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LETTERS TO THE EDITOR

Dear Editor,

Single vehicle routing problem with a predefined customer sequence and stochastic
continuous demands

1. Introduction

The vehicle routing problem (VRP) consists of determining the optimal routing of a fleet of
vehicles, based at one or several depots, which deliver goods to a set of n customers comprising
the nodes of a predefined network. The vehicles may also pick up expired products from the
customers. For a survey of vehicle routing models we refer to Simchi-Levi et al. (2005). We
describe below a special vehicle routing model in which a single vehicle with limited capacity
delivers goods to n customers according to a predefined customer sequence.

Consider a set of nodes V = {0, ..., n}, with node 0 denoting the depot and the nodes
1,...,n corresponding to customers, and a set of arcs

A={G,i+1),i+1,0):ieV —{n}}

that join the customers along the route 1 — 2 — --- — n, as well as joining all customers
with the depot. The travel cost (distance) of each arc (i, j) € A is defined by ¢; ; > 0. The
costs ¢;,j, (i, j) € A, satisfy the triangular inequality, i.e. ¢; ; < cix + ct,j. We assume
that a single vehicle must serve all customers according to the predefined sequence 1, ..., n.
The vehicle is at the depot initially and after serving all customers it returns to the depot. Let
di, i = 1,...,n, be the demand of customer i for a particular product. We suppose that
the demands d;, i = 1,...,n, are independent continuous random variables with known
probability density functions f;(x), such that f;(x) = 0 for x > Q, where Q is the capacity
of the vehicle. Upon completion of service to each customer, the vehicle has either to travel to
the next customer or to return to the depot for stock replenishment and resume the route. The
actual demand of each customer is revealed only upon the vehicle’s visit to the customer.

Our goal is to find the policy that minimizes the total expected cost. A realistic example
of this model could be the situation in which a vehicle delivers petrol to a sequence of petrol
stations. In this case the demand of each customer is stochastic, since, when the order is issued,
it is unknown how much petrol will be sold during the time between the order and the delivery.
Note that Yang et al. (2000) considered the case in which the demands of the customers are
discrete random variables and developed a suitable dynamic programming algorithm for the
determination of the optimal policy. They also proved that the optimal policy has the following
form. For each customer i € {1,...,n — 1} there exists a critical quantity s; such that the
optimal decision, after serving customer i, is to continue to customer i + 1 if the remaining
quantity in the vehicle is greater than or equal to 4;, or return to the depot for stock replenishment
if it is less than A;. In Section 2 we prove an analogous result for the case in which the demands
are continuous random variables. We also give an algorithm for the determination of the optimal
policy and a numerical example in which the demands are uniformly distributed.
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Note that Tsirimpas et al. (2008) investigated three practical variations of the VRP if a single
vehicle serves n customers according to a predefined sequence and the respective quantities d;,
delivered to customer i € {1, ...,n}, and p;, picked up from customer i € {1, ..., n}, are not
random variables but constant numbers. Suitable dynamic programming algorithms that find
the optimal routing of the vehicle were developed for each case.

2. The optimal policy

Let Vi(q), g € [0, Q], be the minimum total expected cost from customer i to the end of
the route, if customer i has been served and the remaining quantity in the vehicle is g. This
quantity satisfies the following dynamic programming equation (see, for example, Ross (1983,
Chapter I)):

Vi(g) = min{H;(q). H;}, i=1,....n—1,

where
o
Hi(q) = ci,i+1 +f [2ci+10+ Vis1(@ + Q —0)1fir1(x) dx
B . (n
+ [ Vintg -0 s
0 \

and

e o

H; =cio+coi+1+ fo Vit1(Q — x) fi+1(x) dx. 2
The boundary condition is

Vu(q) = cn,0, g €[0, Q].

If H; < H;(q), then the optimal decision is to return to the depot for replenishment and
then to go to customer i + 1. If H;(g) < H;, then the optimal decision is to go directly to the
customer i + 1. In this case, if the demand x of the customer is greater than g, then the vehicle
supplies the customer i + 1 with the quantity g, returns to the depot for stock replenishment,
and then returns to customer i + 1 in order to deliver the remaining quantity x — g. It can
be proved by induction on i € {1,...,n — 1} that H;(g), g € [0, Q], is decreasing with
respect to g. The proof is similar to the proof of an analogous result in Section 3 of Yang et al.
(2000).

It can be easily seen that, fori = 1,...,n—1, H;(Q) < H; and H;(0) > I;Ii, since the costs
ci,j satisfy the triangular inequality. From the monotonicity of H;(g), q € [0, @], it follows
that, fori = 1,...,n — 1, there exists a critical number 4; € (0, Q) such that H;(h;) = H;.
The optimal policy chooses the action of going directly to the next customer i 4+ 1 if g > h;,
whereas it chooses the action of returning to the depot for stock replenishment if g < h;. The
critical number A; that corresponds to customeri € {1, ..., n—1}canbe found as follows. First
we discretize the set of possible demands by dividing the interval [0, Q] into small intervals of
length &. Then we compute H;, using (2), and, for j = Q/& — 1, Q/§ — 2, ..., we compute
H;(j&), using (1), until H;(j&§) > H;. The critical number &; is equal to (f + 1)&, where }
is the maximum value of {0, ..., Q/& — 1} that satisfies the above inequality. The integrals in
(1) and (2) are computed numerically. The minimum expected cost is evaluated at the points
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j&€,j=0,..., Q/&. The algorithm for the determinationof h;, i = 1,...,n— 1, is described
in detail below. An analogous algorithm for the determination of the critical numbers in the
case of discrete demands was presented by Yang et al. (2000).

Algorithm for the determination of ;, i =1,...,n—1
Set Vn(]é) = COJI’ J = 0: LRCE Q/S
Fori=n—-1,...,1:

Find V;(0) and V;(Q) from the following equations:

Q/5-1
Vi0) = Hi = cio+coinr + D Vir(Q — j§) firn(jHE,
Jj=0
Q/§
Vi(Q) = ciiv1 + D Vis1(@ — jE) fir1GEE,
j=0

and for j = Q/& — 1, /& — 2, ..., 0 evaluate the following quantity:

Q/5-1
Hi(E) = cijv1+ D 26410+ Vir1GE + @ —rE)fis1(rE)E
=)
j—1
+ ) Vi1(G& = r§) fin1 (rE)E,
r=0

until H;(j&) > V;(0). The critical number ; is equal to (]7 + 1)&, where ]~ is the
maximum value of {0,..., Q/& — 1} that satisfies the above inequality. For j =
1,..., j& Vi(j§) = Vi(0) and for j = (j+ 1)§, ..., Q/§ — 1, Vi(j§) = Hi(j§).

As an illustration we present the following example. Suppose that the capacity of the vehicle
is O = 10 and the number of customers is n = 10. The demands d;, i = 1,..., 10, of the
customers are independent continuous random variables uniformly distributed in the interval
[0, 10]. We choose & = 0.005 so that the interval [0, Q] is divided into Q/§ = 2000 small
subintervals of length &. The travel costs (distances) between the depot (node 0) and the nodes
1,..., 10 are assumed to be

co,1 =25, co,2 = 20, co3 =15, co4 =22, co,5 = 18,
co,6 = 12, co7 =17, co,8 = 20, co,9 = 18, co,10 = 13.
The distances between the nodesi andi +1, i =1,...,9, are taken to be
c1,2 =18, c23 =12, c3,4 = 16,
c4,5 =20, cs56 = 14, ce,7 = 13,
c7.8 = 10, cg9 = 15, c9.10 = 19.

The critical numbers obtained by the algorithm are
h1 =3.25, hy = 2.335, h3z =5.23,
hgy = 4.445, hs = 3.335, he = 5.295,
h7 =3.25, hg = 3.615, hg = 5.385.
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The minimum total expected cost is equal to

Q/8-1
i1+ Y Vi(Q - jE) fi(jE)E,

=0

and is found to be approximately equal to 303.14. This is considerably smaller than the total

cost,
9

2 coi+co10 =347,
i=l
that we would have if the vehicle, after serving each customeri, 1 < i < 9, returns to the depot
for stock replenishment and then goes to the next customer.

3. Conclusions and further problems

We have considered a variation of the vehicle routing problem that was studied in Section 2
of Yang et al. (2000). A vehicle is assumed to serve n customers according to a predefined
customer sequence, with the quantity d; that must be delivered to each customeri € {1, ..., n}
being a continuous random variable. We proved that the policy that minimises the total expected
cost is characterized by some critical numbers &;, i € {1, ..., n}, such that the optimal decision,
after serving customer i, is to continue to customer i + 1 if the remaining quantity in the vehicle
is greater than or equal to h;, or return to the depot for stock replenishment if it is less than ;.
An algorithm for the determination of these critical numbers was also given.

A complementary problem is the problem of finding the optimal routing if the vehicle must
pick up from each customer i € {1, ..., n} arandom quantity p; of a particular product. In this
case, after serving each customer, the vehicle either has to travel to the next customer or return
to the depot to unload all products that have been picked up, and then go to the next customer.
The actual quantity that must be picked up from each customer is revealed only upon the visit
to the customer. It can be proved in the same way as in Section 2 that the optimal policy is
characterized by some critical numbers &;, i € {1, ..., n}, such that the optimal decision, after
serving customer i, is to continue to customer i + 1 1f the quantity in the vehicle is less than or
equal to &;, or return to the depot to unload it if it is greater than A;.

The more general problem, in which the vehicle must deliver a random quantity d; to each
customer i € {1,...,n} and also pick up a random quantity p; from each customer i €
{1, ..., n}, seems interesting. Note that, if d; and pi» i =1, ..., n, are constant, it is possible
to develop a suitable dynamic programming algorithm for the determination of the optimal
policy (see Tsirimpas et al. (2008, Section 3)). When the quantities d; and p;, i = 1,...,n,
are random, it seems difficult to develop a suitable dynamic programming algorithm. This
problem could be the subject of future research.
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