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A PEST IMMIGRATION PROCESS
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Abstract

An infinite-state Markov decision model is considered for the control of a simple
immigration process, which represents a pest population, by an intermittent predator.
It is assumed that the predator may leave the habitat before capturing all the pests. The
cost rate caused by the pests is an increasing function of their population size, while
the cost rate of the controlling action is constant. A sequence of suitable finite-state
Markov decision models is constructed such that the optimal average-cost policies in the
sequence converge to the optimal average-cost policy in the original model. There is
strong numerical evidence that the optimal policy introduces the predator if and only if
the pest population is greater than or equal to some critical size.
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1. Introduction

The Markov decision model is a suitable mathematical model for various problems concerned
with the optimal control of a stochastic process. For the relevant theory of this optimization
model and various applications, we refer to Chapters 6 and 7 of Ross (1992) and to Chapter 3
of Tijms (1994). We give a description of this model below.

Suppose that a process is observed at time points ¢t = 0, 1, ... and is classified into one of
a possible number of states. The set of possiblestates is assumed to be finite or denumerable
and is denoted by S. If the state of the process at time ¢ is i € S and the action a is chosen, then
regardless of the past history of the process, two things occur: (i) an immediate cost C(i, a) is
incurred, and (i1) at time ¢ 4 1 the process will be in state j with probability p; j(a) A policy is
a rule for choosing actions. An important set of policies is the set of stationary policies, where
a policy is said to be stationary if the action chosen at time ¢ depends only on the state of the
process at time ¢. A stationary policy f can be represented by a sequence f;, i € S where f;
is the selected action, whenever the process is found to be in state i.

The long-run expected average cost per unit time of a policy 7 is defined as the limit as
t — oo of the expected cost incurred in the time interval [0, ¢t] divided by ¢, given that the
policy m is employed. If § is finite, and for each stationary policy the associated Markov chain
has no two disjoint closed sets, then there exists a stationary policy that minimizes the long-run
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expected average cost per unit time for every initial state. The average cost under the optimal
policy does not depend on the initial state. The optimal policy can be found by the policy-
iteration, the value-iteration and the linear programming algorithms. For a full description of
these algorithms we refer to Chapter 3 of Tijms (1994). We present below the value-iteration
algorithm, which in most cases can be programmed very easily.

Value-iteration algorithm
Step 0. Choose Vy(i) with0 < Vy(i) < min, C(i,a), foralli € §. Letn := 1.

Step 1. Compute the value function V,, (i), i € S, from

Va(i) = min [C(z‘, a)+ ) pij <a>vn_1<j>},

jes

and determine f as the stationary policy whose actions minimize the right-hand side of this
equation for all i € S.

Step 2. Compute the numbers

my = min[V,(i) — Vp—1({)] and M, = max[V,({) — Vu-1()].
ieS ieS

The algorithm is stopped with the policy £ when 0 < M, — m, < em,, where ¢ is
a prespecified tolerance number (for example ¢ = 0.001). The average cost of f™ is
approximated by (m, + M,)/2. Otherwise go to Step 3.

Step 3. Setn :=n + 1 and go to Step 1.

The model that we have described above is called a discrete-time Markov decision model.
Many practical problems can be modelled as discrete-time Markov decision models by choosing
appropriately the state space and action sets. For the case in which the state space is infinite,
the computation of the optimal policy can be achieved by Sennott’s approximating sequence
method (see Sennott (1997), (1999)). In this method, the infinite state model is approximated
by a sequence of finite-state Markov decision models.. When the times between consecutive

decision epochs are not.identical but are exponentially djstributed, the corresponding decision. = . ... .

model is called a continuous-time Markov decision model. Itis possible (see e.g. Sennott (1999,
p.-245)) to transform a continuous-time Markov decision model to an equivalent discrete-time
Markov decision model so that both models have the same optimal policy. In this paper we shall
use the approximating sequence method in an infinite-state continuous-time Markov decision
model for pest control, as described in the next section.

2. The model

Consider a pest population which grows stochastically in a habitat according to a simple
immigration process with immigration rate v > 0. It is assumed that the cost of the damage
caused by the pests is equal to ¢;, i > 0, for each unit of time during which the population size
is i. It is natural to assume that the sequence {c;} is nondecreasing and c¢g = 0. Furthermore,
we suppose that ¢; — 0o as i — oo and that ¢; < Ai™, i > 1, for some positive integer m
and some positive number A.

The pest population may be controlled by some action that introduces a predator in the habitat
after some random time that is exponentially distributed. The presence of the predator in the
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habitat immediately stops the immigration of the pests. As soon as the predator is introduced
in the habitat, it captures the pests one at a time with constant rate ¢ > 0 until their population
size is reduced to zero, or the predator leaves the habitat with rate § > 0 before capturing all
the pests. The unit of time has been chosen in such a way that the rate at which the predator is
first introduced or re-introduced in the habitat is equal to 1. Thus, when the controlling action
1s taken, the length of time until the introduction of the predator is exponentially distributed
with unit mean. It is also assumed that o > v6 and that the cost of taking controlling action is
k > O per unit time.

Let i and i’ denote the states of the process at which the population size of the pests
s i, i > 0, and the predator is either absent or present in their habitat respectively. A
stationary policy f is defined by a sequence {f;}, i > 0, where f; is the action taken when the
process is in state i. It is assumed that f; = 1 when the controlling action, which introduces
the predator in the habitat, is being taken and f; = 0 when the controlling action is not taken.
If the stationary policy f = {f;}, i > 0, is employed, our assumptions imply that we have a
continuous-time Markov chain model for the population growth of the pests with state space
S={0,0,1,,...} and the following transitions in a time interval (¢, ¢ + 8¢):

i—>i+1 with probability  vér + 0(61), i >0,

i— i with probability  f;8¢ + o(5¢), i >0,
i' = (i — 1)’ with probability o8z + 0(81), i>1,
i — i with probability 68t + 0(8t), i>0.

Our goal is to find the policy which minimizes the expected long-run average cost per
unit time among all stationary policies. The decision epochs include the epochs at which an
immigration of a pest occurs, and the epochs at which the predator leaves the habitat. Note
that this problem, in the case in which the departure of the predator is possible only after the
capture of all pests, has been studied in Kyriakidis (2003).

In many Markov decision problems it can be shown that the optimal policy initiates the
controlling action if and only if the state of the process is greater than or equal to a critical level.
Such a policy is usually called control-limit policy and the critical level the control-limit. It
seems intuitively reasonable that in the present problem the optimal policy belongs to the class
of control-limit policies {P,: n = 1,2,...}, where P, is the stationary policy according to
which the controlling action is being taken if and only if the pest population size is equal to or
exceeds n. A method that in many cases leads to the proof of the optimality of a control-limit
policy is the method of successive approximations (see e.g. Ross (1992, p. 147)). This method
first establishes the optimality of a control-limit policy for the corresponding finite-horizon
discounted cost problem. Then, this structural property is transferred to the infinite-horizon
discounted cost problem, and, finally to the average-cost problem. A different approach to
the proof of the optimality of a control-limit policy is a parametric analysis introduced by
Federgruen and So (1989). According to this approach, it is first shown that an optimal control-
limit policy exists when a parameter (possibly fictitious) takes sufficiently small values. This
assertion is then extended inductively from interval to interval of the parameter values. In the
Markov decision model studied by Kyriakidis (2003), the Federgruen and So technique was
applied by varying a fictitious cost incurred during each unit of time that the process was in
state 0.

In the present model it seems difficult to prove the optimality of a control-limit policy by
using the method of successive approximations or the Federgruen and So approach. However,
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it is possible to find the optimal policy numerically. This can be achieved by transforming
the continuous-time Markov decision model to an equivalent discrete-time Markov decision
model, and then applying Sennott’s (1997) approximating sequence method to it. This method
constructs a sequence of finite-state Markov decision models such that the average costs and
the average optimal policies in the sequence converge to the optimal average cost and to an
optimal policy in the original model. A set of suitable assumptions guarantees the convergence.
Extensive numerical results provide strong evidence that the optimal policy in our model is
of control-limit type. Note that in the special case in which ¢; = i, i > 0, a condition that
guarantees the optimality of Py was given by Kyriakidis (2003).

The rest of the paper is organized as follows. In the next section our model is transformed
to an equivalent discrete-time Markov decision model, and the optimal average-cost policy is
obtained by using the approximating sequence method. A numerical example is presented. In
Section 4 we verify the assumptions that guarantee the convergence of the algorithm to the
optimal policy.

3. Computation of the optimal policy

We transform the continuous-time Markov decision model that was introduced in the previous
section to an equivalent discrete-time Markov decision process with the same state space S. This
will be achieved by using the standard uniformization technique (see Sennott (1999, p. 245)).
Let T be a positive number such that 7 < min{(v + DL, (0 +6)71). Let pij(a), a € {0, 1},
be the probability that the next state of the discrete-time process will be j given that the present
state is i and the action a € {0, 1} is taken, and let C(i, a) be the corresponding one-step
expected cost. These parameters are given by (see Sennott (1999, p. 245)) ‘

pii+1(a) = tv, i >0, aci0,1},
pii(0) =1—1v, i >0,
piir(1) =71, i>0,
pii(l) =1—-1t(v+1), i >0,
piri(0) = 70, i >0,
pir(i—1y(0) = 10, i>1,

p@=1-10+6), ix=1

poy(0) =1-10, .

C@i,0)=C(@',0) =, i >0, (1)
C@i,1)=ci+k, i >0. 2)

The discrete-time Markov decision model has the same average cost as the original one under any
stationary policy. Thus both models have the same optimal policy. Following Sennott’s (1997)
approximating sequence method, we consider a sequence of finite state space truncations of the
above discrete-time Markov decision model. The state space of the truncated model is defined
as Gy = {0,0,1,1,..., N, N'}. The one-step transition probabilities p;;j(a), i, j € Gn,
a € {0, 1}, of the truncated model coincide with the one-step transition probabilities p;;(a) of
the infinite-state model except for the following ones:

Pan(0) = TV,
punv() =t(w+1).
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TaBLE 1: The optimal critical points and minimum average costs.

N n* Sn*
70 0  8.1362
72 7  8.2506
75 6 84110
80 5 8.6797
85 4 8.9075

200 4 9.3674

250 4 9.3691

290 4 9.3692

300 4 9.3693

1000 4  9.3693

The one-step expected costs C(i,a), i € Gy, a € {0, 1}, coincide with those of the infinite-
state model. For N = 1, 2, ..., the average-cost optimal policy and the minimum average cost
of each truncated model can be obtained by applying the value iteration algorithm (see Section 1
of the present paper). From Theorem 2.4 in Sennott (1997), it follows that as N — 0o the
minimum average costs and the average-cost optimal policies in the sequence converge to the
minimum average cost and to an optimal policy in the infinite-state model. The assumptions
that guarantee the convergence in our model will be stated and verified in the next section. Inthe
implementation of the procedure, the number N is increased until both the change in minimum
average cost is sufficiently small and the optimal policy is unchanging. From a great number
of examples that we have tested, we conjecture that the optimal policy belongs to the class of
control-limit policies {P,: n = 1,2, ...}. This means that there exists a critical point n* such
that the optimal policy prescribes the controlling action if and only if the pest population size
1s equal to or exceeds n*.

As an illustration we give a numerical example. We assume that o = 8, v = 3, 8 = 2,
ci = Vi , i >0, and k = 10. We choose 7 = 0.05 and the number 5 x 10~ as the tolerance

number for the relative difference between the upper and lower bounds for the minimum-average. - - - -

- cost in the value iteration algorithm. In Table 1, we give for various values of N the optimal
critical point #n* and the minimum average cost g,» for the truncated model with state space G .
- We observe that n* does not change and g, does not change significantly if N is greater

than or equal to 200. Hence we conclude that the optimal policy for the original infinite-state
model is the policy P4 with average cost 9.3693.

4. The convergence of the algorithm

According to Proposition 4.1 in Sennott (1997), in our problem the minimum average costs
and the optimal policies of the finite-state Markov decision models converge to the minimum
average cost and an optimal policy of the infinite-state model if the following two conditions
are satisfied. '

(1) There exists a stationary policy d in the infinite-state model and a positive number & such
that d induces an irreducible positive recurrent chain on S with finite average cost g(d) for every
initial state and the set D = {i € S | there exists a such that C(i, a) < g(d) + ¢} is finite.
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(i1) We have

Jim a(N)=m, i€S and  lim g¥ v =2r

—>oo N—>co

where
e f is the optimal policy of the infinite-state Markov decision model,

f | N is the stationary policy of the finite-state Markov decision model such that
(f I N)YG) = fi, i € Gy,

i, I € S, is the steady-state distribution under the policy f,

m;(N), i € Gy, is the steady-state distribution under the policy f | N,

g f is the average cost under the policy f,

g}v IN is the average cost under the policy f | N.

Note that condition (i) implies the existence of an optimal policy f, such that the Markov chain
under f is positive recurrent (see Proposition 4.1 in Sennott (1997)).

To prove condition (i) we choose d = Pp. The stationary probabilities 7; and 7/, i > 0,
under the policy Py in the infinite-state process satisfy the following balance equations subject
to the normalizing condition:

mo=[1—t(v+ 1]y + 107y,

Ty = (1 — 10Ty + t7o + 0Ty,

7=[-tlw+ DA +tviE;—) + 167, i>1,
Ay =[1—1t(c + 0Ty + 7 + T0 T 41y, i>1,

o0 [o.e}
SR+ F =1
i=0 i=0

After some manipulations we obtain the following expressions:

- [v(9+a)]i 6(c — vb) ,
o= ) 1=
ov+1) ] o(@+DH+1)

N [v(a+9):|i~] VO (o — vh) _

71'," = 2 ) 1 Z 11
o(v+1) o0+ 1(w+1)

P o — Vvl

T SO+

Note that the condition o > v6, introduced in Section 2, guarantees the existence .of the
stationary distribution. Clearly, the process under Py is irreducible. Furthermore, it is positive
recurrent since it has a stationary distribution (see Grimmett and Stirzaker (1992, Theorem 3,
p. 205)). The average cost gy under Py for every initial state is given by (see Tijms (1994

relation (3 1.3)))
g = Zﬁi(c,- +) + Zﬁ,-/ci.
i=1 i=l
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The above expressions for 7;, 7/, i > 1, and the condition ¢; < Ai™, i > 1, introduced
in Section 2, imply that gg < +c0. In view of (1), (2) and the assumption that ¢; — oo, as
i = oo, theset D = {i € § | there exists a such that C(i, a) < go + £} is finite for any value
ofe > 0.

To prove condition (i1) we note that the balance equations for the states 0,1,..., N — 1,
N,0',..., (N — 1) are the same in S and in Gy. They differ only in state N'. This implies
that

i

ZjEGN 'T[j

From the above expression we deduce that limy_, oo m; (N) = m;, i € S. We also have that

Ti(N) = . i €Gy.

gy =Y mN)CG, (f | N)(G))

ieGy
| Yiecy TCUE (f | N)(D)
h ZjeGN Tj
- Y mC(, f)=gs, asN — oo.
ieS
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