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Abstract
We suppose that a vehicle visits N ordered customers in order to collect from them two sim-
ilar but not identical materials. The actual quantity and the actual type of material that each
customer possesses become known only when the vehicle arrives at the customer’s location.
It is assumed that the vehicle has two compartments. We name these compartments, Com-
partment 1 and Compartment 2. It is assumed that Compartment 1 is suitable for loading
Material 1 and Compartment 2 is suitable for loading Material 2. However it is permitted to
load items of Material 1 into Compartment 2 and items of Material 2 into Compartment 1.
These actions cause extra costs that are due to extra labor. It is permissible for the vehicle
to interrupt its route and go to the depot to unload the items of both materials. The costs
for travelling from each customer to the next one and the costs for travelling from each cus-
tomer to the depot are known. The objective is to find the routing strategy that minimizes
the total expected cost among all possible strategies for servicing all customers. A dynamic
programming algorithm is designed for the determination of the routing strategy that mini-
mizes the total expected cost among all possible strategies. The structure of optimal routing
strategy is characterized by a set of critical numbers for each customer.
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1 Introduction

One of the most widely studied topics in the field of Operations Research is the vehicle
routing problem (VRP). It is a combinatorial optimization problem that generalizes the well-
known traveling salesman problem (TSP). It is also an important problem in the fields of
transportation, distribution and logistics. The main topic of the VRP is the determination
of the optimal routing strategy of a single vehicle or of a fleet of vehicles which deliver
products to customers that are located at different points in a geographical area. A first ver-
sion of the VRP appeared in a paper by Dantzig and Ramser (1959), where an algorithm
was developed and was applied to petrol deliveries. Clarke and Wright (1964) improved
Dantzig and Ramser’s approach using an effective greedy approach called the savings algo-
rithm. In many VRPs it is assumed that the vehicles collect goods from the customers. The
VRP has been extensively studied in the optimization literature during the last fifty-five
years. Recent surveys of research on VRP can be found in Pillac et al. (2013), Toth and
Vigo (2014), Psaraftis et al. (2016) and Ritzinger et al. (2016). It is noteworthy that a great
amount of research is related to Stochastic VRP (see e.g. Gendreau et al. (1996), Haugland
et al. (2007), Nguyen et al. (2016)) that contains stochastic elements, as the demands of the
customers, the vehicle travel times and the service times of the customers.

Two important variations of the VRP are the VRP with time windows and the capac-
itated VRP. In the VRP with time windows, the customers are served within predefined
time windows. In the capacitated VRP (with or without time windows), the vehicles
have limited carrying capacity of the goods that must be delivered. In the last nineteen
years various capacitated routing problems with additional characteristics such as a sin-
gle compartment, with multiple compartments, with pickup and delivery, with deterministic
demands, with stochastic demands, with full or partial satisfaction of demands, with time
windows, with delivery of two similar products have been studied. In these capacitated vehi-
cle routing problem versions, a single vehicle starts its route from a depot and serves N

customers according to a predefined order. We refer to the papers by Yang et al. (2000),
Kyriakidis and Dimitrakos (2008, 2013), Tsirimpas et al. (2008), Tatarakis and Minis
(2009), Minis and Tatarakis (2011), Pandelis et al. (2012), Pandelis et al. (2013a, b),
Dimitrakos and Kyriakidis (2015), Zhang et al. (2016), Kyriakidis et al. (2019). These prob-
lems have been solved by implementing suitable dynamic programming algorithms. It was
shown that the structure of the optimal routing strategy is of threshold-type, i.e. the optimal
action, when the vehicle visits a customer, depends on some critical numbers. In the present
work we consider another vehicle routing problem under the assumption that the customers
are serviced according to a predefined sequence. The vehicle starts its route from a depot.
It collects from the customers two similar but not identical materials (Material 1, Material
2). The size of an item is the same for both materials. The vehicle has two compartments
(Compartment 1, Compartment 2) with same capacity. Compartment 1 is suitable for load-
ing items of Material 1 and Compartment 2 is suitable for loading items of Material 2. If a
compartment is full, it is permissible to load the corresponding material into the other com-
partment. In this case a penalty cost is incurred that is due to some extra labor for separating
the two materials when the vehicle returns to the depot to unload. Each customer has only
one type of material. The probability that a customer has items of Material 1 or Material 2
is known before the arrival of the vehicle at the customer’s site. The quantity of the mate-
rial that a customer possesses is a random variable with known distribution. The type of the
material that a customer possesses and its actual quantity are revealed only when the vehi-
cle visits him/her. The vehicle may interrupt its route by returning to the depot to unload
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the materials in both compartments. The total cost for servicing all customers consists of (i)
costs for travelling from a customer to the next one, (ii) costs for travelling from the cus-
tomers to the depot and (iii) penalty costs. A dynamic programming algorithm is given for
the determination of the optimal routing strategy of the vehicle. It is shown that the optimal
routing strategy has a specific threshold-type structure. This characterization enables us to
construct an efficient special-purpose dynamic programming algorithm that operates over
the routing strategies having this structure.

The vehicle routing problem that we introduce in the present paper can be considered as
complementary to the vehicle routing problem that was studied in Kyriakidis et al. (2019).
In Kyriakidis et al. (2019), it was assumed that the vehicle transfers two similar but different
materials that are stored in a single compartment of the vehicle. The materials are delivered
to N ordered customers according to their preferences. In the present paper, it is assumed
that the vehicle has two compartments that are suitable for loading two similar but different
materials. The vehicle visits N ordered customers to collect the materials that are loaded
in suitable compartments. The problems are solved by dynamic programming algorithms.
In both problems, the decision epochs are chosen as the time epochs at which the vehicle
visits each customer for the first time and the maximum possible service has been offered.
The possible actions that are selected in the collection problem differ significantly from
the possible actions that are selected in the delivery problem. For example, in the delivery
problem, in some cases, the vehicle after the first visit at a customer’s site may return to the
depot to restock with some items of Material 1 and some other items of Material 2 and then
proceed to the next customer, while, in the collection problem, the vehicle after the first visit
at a customer’s site may return to the depot to unload both compartments, and then proceed
to the next customer.

A realistic application of the problem could be the collection of empty plastic and empty
glass bottles with same size from minimarkets that are located in a geographical area. A
vehicle with two compartments starts its route from a recycling plant and visits the mini-
markets in order to collect the bottles. The plastic bottles are placed in Compartment 1 of
the vehicle and the glass bottles are placed in Compartment 2. It is permissible to load bot-
tles in unsuitable compartments. In this case penalty costs are incurred that are due to extra
labor which is needed to separate the two kinds of bottles when the vehicle returns to the
recycling plant to unload. We refer to a recent paper by Markov et al. (2020), who stud-
ied a routing problem for the collection of recyclable waste. Another real-world application
of the proposed model (see Elgesem et al. (2018)) could be related to maritime transporta-
tion where a cargo ship with two compartments collects dry bulk (ores, cotton, corn) or
liquid bulk (crude oil, fuels, chemicals) from charterers (customers) in order to unload the
materials to the central port (depot).

The rest of the paper is organized as follows. In Section 2 the problem is specified and
analyzed for the case in which the quantities of the materials that are collected from the
customers are discrete random variables. A dynamic programming algorithm is presented
that leads to the optimal routing strategy of the vehicle. The form of the optimal routing
strategy is presented and an efficient special-purpose dynamic programming algorithm is
designed. In Section 3 similar structural results concerning the optimal routing strategy
are obtained when the quantities of the materials that are collected from the customers are
continuous random variables. In Section 4 the theoretical results are illustrated by numerical
examples. In Section 5 we investigate the more general problem without assuming that the
customers are ordered. A summary of the main results of the paper and a topic for future
research are presented in the last section.
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2 The Problem and the Optimal Routing Strategy

2.1 The Problem

We assume that a vehicle starts its route from a depot and visits N customers in order to
collect from them two similar but not identical materials. We name these materials, Material
1 and Material 2. An item of Material 1 does not differ in size from an item of Material 2.
For example, an item of Material 1 could be an empty plastic bottle and an item of Material
2 could be an empty bottle of glass with the same size. The customers are serviced according
to a predefined sequence 1 → 2 → · · · → N . This means that, first, the materials of
customer 1 are collected, then the materials of customer 2 are collected, then the materials
of customer 3 are collected and so on. As soon as all materials of the last customer N have
been collected, the vehicle returns to the depot and its route is completed. Suppose that (i)
the vehicle has two compartments, Compartment 1 and Compartment 2. Material 1 is loaded
in Compartment 1, while Material 2 is loaded in Compartment 2, (ii) both compartments
have the same capacity, which is equal to Q items, (iii) each customer i ∈ {1, . . . , N}
has items only of Material 1 or only of Material 2, (iv) the quantity ξi ∈ {0, . . . ,Q} that
will be collected from customer i ∈ {1, . . . , N} is a discrete random variable with known
distribution, (v) Material 1 will be collected from customer i ∈ {1, . . . , N} with probability
pi , (vi) Material 2 will be collected from customer i ∈ {1, . . . , N} with probability 1 − pi ,
(vii) the material and the actual quantity that will be collected from customer i ∈ {1, . . . , N}
is revealed only when the vehicle arrives at customer’s i site, (viii) it is permissible to load
units of Material 1 in Compartment 2, if Compartment 1 is full. In this case a penalty cost
is incurred that is equal to πi per unit of Material 1 that is loaded in Compartment 2. It is
also permissible to load units of Material 2 in Compartment 1, if Compartment 2 is full. In
this case a penalty cost is incurred that is equal to πi per unit of Material 2 that is loaded
in Compartment 1. Let ci,i+1, i = 1, . . . , N − 1 be the travel cost from customer i to
customer i + 1. Let also ci0 and c0i , i = 1, . . . , N be the travel cost from customer i to
the depot and the travel cost from the depot to customer i, respectively. These costs can
be considered as the costs of the required fuel that the vehicle needs to cover the distances
between consecutive customers and the distances between customers and the depot. It is
reasonable to assume that they satisfy the following properties:

ci0 = c0i , i = 1, . . . , N (symmetric property)

and

c0i + ci,i+1 ≥ c0,i+1, i = 1, . . . , N − 1 (triangle property)

The road network is depicted in Fig. 1.
The vehicle may interrupt its route and return to the depot to unload units of Material 1

and Material 2.
Suppose that the vehicle has visited customer i ∈ {1, . . . , N}. The material and the actual

quantity that customer i possesses have been revealed. The maximum possible quantity of
the material that customer i possesses is collected and put in the suitable compartment of
the vehicle. Let (z1, z2) be the state of the process after the first visit to customer i, where
zi, i = 1, 2 is the total number of items of Material 1 and of Material 2 that have been
loaded in compartment i of the vehicle after the first visit to customer i and after loading
the maximum possible quantity of the items of the materials that customer possesses into
the suitable compartment of the vehicle. There are three cases:
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Fig. 1 The road network

Case 1: 0 ≤ z1 ≤ Q, 0 ≤ z2 ≤ Q. In this case all items of the material that customer i

possesses are loaded in the suitable compartment of the vehicle.
Case 2: Q + 1 ≤ z1 ≤ 2Q, 0 ≤ z2 ≤ Q. In this case customer i has units of Material 1

and there is no space in Compartment 1 for z1−Q units of Material 1. We separate
this case into Case 2a when z1−Q ≤ Q−z2 and Case 2b when Q−z2 < z1−Q.
In Case 2a the whole quantity of z1 − Q units of Material 1 can be loaded in
Compartment 2. In Case 2b a quantity up to Q − z2 units of Material 1 can be
loaded in Compartment 2.

Case 3: 0 ≤ z1 ≤ Q, Q + 1 ≤ z2 ≤ 2Q. In this case customer i has units of Material 2
and there is no space in Compartment 2 for z2−Q units of Material 2. We separate
this case into Case 3a when z2−Q ≤ Q−z1 and Case 3b when Q−z1 < z2−Q.
In Case 3a the whole quantity of z2 − Q units of Material 2 can be loaded in
Compartment 1. In Case 3b a quantity up to Q − z1 units of Material 2 can be
loaded in Compartment 1.

Suppose i ∈ {1, . . . , N − 1}:
In Case 1 the possible actions are Action 1 and Action 2. Action 1 means that the vehicle

proceeds to customer i + 1 and Action 2 means that it goes to the depot to unload and
then goes to customer i + 1. In Case 2a the possible actions are Action 3, Action 4, Action
5θ , θ ∈ {0, . . . , z1 − Q − 1} and Action 6. Action 3 means that z1 − Q units of Material
1 are put in Compartment 2 and the vehicle proceeds to customer i + 1. Action 4 means
that z1 − Q units of Material 1 are put in Compartment 2, the vehicle goes to the depot
to unload and then goes to customer i + 1. Action 5θ means that θ units of Material 1 are
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put in Compartment 2, then the vehicle goes to the depot to unload, returns to customer i

to put z1 − Q − θ items of Material 1 to Compartment 1 and then goes to customer i + 1.
Action 6 means that the vehicle goes to the depot to unload, returns to customer i to put
z1 − Q units of Material 1 to Compartment 1, makes a second trip to the depot to unload
and then goes to customer i + 1. In Case 2b the possible actions are Action 6 and Action
7θ , θ ∈ {0, . . . ,Q−z2}. Action 7θ means that θ units of Material 1 are put in Compartment
2, then the vehicle goes to the depot to unload, returns to customer i to put z1 −Q− θ items
of Material 1 to Compartment 1 and then goes to customer i + 1. Note that Actions 3 and
4 cause a penalty cost that is equal to πi(z1 − Q), while Actions 5θ and 7θ cause a penalty
cost that is equal to πiθ . It is assumed that if Action 5θ or Action 7θ is selected, there are
no extra units of Material 1 or 2 to be collected when the vehicle returns to customer i, i.e.
ξi remains unaltered.
Suppose that i = N :

In Case 1 the only possible action for the vehicle is to return to the depot to terminate
its route. In Case 2a the possible actions are Action 8 and Action 9. Action 8 means that
z1 − Q units of Material 1 are put in Compartment 2 of the vehicle and then the vehicle
goes to the depot to terminate its route. Action 9 means that the vehicle goes to the depot
to unload then returns to customer N to collect z1 − Q units of Material 1 that are put in
Compartment 1 and then goes to the depot to terminate its route. If Action 8 is selected a
penalty cost is incurred that is equal to πN(z1 − Q). In Case 2b the only possible action is
Action 9. It is assumed that if Action 9 is selected then there are no extra units of Material
1 or 2 to be collected when the vehicle returns to customer N , i.e. ξN remains unaltered.

Note that in Case 3a and Case 3b for i ∈ {1, . . . , N} the possible actions are the same
as in Case 2a and Case 2b by taking into account that there is no space in Compartment 2
for units of Material 2. Our objective is to find the routing strategy that minimizes the total
expected cost for the service of all customers. This routing strategy minimizes the expected
total cost from the beginning of the route until its end. The total cost consists of travel costs
between consecutive customers and between customers and the depot and penalty costs
that incur when units of Material 1 are loaded in Compartment 2 of the vehicle or units of
Material 2 are loaded in Compartment 1 of the vehicle. The optimal routing strategy can be
found by implementing a suitable dynamic programming algorithm.

2.2 Dynamic Programming Equations

Let fi(z1, z2) denote the minimum expected future cost from the first visit of the vehicle
to customer i ∈ {1, . . . , N} until the end of the route, where (z1, z2) is the state of the
process that has been defined above. For i ∈ {1, . . . , N − 1} we give below the dynamic
programming equations (1)-(3) for Case 1, Case 2a and Case 2b. For Case 3a and Case 3b
the dynamic programming equations are the same as Eqs. 2 and 3 if we interchange z1 and
z2.

If 0 ≤ z1 ≤ Q, 0 ≤ z2 ≤ Q, then

fi(z1, z2) = min {Ai(z1, z2), Bi} , (1)

where,

Ai(z1, z2) = ci,i+1 + pi+1Efi+1(z1 + ξi+1, z2) + (1 − pi+1)Efi+1(z1, z2 + ξi+1),

Bi = ci0 + c0,i+1 + pi+1Efi+1(ξi+1, 0) + (1 − pi+1)Efi+1(0, ξi+1).

Author's personal copy



Methodology and Computing in Applied Probability

If Q + 1 ≤ z1 ≤ 2Q, 0 ≤ z2 ≤ Q, z1 − Q ≤ Q − z2, then

fi(z1, z2) = min {Ci(z1, z2),Di(z1), Ei(z1), Fi} , (2)

Ci(z1, z2) = πi(z1 − Q) + ci,i+1 + pi+1Efi+1(Q + ξi+1, z1 + z2 − Q)

+(1 − pi+1)Efi+1(Q, z1 + z2 − Q + ξi+1),

Di(z1) = πi(z1 − Q) + ci0 + c0,i+1 + pi+1Efi+1(ξi+1, 0)

+(1 − pi+1)Efi+1(0, ξi+1),

Ei(z1) = 2ci0 + ci,i+1 + min
0≤θ≤z1−Q−1

{πiθ + pi+1Efi+1(z1 − Q − θ + ξi+1, 0)

+(1 − pi+1)Efi+1(z1 − Q − θ, ξi+1)} ,

Fi = 3ci0 + ci,i+1 + pi+1Efi+1(ξi+1, 0) + (1 − pi+1)Efi+1(0, ξi+1).

If Q + 1 ≤ z1 ≤ 2Q, 0 ≤ z2 ≤ Q,Q − z2 < z1 − Q, then

fi(z1, z2) = min {Gi(z1, z2), Fi} (3)

where,

Gi(z1, z2) = 2ci0 + ci,i+1 + min
0≤θ≤Q−z2

{πiθ + pi+1Efi+1(z1 − Q − θ + ξi+1, 0)

+(1 − pi+1)Efi+1(z1 − Q − θ, ξi+1)} .
The boundary conditions are given below for Case 1, for Case 2a and for Case 2b. For Case
3a and Case 3b the boundary conditions are the same as for Case 2a and Case 2b if we
interchange z1 and z2.
If Q ≤ z1 ≤ Q, 0 ≤ z2 ≤ Q, then

fN(z1, z2) = cN0. (4)

If Q + 1 ≤ z1 ≤ 2Q, 0 ≤ z2 ≤ Q,Q − z2 < z1 − Q, then

fN(z1, z2) = 3cN0. (5)

If Q + 1 ≤ z1 ≤ 2Q, 0 ≤ z2 ≤ Q, z1 − Q ≤ Q − z2, then

fN(z1, z2) = min {πN(z1 − Q) + cN0, 3cN0} . (6)

The minimum expected total cost during a visit cycle is equal to

f0 = c01 + p1Ef1(ξ1, 0) + (1 − p1)Ef1(0, ξ1).

In the above equations the expected values are taken with respect to the random variables
ξi, i = 1, . . . , N . The terms Ai(z1, z2) and Bi in the right-hand-side of Eq. 1 correspond to
Action 1 and Action 2, respectively. The terms Ci(z1, z2),Di(z1), Ei(z1), Fi in the right-
hand-side of Eq. 2 correspond to Action 3, Action 4, Actions 5θ (θ ∈ {0, . . . , z1 − Q −
1}), Action 6, respectively. The terms Gi(z1, z2) and Fi in the right-hand-side of Eq. 3
correspond to Actions 7θ (θ ∈ {0, . . . , Q − z2}) and Action 6, respectively. The terms
in the curly brackets in the right-hand-side of Eq. 6 correspond to Action 8 and Action 9,
respectively. Lemma 1 below will be used in the proof of Theorem 1 that describes the
structure of the optimal routing strategy.

2.3 Structure of the Optimal Policy

Lemma 1 fi(z1, z2), i = 1, . . . , N , is increasing with respect to z1 and z2.
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Proof The proof is by induction on i. From Eqs. 4, 5, 6 it can be seen that fN(z1, z2) is
increasing in z1 and z2. Assuming that fi+1(z1, z2) is increasing in z1 and z2 we will show
that fi(z1, z2) is increasing in z1 and z2. We will restrict ourselves to Case 1 and Case 2,
since Case 3 is similar to Case 2. Let some fixed z1 ∈ {0, . . . , 2Q}. In view of the induction
hypothesis, it follows from Eqs. 1, 2, 3 that, to prove that fi(z1, z2) is increasing in z2, it is
enough to show that fi(z1, 2Q − z1) ≤ fi(z1, 2Q + 1 − z1), z1 ∈ {Q + 1, . . . , 2Q}.

The last inequality is equivalent to

min {Ci(z1, 2Q − z1), Di(z1), Ei(z1), Fi} ≤ min {Gi(z1, 2Q + 1 − z1), Fi} , z1 ∈ {Q+1, . . . , 2Q},

which holds since Ei(z1) = Gi(z1, 2Q + 1 − z1), z1 ∈ {Q + 1, . . . , 2Q}. Let some fixed
z2 ∈ {0, . . . ,Q}. In view of the induction hypothesis, it follows from Eqs. 1, 2, 3 that to
prove that fi(z1, z2) is increasing in z1, it is enough to show that

Ei(z1) ≤ Ei(z1 + 1), Q + 1 ≤ z1 ≤ 2Q − 1, (7)

fi(Q,Q) ≤ fi(Q + 1, Q), (8)

fi(Q, z2) ≤ fi(Q + 1, z2), 0 ≤ z2 ≤ Q − 1, (9)

fi(2Q − z2, z2) ≤ fi(2Q − z2 + 1, z2), 1 ≤ z2 ≤ Q − 1. (10)

Note that H(z1, z1 − Q − 1) ≤ H(z1 + 1, z1 − Q),
where,

H(z1, θ) = πiθ + pi+1Efi+1(z1 − Q − θ + ξi+1, 0)

+(1 − pi+1)Efi+1(z1 − Q − θ, ξi+1), Q + 1 ≤ z1 ≤ 2θ, 0 ≤ θ ≤ Q − z2.

Therefore, in view of the induction hypothesis we deduce that (7) holds.
Inequality (8) is equivalent to min {Ai(Q,Q), Bi} ≤ min {Gi(Q + 1,Q), Fi}. This

inequality holds since Bi ≤ Fi and Bi ≤ Gi(Q + 1,Q), which is valid due to the induction
hypothesis. Inequality (9) is equivalent to

min {Ai(Q, z2), Bi} ≤ min {Ci(Q + 1, z2), Ei(Q + 1), Fi} , 0 ≤ z2 ≤ Q − 1.

The above inequality holds since Ai(Q, z2) ≤ Ci(Q + 1, z2) (due to the induction hypoth-
esis) and Bi ≤ Di(Q + 1), Bi ≤ Ei(Q + 1) (due to induction hypothesis), Bi ≤ Fi .
Inequality (10) is equivalent to

min {Ci(2Q − z2, z2),Di(2Q − z2), Ei(2Q − z2), Fi} ≤ min {Gi(2Q − z2 + 1, z2), Fi} , 1 ≤ z2 ≤ Q−1.

To show the above inequality it is enough to prove that

Ei(2Q − z2) ≤ Gi(2Q − z2 + 1, z2), 1 ≤ z2 ≤ Q − 1,

or equivalently,

min
0≤θ≤Q−z2−1

{πiθ + pi+1Efi+1(Q − z2 − θ + ξi+1, 0) + (1 − pi+1)Efi+1(Q − z2 − θ, ξi+1)}
≤ min

0≤θ≤Q−z2
{πiθ+pi+1Efi+1(Q−z2+1−θ + ξi+1, 0)+(1−pi+1)Efi+1(Q−z2 + 1−θ, ξi+1)} , 1≤z2 ≤Q−1.

By taking into account the induction hypothesis we deduce that the last inequality holds
since the quantity in the curly brackets for θ = Q − z2 − 1 in its left-hand-side is smaller
than the quantity in the curly brackets for θ = Q − z2 in its right-hand-side.

Theorem 1 For each customer i ∈ {1, . . . , N − 1} the structure of the optimal routing
strategy is described in the following five cases:

(i) For z1 ∈ {0, . . . , Q} there exists a critical integer s1(z1) ≥ 0 such that if z2 ∈
{s1(z1), . . . , Q} then Action 2 is optimal and if z2 ∈ {0, . . . , s1(z1) − 1} then Action
1 is optimal. Moreover, s1(z1) is non-increasing in z1.
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(ii) For z2 ∈ {1, . . . ,Q} there exists a critical integer s2(z2) ∈ {2Q − z2 + 1, . . . , 2Q}
such that if z1 ∈ {s2(z2), . . . , 2Q}, then Action 6 is optimal and if z1 ∈ {2Q − z2 +
1, . . . , s2(z2)− 1}, then Action 7 is optimal. Moreover, s2(z2) is non-increasing in z2.

(iii) For z2 ∈ {0, . . . , Q− 1} there exists a critical integer s3(z2) ∈ {Q+ 1, . . . , 2Q− z2}
such that if z1 ∈ {Q + 1, . . . , s3(z2) − 1} then Action 3 or Action 4 or Action 5θ is
optimal and if z1 ∈ {s3(z2), . . . , 2Q − z2} then Action 6 is optimal. Moreover, s3(z2)
is non-increasing in z2.

(iv) For z1 ∈ {1, . . . ,Q} there exists a critical integer s4(z1) ∈ {2Q − z1 + 1, . . . , 2Q}
such that if z2 ∈ {s4(z1), . . . , 2Q} then Action 6 is optimal and if z2 ∈ {2Q − z1 +
1, . . . , s4(z1)−1}, then Action 7θ is optimal. Moreover, s4(z1) is non-increasing in z1.

(v) For z1 ∈ {0, . . . , Q− 1} there exists a critical integer s5(z1) ∈ {Q+ 1, . . . , 2Q− z1}
such that if z2 ∈ {Q + 1, . . . , s5(z1) − 1}, then Action 3 or Action 4 or Action 5θ is
optimal and if z2 ∈ {s5(z1), . . . , 2Q − z1} then Action 6 is optimal. Moreover, s5(z1)
is non-increasing in z1.

Proof From Lemma 1 it follows that Ai(z1, z2) is increasing in z1 and z2. Part (i) is a direct
consequence of this result. From Lemma 1 it follows that Gi(z1, z2) is increasing in z1. It
can also be seen that Gi(z1, z2) is increasing in z2. Part (ii) is a direct consequence of these
results. From Lemma 1 it follows that Ci(z1, z2) is increasing in z1 and z2. It can be seen
that Di(z1) is increasing in z1. In the proof of Lemma 1 it has been shown that Ei(z1) is
increasing in z1. Part (iii) is a direct consequence of these results. Part (iv) and Part (v) can
be proved in a similar way as Part (ii) and Part (iii), respectively.

2.4 Special-Purpose Dynamic Programming Algorithm

The optimal routing strategy, i.e. the critical integers s1(z1), z1{0, . . . ,Q}, s2(z2), z2 ∈
{1, . . . , Q}, s3(z2), z2 ∈ {0, . . . ,Q − 1}, s4(z1), z1 ∈ {1, . . . ,Q}, s5(z1), z1 ∈
{0, . . . , Q − 1} for each customer i ∈ {1, . . . , N − 1} can be found by a special-purpose
dynamic programming algorithm that takes into account the structure of the optimal routing
strategy as given in Theorem 1. The part of the algorithm that computes the critical integers
s1(z1), z1{0, . . . , Q}, s2(z2), z2 ∈ {1, . . . , Q}, s3(z2), z2 ∈ {0, . . . ,Q − 1} is pre-
sented below. The complete special-purpose dynamic programming algorithm includes the
computation of the critical integers s4(z1), z1 ∈ {1, . . . ,Q}, s5(z1), z1 ∈ {0, . . . ,Q − 1}
that is similar to the computation of the critical integers s2(z2), z2 ∈ {1, . . . , Q} and
s3(z2), z2 ∈ {0, . . . , Q − 1}, respectively.

Algorithm for the determination of the critical integers s1(z1), z1 ∈ {0, . . . ,Q}, s2(z2),
z2 ∈ {1, . . . , Q}, s3(z2), z2 ∈ {0, . . . ,Q − 1}.
Step 0. Set fN(z1, z2) = cN0 if z1, z2 ∈ {0, . . . ,Q},

fN(z1, z2) = 3cN0, if z1 ∈ {Q + 1, . . . , 2Q}, z2 ∈ {0, . . . , Q}, z1 + z2 < 2Q.
fN(z1, z2) = min {3cN0, πN(z1 − Q) + cN0} , if z1 ∈ {Q + 1, . . . , 2Q},
z2 ∈ {0, . . . ,Q}, z1 + z2 ≥ 2Q.
Set i = N − 1.

Step 1. (Determination of critical integers s1(z1), z1 ∈ {0, . . . ,Q})
Compute Bi .
For z1 = 0, . . . , Q do the following:

For z2 = 0, 1, . . . compute Ai(z1, z2) until Ai(z1, z2) > Bi or z2 = Q + 1.
Set s1(z1) = z2 − 1.
Set fi(z1, z2) = Ai(z1, z2), z2 ∈ {0, . . . , s1(z1)} and fi(z1, z2) = Bi,

z2 ∈ {s1(z1) + 1, . . . , Q}.
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Step 2. (Determination of critical integers s2(z2), z2 ∈ {1, . . . , Q})
Fi = 2ci0 + Bi .
For z2 = 1, . . . , Q do the following:

For z1 = 2Q − z2 + 1, 2Q − z2 + 2, . . . compute Gi(z1, z2) until
Gi(z1, z2) > Fi or z1 = 2Q + 1.
Set s2(z2) = z1.
Set fi(z1, z2) = Gi(z1, z2), z1 ∈ {2Q − z2 + 1, . . . , s2(z2) − 1} and
fi(z1, z2) = Fi,

z1 ∈ {s2(z2), . . . , 2Q}.
Step 3. (Determination of critical integers s3(z2), z2 ∈ {0, . . . , Q − 1})

For z2 = 0, . . . , Q − 1 do the following:
For z1 = Q + 1,Q + 2, . . . compute Ci(z1, z2),Di(z1), Ei(z1)

until Fi < min{Ci(z1, z2),Di(z1), Ei(z1)} or z1 = 2Q − z2 + 1.
Set s3(z2) = z1.
Set fi(z1, z2) = min{Ci(z1, z2),Di(z1), Ei(z1)},
z1 ∈ {Q + 1, . . . , s3(z2) − 1} and
fi(z1, z2) = Fi, z1 ∈ {s3(z2), . . . , 2Q − z2}.

Step 4. Set i = i − 1. If i ≥ 1 go to Step 1. Otherwise stop.

The above special-purpose dynamic programming algorithm is based on the structure of
the optimal routing strategy described in Theorem 1. The complexity of this algorithm can
be calculated by considering Definition 7.1 in Sipser (2013) and it is found to be O(NQ3).
It is more efficient than the initial dynamic programming algorithm since it requires less
computations. For example, for i = 1, . . . , N − 1, the quantities Ai(z1, z2), z2 ∈ {s1(z1)+
2, . . . , Q}, for z1 ∈ {0, . . . ,Q} are not computed, while these quantities are computed in
the initial dynamic programming algorithm. In Section 4 we will compare the computations
times of these algorithms in a numerical example.

3 The Problemwhen the Quantities that are Collected are Continuous
RandomVariables

3.1 The Optimal Routing Strategy with Continuous Demands

We modify the problem that we introduced in Section 2 by assuming that the quantities
ξi, i = 1, . . . , N of the materials that are collected from the customers are continuous
random variables and take values in the interval [0,Q] with probability density function
φi(x). A practical example with continuous demands could be the collection of two different
kinds of seeds or two different kinds of building materials, for example lime and pebble.
The states (z1, z2) of the process, where 0 ≤ z1 ≤ Q, 0 ≤ z2 ≤ Q or Q + 1 ≤ z1 ≤
2Q, 0 ≤ z2 ≤ Q or 0 ≤ z1 ≤ Q, Q + 1 ≤ z2 ≤ 2Q after the first visit at a customer’s
site and Action 1, Action 2, Action 3, Action 4, Actions 5θ (0 ≤ θ < z1 − Q), Action
6, Actions 7θ (0 ≤ θ ≤ Q − z2), Action 8, Action 9 are the same as those defined in
Section 2. The minimum expected future cost fi(z1, z2) for i = 1, . . . , N satisfies the
dynamic programming equations (1)–(3) and the boundary conditions (4)–(6). The structure
of the optimal routing strategy is the same as in the case of discrete ξi, i = 1, . . . , N and is
given in the theorem below.
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Theorem 2 For each customer i ∈ {1, . . . , N − 1} the structure of the optimal routing
strategy is defined in the following five cases:

(i) For z1 ∈ [0, Q] there exists a critical number s1(z1) ≥ 0 such that if z2 ∈ [s1(z1),Q]
then Action 2 is optimal and if z2 ∈ [0, s1(z1)) then Action 1 is optimal. Moreover,
s1(z1) is non-increasing in z1.

(ii) For z2 ∈ (0,Q] there exists a critical number s2(z2) ∈ (2Q − z2, 2Q] such that if
z1 ∈ [s2(z2), 2Q] then Action 6 is optimal and if z1 ∈ (2Q − z2, s2(z2)) then Action
7θ is optimal. Moreover, s2(z2) is non-increasing in z2.

(iii) For z2 ∈ [0,Q) there exists a critical number s3(z2) ∈ (Q, 2Q − z2] such that
if z1 ∈ (Q, s3(z2)) then Action 3 or Action 4 or Action 5θ is optimal and if z1 ∈
[s3(z2), 2Q − z2] then Action 6 is optimal. Moreover, s3(z2) is non-increasing in z2.

(iv) For z1 ∈ (0,Q] there exists a critical number s4(z1) ∈ (2Q − z1, 2Q] such that if
z2 ∈ [s4(z1), 2Q] then Action 6 is optimal and if z2 ∈ [2Q − z1, s4(z1)) then Action
7θ is optimal. Moreover, s4(z1) is non-increasing in z1.

(v) For z1 ∈ [0,Q) there exists a critical number s5(z1) ∈ (Q, 2Q − z1] such that
if z2 ∈ (Q, s5(z1)) then Action 3 or Action 4 or Action 5θ is optimal and if z2 ∈
[s5(z1), 2Q − z1] then Action 6 is optimal. Moreover, s5(z1) is non-increasing in z1.

3.2 Discretization of the State Space

The state space after the first visit of the vehicle at customer’s i ∈ {1, . . . , N} site is the set:

S = {(z1, z2) : 0 ≤ z1, z2 ≤ Q} ∪ {(z1, z2) :0 < z1≤2Q, 0≤z2 ≤ Q} ∪ {(z1, z2) : 0 ≤ z1

≤ Q, Q < z2 ≤ 2Q} .

A discretization of the state space is necessary for the implementation of the dynamic pro-
gramming algorithm. Let ρ a relatively small number (e.g. ρ = 0.05 or ρ = 0.01). We
discretize S by restricting our attention only to its points that belong to the set:

S̃ = {(kρ, lρ) : k, l=0, . . . , Q/ρ} ∪ {(kρ, lρ) : k=Q/ρ + 1, . . . , 2Q/ρ, l = 0, . . . , Q/ρ}
∪ {(kρ, lρ) : k = 0, . . . , Q/ρ, l = Q/ρ + 1, . . . , 2Q/ρ} .

The minimum expected cost fN(kρ, lρ), (kρ, lρ) ∈ S̃ is found by using (4)–(6) with
z1 = kρ, z2 = lρ. The minimum expected cost fi(kρ, lρ), (kρ, lρ) ∈ S̃ and the corre-
sponding optimal decisions are found, recursively, for i = N −1, N −2, . . . , 1 by using the
dynamic programming equations (1)–(3) with z1 = kρ, z2 = lρ. The parameter θ in these
equations takes values in finite sets. For example in the equation for Ei(kρ) the parameter θ

takes values in the set B = {uρ : u = 0, . . . , k − Q/ρ − 1}. The expectations are computed
approximately. For example Ei(kρ), is computed approximately as follows:

Ei(kρ) = 2ci0 + ci,i+1+ min
θ∈B

⎡
⎣πiθ + pi+1

Q/ρ−1∑
x=0

fi+1(kρ − Q − θ + xρ, 0)φi+1(xρ)ρ

+(1 − pi+1)

Q/ρ−1∑
x=0

fi+1(kρ − Q − θ, xρ)φi+1(xρ)ρ

⎤
⎦ .
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3.3 Special-Purpose Dynamic Programming Algorithm

As in the case of discrete demands, the optimal routing strategy, i.e. the critical num-
bers s1(kρ), k = 0, . . . , Q/ρ, s2(lρ), l = 1, . . . , Q/ρ, s3(lρ), l = 0, . . . , Q/ρ −
1, s4(kρ), k = 1, . . . , Q/ρ, s5(kρ), k = 0, . . . , Q/ρ − 1 can be found by a
special-purpose dynamic programming algorithm that takes into account the structure of the
optimal routing strategy as given in Theorem 2. The part of this algorithm that computes
the critical numbers s1(kρ), k = 0, . . . , Q/ρ, s2(lρ), l = 1, . . . , Q/ρ, s3(lρ), l =
0, . . . , Q/ρ − 1, is presented below. The complete special-purpose dynamic programming
algorithm includes the computation of the critical numbers s4(kρ), k = 1, . . . , Q/ρ and
s5(kρ), k = 0, . . . , Q/ρ − 1 that is similar to the computation of the critical numbers
s2(lρ), l = 1, . . . , Q/ρ, and s3(lρ), l = 0, . . . , Q/ρ − 1, respectively.

Algorithm for the determination of the critical numbers s1(kρ), k =
0, . . . , Q/ρ, s2(lρ), l = 1, . . . , Q/ρ, s3(lρ), l = 0, . . . , Q/ρ − 1.

Step 0. Set fN(kρ, lρ) = cN0 if k, l ∈ {0, . . . ,Q/ρ}, fN(kρ, lρ) = 3cN0, if
k ∈ {Q/ρ + 1, . . . , 2Q/ρ},
l = 0, . . . , Q/ρ, k + l < 2Q/ρ.
fN(kρ, lρ) = min {3cN0, πN(kρ − Q) + cN0}, if k ∈ {Q/ρ + 1, . . . , 2Q/ρ},
l ∈ {0, . . . ,Q/ρ}, k + l ≥ 2Q/ρ.
Set i = N − 1.

Step 1. (Determination of critical numbers s1(kρ), k = 0, . . . , Q/ρ)

Compute Bi .
For k = 0, . . . , Q/ρ do the following:

For k=0, ρ, 2ρ, . . . compute Ai(kρ, z2) until Ai(kρ, z2)>Bi or z2=Q + ρ.
Set s1(kρ) = z2 − ρ.
Set fi(kρ, lρ) = Ai(kρ, lρ), 0 ≤ l ≤ s1(kρ)/ρ, fi(kρ, lρ) = Bi,

l = s1(kρ)/ρ + 1, . . . , Q/ρ.
Step 2. (Determination of critical numbers s2(lρ), l = 1, . . . , Q/ρ)

Fi = 2ci0 + Bi .
For l = 1, . . . , Q/ρ do the following:

For z1 = 2Q − lρ + ρ, 2Q − lρ + 2ρ, . . . compute Gi(z1, lρ) until
Gi(z1, lρ) > Fi or z1 = 2Q + ρ.
Set s2(lρ) = z1.
Set fi(kρ, lρ) = Gi(kρ, lρ), k = 2Q/ρ − l + 1, . . . , s2(lρ)/ρ − 1 and
fi(kρ, lρ) = Fi, k = s2(lρ)/ρ, . . . , 2Q/ρ.

Step 3. (Determination of critical numbers s3(lρ), l = 0, . . . , Q/ρ − 1)
For l = 0, . . . , Q/ρ − 1 do the following:

For z1 = Q,Q + ρ, . . . compute Ci(z1, lρ), Di(z1), Ei(z1)

until Fi < min{Ci(z1, lρ), Di(z1), Ei(z1)} or z1 = 2Q − lρ + ρ.
Set s3(lρ) = z1.
Set fi(kρ, lρ) = min{Ci(kρ, lρ), Di(kρ), Ei(kρ)}, k = Q/ρ + 1, . . . ,
s3(lρ)/ρ − 1 and fi(kρ, lρ) = Fi, k = s3(lρ)/ρ, . . . , 2Q/ρ − l.

Step 4. Set i = i − 1. If i ≥ 1 go to Step 1. Otherwise stop.

The above special-purpose dynamic programming algorithm is based on the structure
of the optimal routing strategy described in Theorem 2. Its complexity is O(N [Q/ρ]3)
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(see Definition 7.1 in Sipser (2013)). It requires less computations than the initial dynamic
programming algorithm. For example, for i = 1, . . . , N − 1, the quantities Ai(kρ, lρ), l ∈
{s1(kρ)/ρ+2, . . . , Q/ρ} for k ∈ {0, . . . , Q/ρ} are not computed, while these quantities are
computed in the initial dynamic programming algorithm. A numerical example is presented
in Section 4 that shows that the difference of the computation times of these algorithms is
significant especially for high values of the number of customers N .

4 Numerical Results

In the following numerical results, we implemented the initial dynamic programming
algorithm and the special-purpose dynamic programming algorithm by running the corre-
sponding Matlab programs on a personal computer equipped with an Intel Core i5-3230 M,
2.6 GHz processor and 4 GB of RAM. In Example 1, we assume that the quantities of the
materials that are collected from the customers are discrete random variables and in Exam-
ple 2, we assume that the quantities of the materials that are collected from the customers
are continuous random variables. These examples confirm the structural results presented
in Theorem 1 and in Theorem 2.

Example 1 Suppose that N = 11 and Q = 15. The travel costs between customer i and
i + 1, i ∈ {1, . . . , 10}, are given by: c12 = 8, c23 = 10, c34 = 9, c45 = 12, c56 =
10, c67 = 14, c78 = 12, c89 = 9, c9,10 = 11 and c10,11 = 15. The travel costs between
customers i, i = 1, . . . , 11 and the depot are given by: c10 = 12, c20 = 10, c30 =
12, c40 = 11, c50 = 9, c60 = 12, c70 = 13, c80 = 15, c90 = 12, c10,0 = 14
and c11,0 = 13. Note that these costs satisfy the triangle inequality. We assume that the
penalty costs π1, . . . , π11 incurred if an item of Material 1 is loaded in Compartment 2 or
if an item of Material 2 is loaded in Compartment 1 are elements of the row vector π =
(3, 2, 5, 4, 3, 4, 5, 6, 2, 5, 4). We further assume that the quantity ξi that is collected from
each customer i ∈ {1, . . . , 11} is a discrete random variable which follows the binomial
distribution Bin(Q, 0.3) i.e.

Pr(ξi = x) =
(

Q

x

)
0.3x0.7Q−x, x = 0, . . . , Q.

We assume that the probabilities p1, . . . , p11 that Material 1 will be col-
lected from customers 1, . . . , 11 are elements of the row vector p =
(0.5, 0.7, 0.6, 0.8, 0.3, 0.7, 0.5, 0.9, 0.4, 0.5, 0.6). In Figs. 2 and 3, we present the optimal
decisions for customers 3 and 9. If 0 ≤ z1 ≤ Q, 0 ≤ z2 ≤ Q, the action of proceeding
directly to next customer (Action 1) is denoted by green right-pointing triangles and the
action of going to the depot for unloading and then going to the next customer (Action 2) is
denoted by blue squares.

If Q+1 ≤ z1 ≤ 2Q, 0 ≤ z2 ≤ Q, or if 0 ≤ z1 ≤ Q, Q+1 ≤ z2 ≤ 2Q, we use yellow
diamonds for Action 3 that corresponds to quantity Ci(z1, z2), red x-marks for Action 4 that
corresponds to quantity Di(z1) (or Di(z2)) cyan hexagrams for Action 5θ that corresponds
to quantity Ei(z1) (or Ei(z2)) magenta plus signs for Action 6 that corresponds to quantity
Fi and black asterisks pluses for Action 7θ that corresponds to quantity Gi(z1, z2).
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Fig. 2 The optimal decisions for customer 3

The value of the minimum expected total cost f0 is found to be approximately equal to
161.11. The computation time of the special-purpose dynamic programming algorithm for
the calculation of f0 is approximately equal to 0.44 seconds. It is considerably smaller than
the corresponding computation time of the initial dynamic programming algorithm which
is approximately equal to 3 seconds.

Both algorithms enable us to determine the optimal values of θ when the optimal actions
are the actions 5θ and 7θ . For example, for customer 9, if the state is (z1, z2) = (29, 1), then
the optimal action for the vehicle is the action 5θ with θ = 4. According to this action, the
vehicle loads θ = 4 items of Material 1 in Compartment 2, it goes to the depot to unload,
it returns to customer 9 to load z1 − Q − θ = 29 − 15 − 4 = 10 items of Material 1 in
Compartment 1 and then goes to customer 10.

If again for customer 9, the state is (z1, z2) = (27, 11), then the optimal action for the
vehicle is the action 7θ with θ = 2. According to this action, the vehicle loads θ = 2 items
of Material 1 in Compartment 2, it goes to the depot to unload, it returns to customer 9 to
load z1 − Q − θ = 27 − 15 − 2 = 10 items of Material 1 in Compartment 1 and then
proceeds to customer 10.

In Table 1 for customer 9 and for some states (z1, z2), for which the optimal action is the
action 5θ the optimal values of θ are presented.
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Fig. 3 The optimal decisions for customer 9

In Table 2 for customer 9 and for some states (z1, z2), for which the optimal action is the
action 7θ , the optimal values of θ are presented.

In Fig. 4, we present a graph that shows the variation of the minimum expected total cost
f0 as the probability p of the binomial distribution Bin(Q, p) of the quantity ξi takes values
in the set {0.1, 0.2, . . . , 0.8, 0.9}. We see that as p takes values in the set {0.1, . . . , 0.7} the
minimum expected total cost increases rather quickly and approximately linearly. When p

takes values in the set {0.8, 0.9} the minimum expected total cost increases rather slowly.

Table 1 The optimal values of θ

for customer 9 when action 5θ is
optimal

States (z1, z2) Optimal values of θ

(28,2) 3

(0,20) 0

(29,0) 4

(3,27) 1

(2,28) 2
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Table 2 The optimal values of θ

for customer 9 when action 7θ is
optimal

States (z1, z2) Optimal values of θ

(29,3) 4

(28,10) 3

(27,13) 2

(26,11) 1

(28,15) 0

In Fig. 5, we present graphs that show, as Q varies in the set {10, 12, . . . , 78, 80}
the variation of the required computation times (expressed in seconds) for the calculation
of f0 when the initial dynamic programming algorithm and the special-purpose dynamic
programming algorithm are implemented.

We observe that, as Q increases, the computation times for both algorithms increase
non-linearly. For the special-purpose algorithm the form of the graph verifies that the com-
plexity of the algorithm is O(NQ3). The computation time required by the special-purpose
algorithm is considerably smaller than the computation time required by the initial dynamic
programming algorithm especially for high values of Q.

Example 2 Suppose that N = 10 and Q = 8. The travel costs between customer i and
i + 1, i ∈ {1, . . . , 9} are given by: c12 = 9, c23 = 8, c34 = 9, c45 = 7, c56 = 8, c67 =
10, c78 = 9, c89 = 7 and c9,10 = 8. The travel costs between customers i, i = 1, . . . , 10,
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Fig. 4 The minimum total expected cost as p varies
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Fig. 5 The computation times of the algorithms as Q varies

and the depot are given by: c10 = 7, c20 = 8, c30 = 8, c40 = 7, c50 = 6, c60 = 8, c70 =
6, c80 = 7, c90 = 7 and c10,0 = 6.

Note that these costs satisfy the triangle inequality. We assume that the penalty
costs π1, . . . , π10 incurred if a unit of Material 1 is loaded in Compartment 2 or if a
unit of Material 2 is loaded in Compartment 1 are elements of the row vector π =
(1.1, 1.3, 1.4, 1.2, 1, 1.4, 1.1, 1.2, 1.4, 1). We further assume that the quantity ξi that is
collected from each customer i ∈ {1, . . . , 10} is a continuous random variable which
follows the Normal distribution truncated in the interval [0, Q]. The probability density
functions φi(x) are given by:

φi(x) = [F(Q) − F(0))]−1 1

σ
√
2π

exp

{
− (x − μ)2

2σ 2

}
, x ∈ [0,Q],

where, μ ∈ R, σ > 0 and F(x) is the cumulative distribution of the Normal distribu-
tion with parameters μ ∈ R and σ 2 > 0. We choose μ = 3 and σ = 2. We assume that
the probabilities p1, . . . , p10 that Material 1 will be collected from customers 1, . . . , 10
are elements of the row vector p = (0.4, 0.6, 0.3, 0.5, 0.6, 0.3, 0.7, 0.8, 0.6, 0.5). In
Figs. 6 and 7, we present the optimal decisions for customers 6 and 9. If z1 ∈ [0, Q], z2 ∈
[0, Q], the action of proceeding directly to next customer (Action 1) is colored by green and
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Fig. 6 The optimal decisions for customer 6

the action of going to the depot for unloading and then going to the next customer (Action 2)
is colored by blue. If z1 ∈ (Q, 2Q], z2 ∈ [0, Q], or if z1 ∈ [0,Q], z2 ∈ (Q, 2Q], Action
3 that corresponds to quantity Ci(z1, z2) is colored by yellow, Action 4 that corresponds
to quantity Di(z1) (or to quantity Di(z2)) is colored by red, Action 5θ , θ ∈ [0, z1 − Q)

that corresponds to quantity Ei(z1) (or Action 5θ , θ ∈ [0, z2 − Q) that corresponds to
quantity Ei(z2)) is colored by cyan, Action 6 that corresponds to quantity Fi is colored
by magenta and Action 7θ that corresponds to quantity Gi(z1, z2) is colored by black. We
choose ρ = 0.05 so that the discretized state space S̃ for each customer i ∈ {1, . . . , 10} is
the set:

{(k · 0.05, l · 0.05) : k, l = 0, . . . , 160} ∪ {(k · 0.05, l · 0.05) : k = 161, . . . , 320, l = 0,

. . . , 160} ∪ {(k · 0.05, l · 0.05) : k = 0, . . . , 160, l = 161, . . . , 320} .
The value of the minimum total expected cost f0 is found to be approximately equal to

103.45. The computation time of the special-purpose dynamic programming algorithm for
the calculation of f0 is approximately equal to 388 seconds. It is considerably smaller than
the corresponding computation time of the initial dynamic programming algorithm which
is approximately equal to 852 seconds.

Both algorithms enable us to determine the optimal values of θ when the optimal actions
are the actions 5θ and 7θ . For example, for customer 9, if the state is (z1, z2) = (15.6, 0.4),
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Fig. 7 The optimal decisions for customer 9

then the optimal action for the vehicle is the action 5θ with θ = 0. According to this action,
the vehicle does not load any quantity of Material 1 in Compartment 2, goes to the depot to
unload, returns to customer 9 to load quantity equal to z1 − Q − θ = 15.6 − 8 − 0 = 7.6
units of Material 1 in Compartment 1 and then goes to customer 10.

For customer 6, if the state is (z1, z2) = (7.8, 14.8) then the optimal action for the vehicle
is action 7θ with θ = 0.15. According to this action, the vehicle loads a quantity equal to
θ = 0.15 units of Material 2 in Compartment 1, goes to the depot to unload, returns to
customer 6 to load a quantity equal to z2−Q−θ = 14.8−8−0.15 = 6.65 units of Material
2 in Compartment 2 and proceeds to customer 7.

In Table 3, for customer 9 and for some states (z1, z2) for which the optimal action is the
action 5θ , the optimal values of θ are presented.

Table 3 The optimal values of θ

for customer 9 when action 5θ is
optimal

States (z1, z2) Optimal values of θ

(15.4,0.6) 0.2

(0.35,15.65) 0

(0.55,15.45) 0
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Table 4 The optimal values of θ

for customer 6 when action 7θ is
optimal

States (z1, z2) Optimal values of θ

(7.75,13.55) 0.15

(8,15.9) 0

(7.8,10.05) 0.1

(7.9,12.5) 0

(7.85,12.15) 0.05

In Table 4, for customer 6 and for some states (z1, z2) for which the optimal action is the
action 7θ , the optimal values of θ are presented.

We assume that Q = 4 and that the number of customers N takes values in the set
{5, 6, . . . , 20}. For each value of N , let ci,i+1 = 14, i ∈ {1, . . . , N − 1}, ci0 = 12 if i

is odd and ci0 = 10, if i is even. For each customer i ∈ {1, . . . , N}, we assume that the
penalty cost πi incurred if a unit of Material 1 is loaded in Compartment 2 or if a unit of
Material 2 is loaded in Compartment 1 is equal to 2 and the probability that Material 1 will
be collected from each customer is equal to 0.5.

In Fig. 8, we present graphs that show, asN varies in the set {5, 6, . . . , 20} the variation in
the computation times, expressed in seconds, required by the initial dynamic programming
algorithm and by the special-purpose dynamic programming algorithm.
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Fig. 8 The computation of the algorithms as N varies
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We observe that, as N increases, the computation times for both algorithms increase
approximately linearly. The form of the graph confirms that the complexity of the special-
purpose algorithm (O(N [Q/ρ]3)) is a linear function with respect to N . The computation
time required by the special-purpose algorithm is considerably smaller than the computa-
tion time required by the initial dynamic programming algorithm for all values of N . The
difference between the computation times increases as N increases.

5 The Problemwhen the Customers are not Ordered

We modify the problem that we introduced in Section 2 by assuming that the customers are
not serviced according to a predefined sequence. In this case there are N ! different customer
sequences that the vehicle may follow. For each sequence using the dynamic programming
algorithm we can find the optimal routing strategy and the corresponding minimum total
expected cost, and then by comparing these minimum costs we can determine the optimal
customer sequence that achieves the overall minimum cost. Numerical experiments indicate
that, if the demands of the customers are discrete random variables, it is possible to find
the optimal customer sequence for values of N up to 9. As illustration we give below a
numerical example.

Example 3 Suppose that Q = 7. We assume that the number of customers N takes values in
the set {3, 4, . . . , 9}. The travel costs cij between customers i, j ∈ {1, . . . , 9} and the travel
costs ci0 between each customer i ∈ {1, . . . , 9} and the depot are given by the following
symmetric matrix C = (cij ), i, j = 0, . . . , 9.

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 23 25 18 17 22 20 19 21 24
23 0 18 16 15 16 17 15 13 17
25 18 0 19 13 15 18 16 12 15
18 16 19 0 14 16 12 15 13 17
17 15 13 14 0 12 16 13 14 15
22 16 15 16 12 0 18 16 14 15
20 17 18 12 16 18 0 15 17 18
19 15 16 15 13 16 15 0 15 16
21 13 12 13 14 14 17 15 0 16
24 17 15 17 15 15 18 16 16 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

These costs satisfy the triangle inequality. We assume that the penalty costs π1, . . . , π9
incurred if an item of Material 1 is loaded in Compartment 2 or if an item of Material 2
is loaded in Compartment 1 are elements of the row vector π = (4, 3, 2, 5, 3, 4, 1, 4, 2).
We further assume that the quantity ξi that is collected from each customer i ∈ {1, . . . , 9}
is a discrete random variable which follows the discrete uniform distribution, i.e. Pr(ξi =
x) = (Q + 1)−1, x = 0, . . . , Q and that the probabilities p1, . . . , p9 that Mate-
rial 1 will be collected from customers 1, . . . , 9 are elements of the row vector p =
(0.2, 0.4, 0.1, 0.3, 0.6, 0.5, 0.8, 0.4, 0.7). For N ∈ {3, . . . , 9} we consider the network con-
sisting of customers 1, . . . , N . In Table 5 we present for N ∈ {3, . . . , 9} the number N ! of
all possible customer sequences, the minimum expected cost among all customer sequences,
the optimal customer sequence, the required computation time in seconds (Time 1) if the ini-
tial dynamic programming algorithm is used and the required computation time in seconds
(Time 2) if the special-purpose dynamic programming algorithm is used.
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Table 5 The optimal customer sequence for N = 3, 4, 5, 6, 7, 8, 9

N N ! Minimum Cost Optimal Sequence Time 1 Time 2

3 6 86.05 1,2,3 0.069 0.025

4 24 105.51 4,2,1,3 0.2875 0.1252

5 120 129.17 4,2,5,1,3 1.5294 1.1113

6 720 151.96 4,2,5,1,6,3 11.9384 6.0243

7 5040 172.53 4,2,5,1,7,6,3 108.2632 68.2031

8 40320 194.96 4,5,2,8,1,7,6,3 953.5481 625.9688

9 362880 220.25 4,5,9,2,8,1,7,6,3 8971.1 2117.7

In Fig. 9, we present the graphs that show, as takes values in the set {3, . . . , 9} the
variation in required computation times, expressed in seconds, if the initial dynamic
programming algorithm and if the special-purpose dynamic programming algorithm are
used.

We observe that, as N increases, both computation times seem to increase exponentially.
The required computation time if the special-purpose dynamic programming algorithm
is used is considerably smaller than the required computation time if the initial dynamic
programming algorithm is used.
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Fig. 9 The computation times of the algorithms as N varies
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6 Summary of Results and a Topic for Future Research

In this paper a capacitated and compartmentalized stochastic vehicle routing problem was
studied in which (i) the customers are serviced according to a particular order, (ii) the vehi-
cle collects from the customers two similar but not identical materials, (iii) each material is
loaded in the suitable compartment of the vehicle, (iv) the type of the material and the quan-
tity that is collected from each customer are stochastic, (v) the actual material and the actual
quantity that are collected from each customer become known as soon as the vehicle visits
the customer. The cost structure includes travel costs between consecutive customers, travel
costs between customers and the depot and penalty costs that are incurred when a material
is not put in the suitable compartment of the vehicle. We choose as decision epochs for the
routing of the vehicle, the epochs at which the vehicle visits for the first time each customer
and the maximum possible quantity of the material that he/she possesses has been put in the
suitable compartment of the vehicle. A stochastic dynamic programming algorithm is pro-
posed for the determination of the routing strategy that minimizes the expected total costs
for servicing all customers. The optimal routing strategy has a specific threshold-type struc-
ture. This result enables us to design a special-purpose dynamic programming algorithm
that is considerably more efficient than the initial one. If the above Assumption (i) is not
valid, it is possible to find numerically the optimal routing strategy for moderate values of
the number of customers.

A possible topic for future research could be the study of a more general problem where
the vehicle collects K ≥ 3 similar but not identical materials.
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