infect deliberately with disease 2 any number of the remaining
susceptibles, or to isolate all or none of the infectives with disease I.

In two previous papers by Kyriakidis (1995), (1999), suitable dynamic programming algo-
rithms were developed for Problems 1 and 3 in the case in which @ = 8 = 1. Furthermore,
the corresponding deterministic problems were studied and the optimal policies were found
analytically and compared with the optimal policies for the stochastic problems. The above
optimisation problems are related to two optimisation problems introduced by Abakuks (1973),
(1974), which are concerned with optimal isolation and immunisation policies, respectively, in
the general stochastic epidemic. Abakuks proved that for a given number of susceptibles the
optimal policy initiates the controlling action (i.e. isolation of infectives or immunisation of
susceptibles) if and only if the number of infectives is smaller than a critical level or exceeds a
critical level, respectively. Clancy (1999) recently extended Abakuks’s results by considering
epidemic models with more general infection and removal rate functions.

The rest of the paper is organized as follows. In the next section, suitable dynamic pro-
gramming algorithms are developed for Problems 1, 3 and 4. In Section 3 the corresponding
deterministic model is considered. For Problem 1 the optimal policy is found analytically when
a # 1and 8 = 1. For Problem 2 the optimal policy is found analytically when o« = 1 and
B # 1. These optimal policies are compared numerically with the optimal policies for the
stochastic version of the problems.

2. Dynamic programming algorithms

According to the above assumptions, we know what state (x, y) we are in at any time, and
in finding the optimal policy we need only consider the space of paired values (x, y), where
0<x,y<Nand0 < x + y < N. We will consider Problems 1, 3 and 4 below.
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FiGure 1: The optimal policy for Problem 1 when (N, K, «, 8, ¢1, ¢2) = (10,1,2,1,1.5, 1).

2.1. Problem 1

According to the hypothesis for this problem, in any state (x, y) with x + y < N we may
either (1) allow (x, y) to make a transition according to the random walk defined by (1) and (2),
the transitions to (x + 1, y) and to (x, y + 1) costing 1 and 0 units, respectively, or else (ii)
infect one susceptible deliberately with disease 2 at a cost K; this corresponds to making the
instantaneous transition (x, y) — (x,y + 1). Note that, if y < N —n — x, a sequence of n
choices of controlling action (ii) will result in the infection of 7 susceptibles: this corresponds to
making the instantaneous transition (x, y) — (x, y +n). Defining V(x, y) to be the expected
future cost of adopting an optimal policy when the epidemic is in state (x, y), and W(x, y)
to be the expected future cost of waiting for one transition to occur naturally and adopting an
optimal policy from then on, then

Vix,N—-x)=0, 0<x <N, 3)
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O<x+y<N, &)
Vx,y) =min{K + V(x,y+ 1), W(x, »)}, O<x+y<N. (5)

Equation (5) is known as the dynamic programming equation (see, for example, Ross (1983,
p- 3)). When the epidemic is in state (x, y) and K + V(x, y+1) < W(x, y), the optimal policy
prescribes the deliberate infection with disease 2 of at least one susceptible. This is effectively
action (ii). If W(x, y) < K + V(x, y + 1), the optimal policy prescribes no intervention in
the evolution of the process. Equations (3)-(5) enable us to find V (x, y) numerically for every
state (x, y) such that 0 < x 4y < N they also determine the corresponding action prescribed
by the optimal policy.

As an cxample we consider the case in which N = 10, K = l,a =2, 8 =1,c; = 1.5,
¢2 = 1. The optimal policy for these values of the parameters is presented in Figure 1, where
for each state (x, y) (0 < x +y < 9) the action (i) is denoted by 0 and the controlling action (ii)
is denoted by 1. Note that in Figure 1 there is no 1 lying above a 0. Extensive numerical results
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for various values of the parameters indicate that the optimal policy always has this property.
Thus we are led to the following conjecture concerning the form of the optimal policy.

Conjecture for Problem 1. For each integer x (0 < x < N) two cases are possible:

1. The oprimal policy prescribes no intervention in the evolution of the process ar all states
(x,y),(0<y<N-—x).

2. There exists an integer ¥ (0 < ¥ < N — x) such that the optimal policy prescribes the
controlling action (ii) ar all states (x, y) (0 < y < y) whereas it does not intervene in
the evolution of the process at all states (x, y) (¥ <y < N — x).

2.2. Problem 3

According to the hypothesis for this problem, in any state (x, y) with x + y < N we may
either (i) allow (x, y) to make a transition according to the random walk defined by (1) and
(2), or else (ii) isolate all infectives with disease 1 at a cost Lx; this corresponds to making the
instantaneous transition (x, y) — (0, y). The dynamic programming equation is now given by

V(x,y) = min{Lx, W(x, )}, O<x+y<N.

When the epidemic is in state (x, y) and Lx < W(x, y), the optimal policy prescribes the
‘isolation of x infectives with disease 1. This is effectively action (ii). If W(x, y) < Lx, it
prescribes no intervention in the evolution of the process. This is effectively action (i).

As an example, we consider the case in which N = 10, L = 0.6, = 1, 8 =0.5,¢; = 0.8,
c2 = 1.2. The optimal policy for these values of the parameters is presented in Figure 2, where
for each (x, y) (0 < x + y < 9) the action (i) is denoted by O and the controlling action (ii) is
denoted by 2. Note that in Figure 2, there is no 2 lying to the right of a 0. Extensive numerical
results for various values of the parameters indicate that the optimal policy always has this
property. Thus, we are led to the following conjecture concerning the form of the optimal

policy.
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FIGURE 2: The optimal policy for Problem 3 when (N, L,a, 8, ¢1, ¢2) = (10, 0.6, 1, 0.5, 0.8, 1.2).
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Conjecture for Problem 3. For each integer y such that 0 < y < N two cases are possible:

1. The optimal policy prescribes no intervention in the evolution of the process at all states
x,»O0=x<N-=-y)

2. There exists an integer i (1 < X < N — y) such that the optimal policy prescribes the
controlling action (ii) at all states (x, y) (1 < x <'X), whereas it does not intervene in
the evolution of the process at all states (x, y) (X <x < N — y).

Note that if we consider Problem 2, which permits a wider class of intervention policies, the
implementation of the corresponding dynamic programming algorithm does not seem possible.

2.3. Problem 4

According to the hypothesis for this problem, in any state (x, y) withx +y < N we may (i)
allow (x, y) to make a transition according to the random walk defined by (1) and (2), or a1
infect one susceptible deliberately with disease 2 at a cost K or (iii) isolate all infectives with
disease 1 at a cost Lx. The dynamic programming equation is now given by

V(x,y) =min{K + V(x,y + 1), Lx, W(x, y)}, O<x+y<N.

In any state (x, y), if W(x,y) < min{K + V(x, y + 1), Lx} we choose action (1), if min{K +
Vix,y + 1),Lx) < W(x,y)and K + V(x,¥ + 1) < Lx we choose action @i1), and if
min{K + V(x.y+ 1), Lx} < W(x,y)and Lx < K + V(x, y + 1) wechoose action (iii).

As an example we consider the case in which N = 10, K = 0.6, L = 07, ¢ = 1.1,
B = 1.3,c; = 0.8, c2 = 0.9. The optimal policy for these values of the parameters is presented
in Figure 3, where for each state (x, y) (0 < x + y < 9) the action (i) is denoted by 0, the
action (ii) by 1 and the action (iii) by 2. Note that in Figure 3, three separate regions appear
that include Os, Is and 2s. There is no 2 lying to the right of a 0 and there is no 1 or 2 lying
above a 0. Extensive numerical results for various values of the parameters indicate that the
optimal policy always has these properties. An analytic proof seems to be difficult.
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FiGure 3: The optimal policy for Problem 4 when (N,K,L,a, B,c1,¢2) = (10,0.6,0.7,1.1,
" 1.3,0.8,09).
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3. The optimal policy for the deterministic model

In the corresponding deterministic model, the numbers x and »(0 < x, y < N)of infectives
with diseases 1 and 2, respectively, are regarded as continuous variables and they satisfy the
differential equations

& ax¥(N —x —y), r_ cayP(N —x — ). (6)
dr dr

The process terminates when x + y = N. As for the stochastic case, suppose that the cost to
society of an individual infected by disease 1 is fixed, and we define this to be the unit of cost.
We shall consider policies which at any time > 0 allow us to infect deliberately with disease 2
any number of the remaining susceptibles, each at a cost X > 0, and policies which at any time
1 > 0 allow us to isolate any number of the infectives with disease l,eachatacost L > 0. We
present below analytic solutions for Problem 1 in the case in which o # land 8 = 1, and for
Problem 2 in the case in whicha = 1 and 8 # 1.

3.1. Problem 1,ifa £ 1,8 =1

Suppose that (xg, yg) is the initial state. From (6) it follows that the two-dimensional
deterministic epidemic lies on the curve

y=yoexple(l ~ o)~ (!¢ —x["®)],  xp < x < E(x0. yo),
where, ¢ = ¢2/cy and & (xg, vg) is the unique root in (xg, MY of the equation for x,
yoexple(l —a) ' (x!™* —x} ™)+ x = N = 0. (7)

If the initial state of the epidemic is (0, yg) with yg 3 0, then the curve of the epidemicisx = 0,
Yo <y < N, and consequently no controlling action has to be taken during the epidemic. If
the initial state of the epidemic is (xg, 0) with xo # 0, then the cost of the epidemic if we never
intervene in its evolution is equal to the number of individuals infected by disease 1. Hence,

C(xo, yo) = &(xq, yo) — xo. (8)

Suppose that when the epidemic is in state (x0, y0), we infect Ayg susceptibles, and then
do not intervene any further in the evolution of the epidemic. The cost of such a policy is
K Ayg + C(xo, yo + Ayg), which is smaller than C(xg, yo) if

Clxg, vo + Avg) — C(x9, yo) <
Ayo

-K.

If Ayg is small, the above inequality is approximately equivalent to 8& (xg, v9)/dyg < —K and
we are led to the conjecture that the optimal policy at the state (x0, yo) prescribes the deliberate
infection with disease 2 of some of the remaining susceptibles if 9&(xg, Yo)/dvo < —K,
whereas if 8§ (xq, y0)/0y0 > — K, the optimal policy does not prescribe any controlling action
at (xo, y0). This conjecture can be proved in a way similar to the case in which & = LB=1
(see Kyriakidis (1995)). The relevant result is presented in Proposition 1 and corresponds
to the conjecture for Problem 1 for the stochastic model. For notational convenience, let P,
(0 < 8 < N — xp — yo) denote the policy in which 8 susceptibles are infected with disease 2
at the initial state (xg, ¥o), with no further intervention in the evolution of the process.
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TABLE I: Values of ¥ and v*.

x 1 2 3 4 5 6 7 8 9

y 2 3 3 2 2 1 ] 0 -
¥ 456 471 415 349 283 221 1.61 105 0.5]

Proposition 1. (a) If the initial state of the epidemic is (xq, yo), xo # 0, and & (xg, vo)/dyo >
— K, then the optimal policy never intervenes in the evolution of the epidemic.

(b) Assume that the initial state' of the epidemic is (xg, yo), xo # 0, and 3&(xg, v9)/dvo < —K.
We distinguish mwo cases:

1. If there exists a state (xg, y*) such that [0€(xq, yo)/ 0y0l(xg.vey = —K, then the policy
Pys_y, is optimal.

2. If there exists no state (xg, y*) such that [9€ (xg, ¥0)/3¥0lg.y*) = —K, then the policy
PN _ oy, IS optimal.

Differentiation of (7), in which x = £(xo, yp), with respect to yo yields an expression for
9& (x0, yo0)/3yo in terms of xg, yo, @ and &(xq, yo). For each xo (0 < xg < N) we can check
that the partial derivative 3¢ (xg, vo)/3y0, 0 < yo < N — xo, is increasing with respect to yg.
If [0&(x0. y0)/9¥0](x.0) = — K, or equivalently,

K > explc(] —a) '(N'7% — x}79)), )

from the monotonicity of 3&(xg, yo)/8yo, it follows that 3&(xg, y0)/3yo > —K (0 < yg <
N —xp). Hence, according to Proposition 1(a), the condition (9) implies that the optimal policy
never intervenes in the evolution of the epidemic, if the initial state is (xg, y0) (0 < yo < N—xg).
If [0&(x0, ¥0)/0Y0)(xg,N—rq) < —K, OF equivalently,

K <[14cN —x)x5?7", (10)

again from the monotonicity of 9&(xg, yg)/dvyg, it follows that A& (xg, y0)/dvg < —K (0 <
Yo < N —xp). Hence, according to Proposition 1(b), the condition (10) implies that the policy
PN gy, is optimal if the initial state is (xg, o) (0 < yo < N — xp).

Foreach xo (0 < xg < N) when (9) and (10) fail, the critical value y* mentioned in Proposi-
tion 1(b) can be found numerically, since it satisfies the equation [3& (xq, ¥0)/3y0)(xg.v+) = — K.
Extensive numerical results indicate that, when (9) holds, then the optimal policy in the
corresponding stochastic model prescribes no further intervention in the evolution of the
epidemic, if the initial state is (xg, yo) (0 < yo < N — xg). When (10) holds, there is again
strong numerical evidence that the critical integer 7 in the corresponding stochastic model is
equal to N — xg — 1. In the case in which both (9) and (10) fail, extensive numerical results
indicate that y < y*. Thus we are led to the interesting conjecture that the stochastic infection
boundary is bounded above by the deterministic infection boundary. The same conjecture
arose in the case in which @ = 1, B = 1 (see Kyriakidis (1995)). As an illustration, in
Table 1, for each x (0 < x < 9), we present the corresponding values of 7 and y* when
(N,K,a,8,c1,¢2) =(10,1,2,1, 1.5, 1). The dash ‘-’ indicates that case 1 of the conjecture
for the stochastic version of Problem 1 holds.

Note that it seems difficult to solve Problem 1 analytically for the deterministic model when
a=1andB # lorwhena # 1 and 8 # 1.
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3.2. Problem 2,if ¢ = 1, B#1

Suppose that (xg, yo) is the initial state. In this problem, it is preferable to express x as a
function of y. Hence, from (6) it follows that the two-dimensional deterministic epidemic lies
on the curve

¥ =x0exple =BT — vy <y < e, o),
where, ¢ = ¢ /¢~ and & (xq, Yo) is the unique root in (¥0, N) of the equation for ¥,

xoexplé(l = B)~ (W= — 3Py y N -0, (11

i

Let us first consider two extreme cases. If the initial state of the epidemic is (0, vp) (0 <
Yo < N), the curve of the epidemic is x = Q (¥ < ¥y < N). In this case the future cost
of the epidemic is zero since no cost is attached to disease 2. If the initial state is (xg, 0)
(0 < xo < N), then the curve of the epidemicis y = 0 (x0 < x < N). In this case, given the
cost structure of the problem, it can be readily checked that if L < Nxo‘] — 1, then the optimal
policy isolates all the infectives with disease at the initial state, thus terminating the epidemic.
IfL > Nxo”l — 1, then the optimal policy does not intervene in the evolution of the epidemic.

If the initial state of the epidemic is (xg, yo) with Xo # 0 and yg # 0, then the future cost
C(xg, vo) of the epidemic, if we do not intervene in its evolution, is given by

C(xo, 0) = N — &(xq, y9) — xo

Proposition 2 below provides the answer to Problem 2 and corresponds to the conjecture for
the stochastic model. It can be proved i a way similar to the case in which a=1,8=1(see
Kyriakidis (1999)). For notational convenience, let Py (0 < 6 < N —xg — vg) be the policy
in which 4 infectives with disease 1 are isolated at the initial state (xg, o), with no further
intervention in the evolution of the process.

Proposition 2. Assume thar the initial s1ate of the epidemic is (xq, yo) (0 < Yo < N). If
L1 = exple(l — gy~ '(N1=F — \)=Fy) (12)

then the optimal policy does nor intervene in the evolution of the epidemic for all X0 (0 < xg <
N — vo). If (12) does not hold, then there exists a critical number x* (0 < x* « N — ¥0)
such that the optimal policy is the policy Pro when 0 < xo < x* while the optimal policy
does not intervene in the evolution of the epidemic when x* < X0 < N — yo. The number x*
0 <x* <N —yp satisfies the equation Cx*, yo)/x* = L.

Note that for each Y (0 < yp < N)the expression C(xg, Yo)/xg is decreasing with respect
toxg (0 < xg < N — yg). When (12) fails for each yq (0 < Yo < N) the critical value x*
(0 < x* < N — yp) can be found numerically, since it satisfies the equation

C* y) _ N —E@*, w) _
x* - x*

Extensive numerical results indicate that, when (12) holds, then the optimal policy in the
corresponding stochastic mode] prescribes no further intervention in the evolution of the
epidemic, if the initial state is (x0,y0) (0 < xg < N — Yo). When (12) fails, there is strong
numerical evidence that £ < x*. This inequality leads us to conjecture that the stochastic
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TABLE 2: Values of ¥ and x*.

y 0 ] 2 3 4 5 6 7 8

X 6 5 4 3 2 1 1 -
x* 625 510 430 353 279 206 134 063 x

isolation boundary is bounded above by the deterministic isolation boundary. The same
conjecture arose in the case in which @ = 1 and = 1 (see Kyriakidis (1999)). As an
illustration, when (N, L, @. 8,'c1, ¢c2) = (10,0.6,1,0.5,0.8, 1.2) Table 2 presents for each y
(0 <y < 9) the corresponding values of ¥ and x*. The dash '-’ indicates that case 1 of the

. conjecture for the stochastic version of Problem 3 holds, and the symbol * x” indicates that (12)

is valid.
Note that it seems difficult to solve Problem 2 analytically for the deterministic model when

aZland B =1lorwheno # land 8 # 1.
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