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Abstract. In this paper we consider a Markov decision model introduced by Economou (2003), in which it was

proved that the optimal policy in the problem of controlling a compound immigration process through total

catastrophes is of control-limit type. We show that the average cost of a control-limit policy is unimodal as a

function of the critical point. This result enables us to design very efficient algorithms for the computation of

the optimal policy as the bisection procedure and a special-purpose policy iteration algorithm that operates on

the class of control-limit policies.
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1. Introduction

The Markov decision process is an appropriate mathematical model for the optimal

control of a Markov process under various optimization criteria. The most widely used

optimization criteria are the minimization of the expected total discounted cost and the

minimization of the expected long-run average cost per unit time. The standard algo-

rithms for the computation of the optimal policy are the policy-iteration algorithm, the

value-iteration algorithm and the linear programming algorithm. We refer to Chapter 3

of Tijms’s (1994) book for the description of these algorithms and for various appli-

cations. Surveys of real applications of Markov decision processes, in which the theo-

retical results have had some influence on actual decision making, are given in White

(1985, 1988).

In many Markov decision problems it can be shown that the optimal policy initiates

the controlling action if and only if the state of the process (e.g., number of customers in

a queue, degree of deterioration of a machine, size of a biological population) is greater
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than or equal to a critical level. Such a policy is usually called control-limit policy and

the critical level the control-limit. This characterization of the structure of the optimal

policy may accelerate considerably its computation since in many problems it is possible

to design efficient algorithms, which operate on the class of control-limit policies and

converge to the optimal policy. We refer to the papers of Abakuks (1979), Federgruen

and So (1989), Benyamini and Yechiali (1999) and Love et al. (2000) in which suitable

algorithms for the determination of the optimal policy were developed.

A standard method that often leads to the proof of the optimality of a control-limit

policy is the method of successive approximations. This method first establishes the

optimality of a control-limit policy for the corresponding finite-horizon discounted cost

problem. Then, this structural property is transferred to the infinite-horizon discounted

cost problem and, finally, to the average-cost problem. Economou (2003) introduced a

Markov decision process in continuous time for the control of a compound immigration

process through total catastrophes. Using the method of successive approximations, he

proved that the average-cost optimal policy is of the control-limit type. In this article we

prove that in Economou’s model the average cost of a control-limit policy is a unimodal

function of the critical point. This result enables us to develop very efficient algorithms

for the determination of the optimal policy as the bisection procedure or a tailor-made

policy iteration algorithm.

In Section 2, the description of the model is given.

2. The Model

Consider a population of individuals, which grows stochastically according to a com-

pound Poisson process with rate � > 0 and group-size distribution { gj : j = 1, 2, . . .} with

g1 > 0. We assume that the individuals are damaging in some sense. For example, the

individuals may be insects, which destroy a crop or spread a disease. We refer to such

individuals as pests. The damage done by the pests is represented by a cost ci, i � 0, for

each unit of time during which the population size is i. It is assumed that the sequence

{ci} is non-decreasing and ci e Ai m for some constant A > 0 and integer m. Furthermore,

we introduce the following conditions on the group-size distribution: (i) The probability

generating function G(z) ¼
P1

j¼ 1 gjz
j of fgj : j ¼ 1( 2( . . .g has radius of convergence

strictly greater than 1 and (ii) the group-size distribution has finite moments of all orders

up to m.

We suppose that there is a controller who observes the evolution of the population

continuously and may take an action that introduces total catastrophes whenever a new

state is entered. Spraying the crop or the insects with some insecticide may be

appropriate controlling action for the population growth in the above case. It is assumed

that the catastrophe rate is equal to � > 0. Thus, when the controlling action is taken, the

length of time until the occurrence of a catastrophe is exponentially distributed with

mean �j1. Moreover, the controlling action gives rise to costs due to labour, materials,

risk etc. Let the cost of taking controlling action be k per unit time, where k is a positive

constant.
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A stationary policy f is defined by a sequence { fi}, i � 0, where fi is the action taken

when the process is at state i. It is assumed that fi = 1 when the controlling action is

being taken and fi = 0 when the controlling action is not being taken. If the stationary

policy f K { fi}, i � 0, is employed, our assumptions imply that we have a continuous-

time Markov chain model for the population growth of the pests with state space S =

{0, 1, . . .} and the following transitions in a time interval (t, t + �t):

i ! i þ j with probability �gj�t þ o �tð Þ; i � 0; j � 1;

i ! 0 with probability �fi�t þ o �tð Þ; i � 1:

The expected long-run average cost per unit time of a policy � is defined as the limit

as t Y 1 of the expected cost incurred in the time interval [0, t] divided by t, given that

the policy � is used. Our goal is to find a policy that minimizes the expected long-run

average cost per unit time among all policies. The decision epochs include the epochs at

which an arrival of a group of pests occurs. We place no restrictions on the class of

allowable policies. Thus, the action chosen by a policy, when the process is at state i � 1,

may depend on the history of the process or it may be randomized in the sense that it

chooses action a 2 {0, l} with some probability that depends on a. It seems reasonable

that the optimal policy belongs to the class of control-limit policies { Pn, n = 1, 2, . . .},

where Pn is the stationary policy under which the controlling action is taken if and only if

the population size of the pests is greater than or equal to n.

Economou (2003) studied the above problem in the case in which the sequence {ci} is

bounded above. He transformed the original model to an equivalent discrete-time

Markov decision model using the usual uniformization technique (see e.g., Serfozo

(1979)) and then, using the method of successive approximations (see e.g., Ross (1992)),

proved that the average-cost optimal policy is either the one that keeps the catastrophe

mechanism off at all times or it is of control-limit type. In the last section of the paper, he

proposed an algorithm for the approximate determination of the stationary probabilities

under the policy Pn. A disadvantage of the uniformization technique is that the proof of

the above result only holds in the case in which the set of allowable policies consists

solely of stationary policies.

In the next section of the present paper we will show that the optimal policy is of

control-limit type without using the uniformization technique. The same result will be

obtained in the case in which the sequence {ci} is unbounded. The optimality of a

control-limit policy is valid even if we introduce a fictitious cost r incurred for each unit

of time the process is occupying the state 0. In Section 4 of the paper it is shown that for

each n = 1, 2, . . . the policy Pn is optimal when the fictitious parameter r belongs to a

suitable interval of the real line. A consequence of this result is that the average cost of

the policy Pn is unimodal as a function of n � 1. This enables us to construct very

efficient algorithms for the computation of the optimal policy as the bisection procedure

and a special-purpose policy iteration algorithm that operates on the class of control-limit

policies. In Section 5 we present the description of the algorithms and we give some

numerical results. Furthermore, we propose a method for the exact computation of the

stationary probabilities under the policy Pn. In Section 6 we consider a more general
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model in which the controlling action introduces binomial catastrophes. An explanation

for a technical manipulation in the proof of Proposition 3 is given in the appendix.

3. The Form of the Optimal Policy

In this section and in Section 4 we introduce a fictitious cost r incurred each unit of time

the process is occupying the state 0. We assume that r can be any real number. The main

result of the paper, Proposition 4, is a corollary of Theorem 1, which is based on the

variation of the parameter r over the entire real line.

We prove below that the average-cost optimal policy is of control-limit type. We first

consider the case in which the sequence {ci} is bounded above and then the case in

which the sequence {ci} tends to infinity.

Case 1: Suppose that the sequence {ci} is bounded above. Following the usual line of

proof (see e.g., Kyriakidis (1999a), Van der Duyn Schouten and Vanneste (1995)) we

first consider the corresponding finite-horizon discounted cost problem. The relevant

theory can be found in Chapter 7 of Ross’s (1992) book and in Chapter 5 of Heyman and

Sobel’s (1984) book. The minimum n-step expected discounted cost V�(i; n), if i � 1 is

the initial state, satisfies for n = 1, 2, . . . the following equations (see e.g., Heyman and

Sobel (1984), p. 202).

V� i; nð Þ ¼ min

(
ci þ �

P1
j¼ 1

gjV� i þ j; n � 1ð Þ

�þ �
;

ci þ k þ �
P1
j¼ 1

gjV� i þ j; n � 1ð Þ þ �V� 0; n � 1ð Þ

�þ �þ �

)
; i � 1;

with initial value

V� i; 0ð Þ ¼ 0; i � 1:

It can be easily proved by induction on n that fV�(i; n)g is non-decreasing in i � 1, for all

n = 0, 1, . . . . The limit of V�(i; n) as n Y 1 is equal to the minimum total expected

discounted cost V�(i), with initial state i (see Theorem 7.3 on p. 158 in Ross (1992)).

Hence, it is deduced that fV�(i)g; i � 1, is non-decreasing in i.

Assume now that the initial state is i � 1. Using the same arguments as in Kyriakidis

(1999a) we have that

V� ið Þ � B
�

�
þ 1

� �
þ V� 0ð Þ; i � 1; ð1Þ

where,

B ¼
supi� 1ci þ k

�
: ð1Þ
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For i = 1, 2, . . . we have that

V� ið Þ � V� 0ð Þj j � V� ið Þ � V� 1ð Þj j þ V� 1ð Þ � V� 0ð Þj j

¼ V� ið Þ � V� 1ð Þ þ V� 1ð Þ � V� 0ð Þj j

¼ V� ið Þ � V� 0ð Þ þ V� 0ð Þ � V� 1ð Þ þ V� 1ð Þ � V� 0ð Þj j

� B
�

�
þ 1

� �
þ V� 0ð Þ � V� 1ð Þ þ V� 1ð Þ � V� 0ð Þj j;

ð1Þ

where the first equality follows from the monotonicity of the sequence fV�(i)g; i � 1,

and the second inequality follows from (1). Therefore, the condition of Theorem 7.7 in

Ross (1992) is satisfied, since the quantity V�(i) � V�(0)j j is uniformly bounded in i � 0

and a > 0. It follows that there exists a bounded sequence { hi}, i = 0, 1, . . . and a

constant G such that

hi ¼ lim
n!1 V�n

ið Þ � V�n
0ð Þ½ �; i � 0; ð2Þ

for some sequence an Y 0, and

hi ¼ min
ci � G

�
þ
X1
j¼ 1

gjhiþ j;
ci þ k � G

�þ �
þ
X1
j¼ 1

�gj

�þ �
hiþ j þ

�

�þ �
h0

( )
; i � 1:

ð3Þ
Furthermore, there exists a stationary optimal average-cost policy that chooses at each

state i � 1 the minimizing action on the right-hand side in (3). Hence the optimal policy

takes controlling action at i � 1 if and only if

�

�
k þ �h0 þ G � ci þ �

X1
j¼ 1

gjhiþ j ð4Þ

From (2) it follows that the sequence {hi}, i � 1, is non-decreasing in i, since fV�(i)g;
i � 1, is non-decreasing in i. From the monotonicities of the sequences {ci} and {hi},

i �1, we have the following result:

PROPOSITION 1 If the sequence {ci} is bounded above, the optimal policy is either the

policy that never takes controlling action or the control-limit policy Px*, where, x* =

min{integer i � 1 such that (4) holds}.

Note that the above result generalizes Theorem 2.3 in Economou (2003), which holds

only in the case in which the admissible policies are only the stationary ones.

Case 2: Suppose that ci Y 1, as i Y 1. The stationary probabilities under the policy

Pn, n � 1, are asymptotically geometrically distributed since the probability generating

function of { gj : j = 1, 2, . . .} has radius of convergence strictly greater than 1 (see

Theorem 3.1 in Economou (2003)). This result together with the inequality ci e Aim, that

was introduced in the previous section, guarantee the finiteness of the average cost of

every control-limit policy. Note also that the process under the policy that never introduces

catastrophes does not have an equilibrium distribution. Hence the average cost in this case
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is infinite for every initial state since {ci} tends to infinity (see Lemma 2.2.2. in Bather

(1976)). Furthermore, as in the case in which the sequence {ci} is bounded above it can

be shown that the minimum total expected discounted cost V�(i), i � 1, is non-decreasing

in i.

Sennott (1989) proved that in a semi-Markov decision process an average-cost optimal

stationary policy exists if five assumptions are satisfied. The transition rates and the cost

structure of the present model are such that these assumptions are satisfied. Specifically,

the first assumption states that there exist � > 0 and " > 0, such that, for every state and

action, there is a probability of at least " that the transition time will be greater than �.
The second assumption states that there exists B > 0 such that T(i, a) e B for every i and

a, where T(i, a) is the one-step expected time if action a is taken in state i. In the present

model the first assumption holds with � = 1, " = exp[j(� + �)] and the second

assumption holds with B = (� + �)j1. The other assumptions deal with properties of

V�(i)( i � 0, and are satisfied if the following condition holds (see Proposition 2 and

Proposition 3 in Sennott (1989)):

Condition: There exists a stationary policy f with average cost b that has the following

properties:

(P1) f induces an irreducible ergodic embedded Markov chain on S andX
i2 S

pi fð ÞC i; f ið Þð Þ < 1 and
X
i2 S

pi fð ÞT i; f ið Þð Þ < 1;

where, pi ( f ), i 2 S, are the steady-state probabilities of the embedded Markov chain

under the policy f and C(i, a) is the one-step expected cost if action a is taken in state i.

(P2) There exists " > 0 and a finite subset G of S such that d(i) � b + " for i 2 S j G,

where d(i) is the minimum cost rate with respect to action a in state i. Furthermore, for

each i 2 G, there exists a stationary policy f (i) such that c0i ( f (i)) < 1, where c0i ( f (i))

represents the expected cost of a first passage from 0 to i under the policy f (i).

In the present model the above condition holds if we choose f = P1. The property (P1)

is satisfied since the steady-state probabilities under P1 are asymptotically geometrically

distributed. The property (P2) holds if we choose any " > 0, G = {0, 1, . . . , j} with cj �
b + " and f (i) = Pj, i 2 G.

Hence, in the present model, Sennott’s five assumptions are satisfied. From Theorem 2

in Sennott (1989) it follows that there exists a constant G and a non-decreasing sequence

{hi}, i � 1, such that the optimal policy prescribes at state i � 1 the minimizing action on

the right-hand side of (3). This remark leads us to the following result.

PROPOSITION 2 If ci Y 1, as i Y 1, then the optimal policy is control-limit.

4. The Form of the Average Cost Function Under a Control-Limit Policy

Let Ti0
(n)

and Ci0
(n)

, i � 0, be the expected time and cost, respectively, until the process

under the policy Pn, n � 1, reaches the state 0, given that the initial state is i. Let also Gn
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denote the expected long-run average cost per unit time under the policy Pn. The process

under the policy Pn is a regenarative process, where the successive entries into state 0

can be taken as regenerative epochs between successive cycles. From a well-known

regenerative argument (see Proposition 5.9 in Ross (1992)) it follows that Gn is equal to

the expected cost of a cycle divided by the expected time of a cycle. Hence,

Gn ¼

r

�
þ
X1
i¼ 1

giC
nð Þ

i0

T
nð Þ

00

ð5Þ

Let hi
(n), i � 0, be the relative values associated with the policy Pn, n � 1, defined by (see

relation (3.1.7) in Tijms (1994))

h
nð Þ

i ¼ C
nð Þ

i0 � GnT
nð Þ

i0 ð6Þ
Clearly,

h
nð Þ

0 ¼ 0; ð7Þ

since Gn = C00
(n) / T00

(n), by the usual regenerative argument. Note also that

T
nð Þ

i0 ¼ ��1; i � n: ð8Þ

In the next proposition a necessary and sufficient condition is given for the optimality of

the policy Pn.

PROPOSITION 3 The policy Pn, n � 1, is optimal if and only if

ci � Gn

�
þ
X1
j¼ 1

g jh
nð Þ

iþ j �
ci þ k � Gn þ �

P1
j¼ 1 g jh

nð Þ
iþ j þ �h

nð Þ
0

�þ �
; 1 � i � n � 1;

ð9Þ
and

ci þ k � Gn þ �
P1

j¼ 1 g jh
nð Þ

iþ j þ �h
nð Þ

0

�þ �
� ci � Gn

�
þ
X1
j¼ 1

g jh
nð Þ

iþ j; i � n: ð10Þ

Proof: Suppose that the policy Pn is optimal. According to relation (1) in Nobel and

Tijms (1999), the numbers hi
(n), i � 0, and Gn satisfy the following system of linear

equations:

h
nð Þ

i ¼ ci � Gn

�
þ
X1
j¼ 1

g jh
nð Þ

iþ j; 0 � i � n � 1;

h
nð Þ

i ¼
ci þ k � Gn þ �

P1
j¼ 1 g jh

nð Þ
iþ j þ �h

nð Þ
0

�þ �
; i � n:

ð10Þ
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Assume that for some î, 0 e î e n j 1, inequality (9) does not hold. Thus, in view of

relation (2) in Nobel and Tijms (1999), the stationary policy f with

f ið Þ ¼ 0; 0 � i � n � 1; i 6¼ î;

f îi
� �

¼ 1;

f ið Þ ¼ 1; i � n;

ð10Þ

has smaller average cost than the average cost of the policy Pn. This is a contradiction.

Hence inequality (9) holds. Similarly, it can be shown that inequality (10) is valid.

Suppose that the policy Pn satisfies the inequalities (9) and (10). Hence the numbers

Gn and hi
(n), i � 0, satisfy the following equations:

h
nð Þ

i ¼ min
ci � Gn

�
þ
X1
j¼ 1

gjh
nð Þ

iþ j;
ci þ k � Gn þ �

P1
j¼ 1 gjh

nð Þ
iþ j þ �h

nð Þ
0

�þ �

( )
; i � 1:

ð11Þ
We distinguish two cases:

Case 1: Suppose that the sequence {ci} is bounded above. Then, the numbers hi
(n),

i � 0, are bounded above and hence from Theorem 7.6 in Ross (1992) it follows that the

policy Pn is optimal.

Case 2: Suppose that ci Y 1, as i Y 1. From Proposition 2 it follows that there exists

some positive integer u such that the policy Pu is optimal.

Let XN and aN be the state of the process and the action chosen, respectively, after the

N-th transition. We assume that X0 and a0 are the initial state and initial action, respec-

tively. Also, let T(i, a) and C(i, a) be the expected time and cost, respectively, until a

transition occurs when action a is chosen in state i. From the proof of Theorem 7.6 in

Ross (1992), it follows that

Gn �
Eu h

nð Þ
XN

� h
nð Þ

X0

h i
þ Eu

PN
i¼ 1 C Xi� 1; ai� 1ð Þ

Eu

PN
i¼ 1 T Xi� 1; ai� 1ð Þ

; ð12Þ

where Eu represents the conditional expectation given that the policy Pu is employed.

Relation (12) holds with equality for n = u. Using the definition of h
nð Þ

XN
, relation (12) can

be written as

Gn �
EuC

nð Þ
XN 0 � GnEuT

nð Þ
XN 0 � h

nð Þ
X0

þ Eu

PN
i¼ 1 C Xi� 1; ai� 1ð Þ

Eu

PN
i¼ 1 T Xi� 1; ai� 1ð Þ

;

or, equivalently,

Gn �
P1

j¼ 0 p
Nð Þ

X0 jC
nð Þ

j0 � Gn

P1
j¼ 0 p

Nð Þ
X0 j T

nð Þ
j0 � h

nð Þ
X0

þ Eu

PN
i¼ 1 C Xi� 1; ai� 1ð Þ

Eu

PN
i¼ 1 T Xi� 1; ai� 1ð Þ

;
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where, p
Nð Þ

X0 j is the probability that the state of the process under the policy Pu after N

transitions will be j. Letting N Y 1 and using the bounded convergence theorem (see

appendix for an explanation in detail), we can interchange the order of limit and

summation in the numerator of the above expression. Hence,

Gn �
P1

j¼ 0 pjC
nð Þ

j0 � Gn

P1
j¼ 0 pjT

nð Þ
j0 � h

nð Þ
X0

limN!1 Eu

PN
i¼ 1 T Xi� 1; ai� 1ð Þ

þ lim
N!1

Eu

PN
i¼ 1 C Xi� 1; ai� 1ð Þ

Eu

PN
i¼ 1 T Xi� 1; ai� 1ð Þ

;

where, pj, j � 0, are the equilibrium probabilities of the corresponding embedded

Markov chain of the process under the policy Pu. The numerator of the first term of the

expression on the right-hand side in the above relation is finite since pj, j � 0, are

asymptotically geometrically distributed (see Theorem 3.1 in Economou (2003)). Since

the denominator, as N Y 1, tends to infinity, we deduce that this term is zero. The

second term is the expected long-run average cost per unit time Gu of the policy Pu.

Hence Gn e Gu, and thus, the policy Pn is optimal. Í
The results of Lemmas 1, 2 and 3 will be used in the proof of Theorem 1.

LEMMA 1 For each fixed n � 1, the sequence Ci0
(n), i � n, is non-decreasing in i.

Proof: Let X(s), s � 0, be the population size at time s of the (uncontrolled) compound

immigration process. Conditioning on the time until the occurrence of the catastrophe we

obtain that

C
nð Þ

i0 ¼
Z 1

0

Z t

0

E cX sð Þ þ k j X ð0Þ ¼ i
� 

ds

� �
�e��tdt

¼
Z 1

0

Z t

0

E cX sð Þþ i j X 0ð Þ ¼ 0
� 

ds

� �
�e��tdt þ k��1; ð13Þ

where the first equality follows from the cost structure of the problem as specified

in Section 2 and the second equality follows from the fact that the distribution of X(s),

if X(0) = i, coincides with the distribution of X (s) + i, if X (0) = 0. From the monotonicity

of the sequence {ci} and the above expression we deduce that Ci0
(n)

is non-decreasing in

i � n. Í
LEMMA 2 Assume that the policy Pn, n � 1, is optimal for some fixed value R of the

parameter r. Then, it is impossible for the policy Pn to be optimal for all r � R.

Proof: Suppose that the policy Pn is optimal for all r � R. Then the numbers hi
(n), i � 0,

satisfy (10) at i = n for all r � R. Hence,

cn þ k � Gn þ �h
nð Þ

0

�þ �
þ �

X1
j¼ 1

g j

�þ �
h

nð Þ
nþ j �

cn � Gn

�
þ
X1
j¼ 1

g jh
nð Þ

n þ j:
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Using (6), (7) and (8) the above relation reduces to

�þ �ð ÞGn � �cn þ ��
X1
j¼ 1

gjC
nð Þ

nþ j; 0 � �k:

From (5), it follows that Gn Y 1, as r Y 1. This contradicts the above inequality

because its right-hand side does not depend on r and the coefficient of Gn is positive.Í
Let Pn(r) denote the optimal control-limit policy, where n(r) is the optimal critical

number. In view of Propositions 1 and 2 the policy Pn(r) is the overall optimal policy.

LEMMA 3 The optimal critical value n(r) is non-decreasing with respect to r 2 (j1,+1).

Proof: Suppose that

r1 < r2 ð14Þ

Let n1, n2 be the optimal critical numbers that correspond to the parameters r1 and r2,

respectively. Let also G1 and G2 the average costs of the policies Pn1
and Pn2

, respec-

tively. Relation (14) implies that

G1 < G2 ð15Þ

We want to show that n1 e n2. Assume to the contrary that n1 > n2. From the optimality

of Pn1
and the relation (9) with i = n1 j 1 we deduce that

cn1 � 1 � G1

�
þ
X1
j¼ 1

g jh
n1ð Þ

n1 � 1þ j �
cn1 � 1 þ k � G1 þ �

P1
j¼ 1 g jh

n1ð Þ
n1 � 1þ j þ �h

n1ð Þ
0

�þ �
:

From (6), (7) and (8) we deduce that the above relation is equivalent to

G1 �þ �ð Þ � �cn1 � 1 þ ��
X1
j¼ 1

g jC
n1ð Þ

n1 � 1þ j; 0 � �k: ð16Þ

From the optimality of Pn2
and the relation (10) with i = n2 we obtain that

cn2
þ k � G2 þ �

P1
j¼ 1 g jh

n2ð Þ
n2 þ j þ �h

n2ð Þ
0

�þ �
� cn2

� G2

�
þ
X1
j¼ 1

g jh
n2ð Þ

n2 þ j:

From (6), (7) and (8) we deduce that the above relation is equivalent to

G2 �þ �ð Þ � �cn2
þ ��

X1
j¼ 1

g jC
n2ð Þ

n2 þ j; 0 � �k: ð17Þ

From (15), (16) and (17) we have that

�cn2
þ ��

X1
j¼ 1

g jC
n2ð Þ

n2 þ j; 0 � �k > �cn1�1 þ ��
X1
j¼ 1

g jC
n1ð Þ

n1 � 1þ j; 0 � �k: ð17Þ
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However the left-hand side of the above relation is smaller or equal to its right-hand side

since cn2
� cn1 � 1 and C

n2ð Þ
n2 þ j; 0 � C

n1ð Þ
n1 � 1þ j; 0: This is a contradiction. Í

In Theorem 1 below it is shown that for each n = 1, 2, . . . the policy Pn is optimal

when the fictitious parameter r belongs to a suitable interval.

THEOREM 1 These exists an increasing sequence {Rn}, n � 1, with R1 = j1, R2 > j1,

and limn Y 1 Rn = +1 such that the policy Pn, n � 1, is optimal for all r 2 [Rn, Rn + 1],

where Rn + 1 = sup{w : w � Rn and the policy Pn is optimal for all r 2 [Rn, w]}.

Proof: The proof is by induction on n. We first establish that a number R > j1 exists

such that the policy P1 is optimal for all r e R. In view of Proposition 3 it suffices to

show that the numbers hi
(1), i � 1, and G1 satisfy the inequality

ci þ k � G1 þ �
P1

j¼ 1
g jh

1ð Þ
iþj þ �h

1ð Þ
0

�þ �
� ci � G1

�
þ
X1
j¼ 1

g jh
1ð Þ

iþ j; i � 1:

Using (6), (7) and (8) the above relation reduces to

�þ �ð ÞG1 � �ci þ ��
X1
j¼ 1

g jC
1ð Þ

iþ j; 0 � �k; i � 1:

From (5), we have that G1 Y j1, as r Y j1. Thus, there exists a number R > j1
such that the above inequalities hold for all r e R. From Lemma 2, it follows that R2 <

+1, where R2 = sup{ w : w � R and the policy P1 is optimal for all r e w}.

Suppose that there exists a sequence R1 < R2 < . . . < Rn, such that the policy Ps , 1 e

s e n, is optimal for all r 2 [Rs, Rs +1] with Rn +1 = sup{w : w � Rn and the policy Pn is

optimal for all r 2 [Rn, w]} < +1. We will show that the policy Pn + 1 is optimal for r =

Rn +1. Consider some " > 0 such that the policy Pn is not optimal for r = Rn +1 + ". From

Proposition 3 it follows that one of the following two cases occurs.

Case 1: For some i with 1 e i e n j 1,

ci þ k � Gn þ �
P1

j¼ 1 g jh
nð Þ

iþ j þ �h
nð Þ

0

�þ �
<

ci � Gn

�
þ
X1

j¼ 1
g jh

nð Þ
i þ j

Using (6) and (7) we deduce that the above inequality is equivalent to  i (Rn + 1 + ") > 0

with

 i rð Þ ¼ �ci � �Gn þ ��
X1
j¼ 1

gj C
nð Þ

iþ j; 0 � GnT
nð Þ

iþ j; 0

� �
� �k:

Since Gn, as given in (5), is increasing in r, we deduce that  i (r) is decreasing in r.

Thus,

0 <  i Rnþ 1 þ """"ð Þ <  i Rnþ 1ð Þ � 0;
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where the last inequality follows from the optimality of Pn for r = Rn +1. Clearly, this is a

contradiction and therefore Case 2 must arise.

Case 2: For some i with i � n,

ci � Gn

�
þ
X1
j¼ 1

g jh
nð Þ

iþ j <
ci þ k � Gn þ �

P1
j¼ 1

g jh
nð Þ

iþ j þ �h
nð Þ

0

�þ �
:

Using (6), (7) and (8) we deduce that the above inequality is equivalent to  i(Rn +1 + ") < 0

with

 i rð Þ ¼ �ci � �þ �ð ÞGn þ ��
X1
j¼ 1

gjC
nð Þ

iþ j; 0 � �k:

From Lemma 1 and the monotonicity of {ci} it follows that the sequence  i (r), i � n, is

non-decreasing in i. Thus,

 n Rnþ 1 þ "ð Þ �  i Rnþ 1 þ "ð Þ < 0:

By the definition of Rn +1 and the above analysis, there exists a sequence { "k},0 with

 n(Rn + 1 + "k) < 0. From the continuity of  n(r) in r, it follows that  n(Rn +1) e 0.

However  n(Rn +1 ) � 0 because the policy Pn is optimal for r = Rn +1. Thus  n(Rn +1) = 0.

The last equality means that for r = Rn +1 the right-hand side of (11) attains the same

value at the state i = n for both actions 0 and 1. Therefore, the action prescribed, for each

state i � 0, by the policy Pn +1 minimizes the right-hand side of (11). Thus the policy

Pn +1 is optimal for r = Rn + 1. Define

Rn þ 2 ¼ sup w : w � Rn þ 1 and the policy Pn þ 1 is optimal for all r 2 Rn þ 1;w½ �f g:

From Lemma 2, it follows that Rn + 2 < +1. It remains to be shown that limnY1 Rn =

+1. Assume to the contrary that limnY1 Rn = R* < +1. Choose n* > n(R*), where

n(R*) the optimal critical number given that the value of the fictitious parameter is R*.

From Lemma 3 it follows that n(R*) � n(Rn*). Consider some state i such that n* > i �
n(Rn*). For r = Rn* at state i the optimal policy chooses action 1. This contradicts the

optimality of the policy Pn* for r = Rn*. Í
REMARK We point out that, when the sequence {Ci} is bounded above, Theorem 1 is

valid without the conditions (i) and (ii), that we introduced in Section 2 on the group-size

distribution {gj : j = 1, 2, . . .}, since these conditions are not needed in the proof of

Proposition 3 in this case.

LEMMA 4 The average cost Gn of a control-limit policy Pn, n � 1, can be expressed as

Gn ¼ rAn þ~Gn;

where, An is non-increasing in n and eGGn is independent of r.
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Proof: From (5) we see that Gn can be written as

Gn ¼ r

�T
nð Þ

00

þ~Gn;

where, eGGn is independent of r. It suffices to show that T00
(n), n � 1, is non-decreasing in n.

Note that

T
nð Þ

00 ¼ T
nð Þ

0En
þ ��1; ð18Þ

where En = { n, n + 1, . . .} and T
nð Þ

0En
is the expected time until entry into the set of states

En, given that the initial state is 0 and the policy Pn is used. For n � 2, since En Î Enj1,

from the structure of the model it follows that

T
nð Þ

0En
� T

nð Þ
0En� 1

; ð19Þ

and

T
nð Þ

0En� 1
¼ T

n� 1ð Þ
0En� 1

: ð20Þ

From (18), (19) and (20) we deduce that

T
nð Þ

00 � T
nð Þ

0En� 1
þ ��1 ¼ T

n� 1ð Þ
0En� 1

þ ��1 ¼ T
n� 1ð Þ

00 : Í
Using Lemma 4, the following result, which is useful for the computation of the

optimal control-limit policy, can be proved in the same way as Lemma 5.2 in Federgruen

and So (1989).

PROPOSITION 4 For any fixed r, the average cost Gn, n � 1, is unimodal as a function

of n.

5. The Computation of the Optimal Policy

Proposition 4 enables us to develop two efficient algorithms in order to compute the

optimal policy. In this section we assume that the parameter r takes the value 0, i.e., we

consider the model described in Section 2. The critical point n* of the optimal control-

limit policy Pn* can be found by the standard bisection procedure, which determines the

minimum within the set {Gn : n � l}.

Let N be a positive integer such that GN < GN + 1. We state the procedure below.

Bisection Procedure

Step 1. Initialize n1 = 1, n2 = N.

Step 2. Let n be the integer part of (n1+n2) / 2. If Gn < Gn +1, set n2 = n; if Gn > Gn + 1

set n1 = n + 1; if Gn = Gn +1 and Gnj1 e Gn, set n2 = n; if Gn = Gn +1 and
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Gnj1 > Gn, set n1 = n + l. If n2 j n1 > 1, repeat Step 2. Otherwise, choose n*

such that Gn* ¼ min Gn1
;Gn2

f g: The optimal policy is Pn* and its average

cost is Gn*.

Using a well-known result (see Theorem 5.10 in Ross (1992)), the average costs Gn in

Step 2 of the algorithm can be expressed in terms of the stationary probabilities pi, i � 0

and the cost rates under the policy Pn as follows:

Gn ¼
Xn� 1

i¼ 0

ci pi þ
X1
i¼ n

ci þ kð Þpi

Economou (2003) proposed an algorithm for the approximate determination of pi, i � 0.

A method for the exact computation of these probabilities is presented below.

By conditioning on the first transition out of state i, 0 e i e n j 1, we obtain

T
nð Þ

n� 1; 0 ¼ ��1 þ ��1; ð21Þ

T
nð Þ

i0 ¼ ��1 þ
Xn� i� 1

j¼ 1

g jT
nð Þ

iþ j; 0 þ ��1
X1

j¼ n� i

g j; 0 � i � n � 2: ð22Þ

Since the process under the policy Pn is regenerative we deduce that (see Theorem 5.8 in

Ross (1992))

p0 ¼ expected time in state 0 during one cycle

expected time of one cycle
¼ ��1

T
nð Þ

00

: ð22Þ

The denominator of the above expression can be computed from (21) and (22). The

other stationary probabilities pi, i � 1, can be found from the following balance

equations:

pi ¼
Pi� 1

j¼ 0

gi� j pj; 1 � i � n � 1;

pi ¼
�

� þ �

Xi� 1

j¼ 0

gi� jpj; i � n:

ð22Þ

An alternative way for the computation of the optimal policy is the development of a

special-purpose policy iteration algorithm that generates a sequence of improved control-

limit policies. Proposition 4 guarantees that this sequence converges to the optimal

policy. The design of the algorithm is based on the embedding technique of Tijms (see

Tijms (1994), p. 234). Similar algorithms have been developed in queueing, inventory

and maintenance models (see pp. 234Y248 in Tijms (1994), Nobel and Tijms (1999)) and

also, in other pest control models (see Kyriakidis (1993, 1999b)). The design of the

algorithm is described below.
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Equation (13) gives the expected cost Ci0
(n) until the process under the policy Pn

reaches the state 0, given that the initial state is i � n. According to a well-known

property of Laplace transforms (see e.g., relation (C.2) on p. 362 in Tijms (1994)), we

have that

C
nð Þ

i0 ¼
Z 1

0

E cX tð Þþ i j X 0ð Þ ¼ 0
� 

e��tdt þ k��1 ð22Þ

Let p0i(t), i � 0, be the probability that the population size X(t) at time t of the

(uncontrolled) compound immigration process is i given that X(0) = 0. The above

expression takes the following form:

C
nð Þ

i0 ¼
Z 1

0

X1
j¼ 0

p0 j tð Þcjþ i

( )
e��tdt þ k��1: ð22Þ

By interchanging the order of the integral and the series we obtain

C
nð Þ

i0 ¼
X1
j¼ 0

p*0 jcjþ i þ k��1; ð23Þ

where p*
0 j
¼
R1

0
p0 j tð Þe��tdt, is the Laplace transform of p0 j (t) at the point �. Let N(t) be

the number of arrivals up to time t � 0 of the groups of pests and let

�n jð Þ ¼ P X tð Þ ¼ j jN tð Þ ¼ n;X 0ð Þ ¼ 0½ �; j � 0; n � 1:

The probabilities p0j (t) can be computed by conditioning on the variable N(t) as

follows:

p0j tð Þ ¼ e��tI j ¼ 0ð Þ þ
X1
n¼ 1

�n jð Þe��t �tð Þn

n!
;

where, I( j = 0) = 0, if j m 0, and I( j = 0) = 1, if j = 0. By integrating the above equation

we obtain the following expression for p0j* after some simplifications

p*0j ¼
I j ¼ 0ð Þ
�þ �

þ
X1
n¼ 1

�n jð Þ �n

�þ �ð Þnþ 1
: ð24Þ

The conditional probabilities �n( j) can be computed recursively from the convolution

formula:

�n jð Þ ¼
Xj� 1

‘¼ 1

�n� 1 ‘ð Þgj� ‘; j � n; n � 2, ð24Þ
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with

�n jð Þ ¼ 0; j < n; n � 1;

�1 jð Þ ¼ gj; j � 1:

ð24Þ

It is now clear that the expected costs Ci0
(n)

, i � n, can be computed from (23) and (24).

By conditioning on the first transition out of state i, 0 e i e n j 1, we obtain

C
nð Þ

i0 ¼ ��1ci þ
Xn� i� 1

j¼ 1

gjC
nð Þ

iþ j; 0 þ
X1

j¼ n� i

gjC
nð Þ

iþ j; 0; 0 � i � n � 1: ð25Þ

The average cost Gn, under the policy Pn can be computed from the expression Gn = C00
(n)/

T00
(n).

We consider now the so-called policy-improvement quantity Qn(i;a) associated with

the policy Pn, which is defined by:

Qn i; að Þ ¼ C i; að Þ � GnT i; að Þ þ
X1
j¼ 0

pij að Þh nð Þ
j ; i � 0; a 2 0; 1f g ð25Þ

where pij (a) is the probability that the next state of the process will be j, given that

the present state is i and action a is chosen and T(i, a) and C(i, a) are the correspond-

ing expected time and cost, respectively. When the controlling action is being taken,

a takes the value 1, and when the controlling action is not being taken, a takes the

value 0.

Suppose that there exists an integer ñ such that 1 e ñ < n and Qn (i;1) < hi
(n), ñ e i < n.

According to Theorem 3.2.1 in Tijms (1994), the control-limit policy Pñ, characterized

by the critical point ñ, achieves smaller average cost than the policy Pn. Similarly, if

there exists an integer ñ such that n < ñ and Qn(i;0) < hi
(n), n e i < ñ, according to

Theorem 3.2.1 in Tijms (1994), the control-limit policy Pñ characterized by the critical

point ñ, achieves smaller average cost than the policy Pn. When it is not possible to find

such a ñ, in view of Proposition 4 the average cost Gn is a minimum within the set {Gi :

i � 1}.

The above remarks lead us to develop the following special-purpose policy iteration

algorithm, which generates a sequence of improved control-limit policies.

Special-Purpose Policy Iteration Algorithm

Step 1. (initialization). Choose an initial integer n, n � 1.

Step 2. (value-determination step). For the current policy Pn compute the average

cost Gn from the equation Gn = C00
(n) /T00

(n).

Step 3. (policy improvement step).

(3a) Find, if it exists, the smallest integer ñ such that 1 e ñ < n and Qn(i;1) <

hi
(n) for all i 2 { ñ, ñ + 1, . . . , n j 1} and go to Step 2 with n replaced

by ñ. Else go to Step (3b).
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(3b) Find, if it exists, the largest integer ñ such that n < ñ and Qn(i;0) < hi
(n)

for all i 2{ n, n + 1, . . . , ñ j 1} and go to Step 2 with n replaced by ñ.

Step 4. (convergence test). If it is not possible to find an integer ñ such that (3a) or

(3b) is satisfied, then the algorithm is stopped. The final policy is Pn and the

corresponding average cost is Gn.

The quantity Qn(i;1) in Part (3a) of the algorithm is given by:

Qn i;1ð Þ ¼
ci þ k � Gn þ �

P1
j¼ 1

gjh
nð Þ

iþ j þ �h
nð Þ

0

�þ �
ð25Þ

and the quantity Qn(i;0) in Part (3b) is given by:

Qn i; 0ð Þ ¼ ci � Gn

�
þ
X1
j¼ 1

gjh
nð Þ

iþ j ð25Þ

The quantities hi
(n), i � 0, can be computed by the equation hi

(n) = Ci0
(n)

j GnTi0
(n), in which

Ti0
(n)

and Ci0
(n)

can be found from (8), (21), (22), (23), (25).

In a great number of examples that we have tested, we note that the special-purpose

policy iteration algorithm achieves a very large improvement at the first iteration. For

every initial control-limit policy Pn, n � 1, the average costs of the policies that are

generated after the first iteration do not differ significantly from the average cost of

the optimal policy. Moreover, there is evidence that the number of iterations of the

special-purpose policy iteration algorithm is not especially influenced by the initial

critical point.

We give as illustration two numerical examples. In the first example, we assume

that � = 2, � = 5 and that the group-size distribution is (g1, g2, g3) = (0.6, 0.2, 0.2). We

set ci ¼
ffiffi
i

p
, i � 0. The point n = 20 is chosen as the initial point in Step 1 of the special-

purpose policy iteration algorithm. In Table 1 below, we present the optimal critical

point n* obtained by the algorithms and the corresponding average cost Gn* for

different values of the parameter k. We also present the number of iterations required

by the special-purpose algorithm and the CPU time (in seconds) of the corresponding

Table 1. The optimal values of n*, the corresponding average cost Gn*, the number of iterations and the C.P.U.

times (in seconds) for different values of k.

k Optimal Critical Point n* Average Cost Gn* Number of Iterations CPU Times

10 5 2.28 4(5) 2(3.9)

20 9 3.06 4(6) 2.16(5.3)

50 19 4.35 2(6) 1.08(6.4)

100 31 5.58 4(6) 2.5(5.9)
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Matlab program that we run on a PC Acer Aspire 1605DLC. In parentheses we

present the number of iterations required by the standard bisection procedure and the

CPU time.

Note that the optimal critical point n* increases as k increases and that in all cases the

number of iterations and the CPU time required by the special-purpose policy iteration

algorithm are smaller than the number of iterations and the CPU time required by the

bisection procedure.

In the second example, we assume that � = 10, � = 8 and that the group-size dis-

tribution is (g1, g2, g3, g4, g5) = (0.2, 0.2, 0.2, 0.2, 0.2) (see Scenario 4 in Economou

(2003)). We set ci = 0.5i, i � 0 and k = 30. In Table 2 below, we give the values of

the critical points and the average costs of the successive policies generated by the

special-purpose policy iteration algorithm, for various values of the initial critical

point.

Table 2. The successive critical points and the corresponding average costs that are generated by the algorithm

for different values of the initial critical point.

Initial Critical Point Successive Critical Points Successive Average Costs

1 1, 34, 12, 17 18.54, 11.92, 10.36, 10.03

20 20, 16, 17 10.13, 10.04, 10.03

50 50, 9, 19, 17 15.02, 11.12, 10.08, 10.03

70 70, 6, 22, 16, 17 19.44, 12.57, 10.27, 10.04, 10.03

90 90, 5, 24, 15, 17 23.83, 13.59, 10.47, 10.07, 10.03

Graph 1. Plot of Gn versus n for the first example when k = 10.
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For the first example the plots of Gn versus n are given in Graphs 1 and 2 above if k is

equal to 10 and 50, respectively. The graphs confirm the result of Proposition 4.

6. Discussion

In this paper we considered the problem of controlling a compound immigration process,

which represents a pest population, by the introduction of total catastrophes. It was as-

sumed that the cost rate caused by the pests is an increasing function of their population

size and that the cost rate of the controlling action is constant. Using the method of

successive approximations we proved the existence of a control-limit policy that mini-

mizes the expected long-run average cost per unit time. Furthermore, we showed that the

average cost of a control-limit policy is unimodal as a function of the critical point. This

result guarantees that the standard bisection method and a special-purpose policy iteration

algorithm converge to the optimal policy.

A more general model is the one in which the pest population is controlled through

binomial catastrophes instead of total ones. Populations under the influence of binomial

catastrophes were studied by Brockwell et al. (1982). In this case, if the stationary policy

{ fi}, i � 0, is employed, the transitions of the process in a time interval (t, t + �t) are

i ! i þ j with probability �g j �t þ o �tð Þ; i � 0; j � 1;

i ! j with probability i
j

� �
p j 1 � pð Þi� j

fi �t þ o �tð Þ; i � 1; 0 � j � i:

The number p, 0 e p < 1, represents the probability of survival of a pest during a

catastrophe. If p = 0, the model reduces to that introduced in Section 2. It seems again

intuitively reasonable that the optimal policy is of control-limit type. However it seems

difficult to prove this result.

Graph 2. Plot of Gn versus n for the first example when k = 50.
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The optimal policy may be computed by applying the Aproximating Sequence Method

introduced by Sennott (see Chapter 10 in Sennott (1999)). This method approximates an

infinite-state Markov decision process by a sequence of finite-state Markov decision

processes. The value iteration algorithm is used to obtain the optimal policy of each

finite-state Markov decision process. The convergence of these policies to the optimal

policy of the original infinite-state Markov decision process is guaranteed under suitable

assumptions.

After applying the Sennott’s method in the modified model, a great number of exam-

ples that we tested provide strong evidence that the optimal policy is also of control-limit

type. As an illustration, we give a numerical example. We assume that � = 3, p = 0.3 and

that the group-size distribution is (g1, g2, g3) = (0.4, 0.2, 0.4). We set ci = i, i � 0 and

k = 5. The critical point n* of the optimal policy is n* = 4. The number of iterations of

the algorithm is 61 and the average cost of the optimal policy is found to be G = 12.7.

Appendix

The equations

lim
N!1

X1
j¼ 0

p
Nð Þ

X0 jC
nð Þ

j0 ¼
X1
j¼ 0

pjC
nð Þ

j0 ; ð26Þ

lim
N!1

X1
j¼ 0

p
Nð Þ

X0 jT
nð Þ

j0 ¼
X1
j¼ 0

pjT
nð Þ

j0 ; ð27Þ

where pj ¼ lim N!1 p
Nð Þ

X0 j , j � 0, were used in Case 2 in the proof of Proposition 3. These

equations are consequences of the following theorem (see p. 351 in Tijms (1994)) which

is a special case of the bounded convergence theorem.

THEOREM 2 Let { pm, m = 0, 1, . . . } be a sequence of non-negative numbers. Suppose that

the numbers anm, n, m = 0, 1, . . . are such that limn Y 1 anm = am exists for all m = 0,

1, . . . . If there is a finite constant M > 0 such thatªanmª e M for all n, m and ifP1
m¼ 0 pm < 1 then

lim
n!1

X1
m¼ 0

anm pm ¼
X1
m¼ 0

ampm:

To explain (26) we first see that, conditioning on the time until the occurrence of the

catastrophe, the expected cost Cj0
(n), j � n can be expressed as

C
nð Þ

j0 ¼
Z 1

0

Z t

0

E cX sð Þ þ k j X 0ð Þ ¼ j
� 

ds

� �
�e��tdt;
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where X(s) is the population size at time s of the compound immigration process. Since it

was assumed in Case 2 in the Proof of Proposition 3 that ci e Aim, for some A > 0 and

integer m, from the above expression it follows that

C
nð Þ

j0 � A

Z 1

0

Z t

0

E X sð Þð Þm j X 0ð Þ ¼ jf gds

� �
�e��tdt þ k��1:

From the definition of the compound Poisson process it follows that the above inequality

can be written equivalently as

C
nð Þ

j0 � A

Z 1

0

Z t

0

E j þ Y1 þ . . . þ YN sð Þ
� �m� 

ds

� �
�e��tdt þ k��1;

where, N(s) õ Poisson(�s) and the Yi’s are i.i.d. random variables with P (Yi ¼ ‘ ) ¼ g‘,

‘ ¼ 1( 2( . . . . Note that the r.h.s. of the above inequality is a polynomial P( j) in j

of degree m, since it was assumed in Section 2 that the group-size distribution

fg‘ : ‘ ¼ 1( 2( . . .g has finite moments of all orders up to m.

The series in the left-hand side of (26) is written as

X1
j¼ 0

p
Nð Þ

X0 j j
2P jð Þ

C
nð Þ

j0

j2P jð Þ : ð28Þ

Note that from Theorem 3.1 in Economou (2003) it follows that, for sufficiently large N

and j, p
Nð Þ

X0 j is approximately equal to c�jj, with c > 0 and 0 < � < 1. Hence, the quantity

p
Nð Þ

X0 j j2P ( j) for sufficiently large N and j is bounded. We also have that
P

j C
nð Þ

j0 j
�2

[P ( j)]�1<1 , since Cj0
(n)

< P( j). Hence, Theorem 2 can be applied if we take the limit

as N Y 1 of (28) and by interchanging the order of limit and summation we obtain the

right-hand side of (26).

The equation (27) can be justified similarly.
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