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Abstract

We show that some well known theorems in topology may not be
true without the axiom of choice.
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1 INTRODUCTION AND TERMINOLOGY.

The countable azxiom of choice CAC (Form 8 in [4]) is the assertion:
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“For every set A= {A;:1i € w} of nonempty pairwise disjoint sets there ex-
ists a set C consisting of one and only one element from each element of A.”

The countable multiple choice axiom, CMC, is the proposition:

“For every set A = {A; : i € w} of nonempty sets there exists a family
F =A{F;:i € w} of finite nonempty sets such that for every i € w F; C A;.”

CAC,, is CAC with the additional requirement that the members of A are
countable sets and CMC,, is CMC with the same requirement. w-CMC is
the statement:

“For every countable family A of nonempty disjoint sets there exists a set C
such that for every A€ A0 < |CNA|<w.)

Lemma 1.1 (i) CMC iff w-CMC+CMC,,.
(i) CAC iff w-CMC+CAC,,.

Remark 1. If in w-CMC we do not require that A be a family of disjoint
sets then Lemma 1.1 (i) is false. Indeed, CMC is true in the Second Fraenkel
Model, model A2 from [4] (the set of atoms A is countable, i.e. A= {a; :7 €
w}, the group of permutations G is the group of permutations on A which
leave the set {{ag;, 211} : i € w} pointwise fixed and supports are finite),
but w-CMC is false. To see this let A = {A4;:i € w} where Ay = A,

i—1
Al = A — {ag,al}, . .,Ai = A — U{{a2j7a2j+1}}7 e
7=0

Let C' be a set given by w-CMC. Since C' meets nontrivially each member of
Aand 0 < |CNA| <w, CNAmust be an infinite well ordered subset of A
but it is known that A does not have such subsets.

Lemma 1.2 CMC iff for every countable family A of disjoint nonempty sets
there exists an infinite set C' C UA such that for every A€ A 0 < |CNA| <
w.

Proof. It suffices to show (+). Fix A = {A4, : n € w} a family of nonempty
sets. Put

B:{Bn:HAm:nEw}.

m<n
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By the hypothesis there exists an infinite set C' C UB such that for every
ne€w 0<|CNB,| <w.Based on C' and taking projections we can easily
construct a set F = {F,, : n € w} satisfying CMC for A. I

For the undefined notation we refer the reader to [13], [15], [12], [9] and
[11]. All product spaces in this paper are given as products of countably
many factors and carry the Tychonoff topology.

Our main aim here is to show that well known theorems of ZF+AC (see
[15]) such as:

Theorem 1.3 Countable products of metrizable spaces are metrizable,

Theorem 1.4 Countable products of second countable spaces are second count-
able,

Theorem 1.5 Countable products of first countable spaces are first count-
able,

Theorem 1.6 Countable products of separable T, spaces are separable,

Theorem 1.7 A metric space is countably compact iff each of its sequences
has a cluster point,

are not provable in ZF~ (= ZF minus foundation) without AC.
Van Douwen in [1] showed that it is consistent with ZF—AC that:

Theorem 1.8 There exists a family {X; : i € w} of countable compact
metrizable spaces whose disjoint topological union is not metrizable.

We show in Theorem 2.2 that their product [[{X; : i € w} may be nei-
ther metrizable nor second countable or first countable or separable, demon-
strating the horrors of topology without AC. For an example of a family
{X; : i € w} of countable metrizable spaces whose disjoint topological union,
as well as product, are metrizable but not separable or second countable, the
reader is referred to a Cohen model given in [3] Theorem 4. For additional
information about the permutational version of this model we refer the reader
to [5], Example 2 and [6], Theorem 10.

Another well known instance where there is trouble in topology without
AC, occurs when taking Tychonoff products of families (countable or un-
countable) of compact spaces. For more information about this matter and
related bibliography we refer the reader to [14], [4] and [7]. In this paper we
shall be concerned, as pointed out before, with products of countably many
factors and the following two notions of compactness:



Definition 1.9 (i) A topological space (X, T) is countably compact iff each
countable open cover has a finite subcover.

(ii) A topological space (X, T) is sequentially limit compact (s.l.c. for abbre-
viation) iff each sequence of X has a cluster point.

Under AC the notions of countable compactness and s.l.c. are equivalent
and s.l.c. is sometimes (see [15], p. 125) used to define countable compact-
ness.

Clearly, in ZF~, we have:

Theorem 1.10 A topological space (X,T) is countably compact iff each
countable family of closed sets with the finite intersection property has a
nonempty intersection.

As a corollary to theorem 1.10 we get that:

Corollary 1.11 If the space (X,T) is countably compact then X is also
s.l.c..

Proof. Indeed, if (z,)ney is a sequence in X, then
G={G,={xm:m>n}:necw}

is a family of closed sets with the finite intersection property. Hence, NG # ()
and any point in NG is a cluster point of (2,)new- |

For countable spaces it is easily seen that the notions of countable com-
pactness and s.l.c. coincide. But in general they do not. We demonstrate
this fact in Theorem 2.5.

In Theorem 2.4 we show that CAC implies the proposition:

A metric space (X, d) is compact iff it is countably compact.
In [2] the authors ask whether CAC implies the statement

PCC = the countable product of compact spaces is compact.

In Theorem 2.8 we find a partial answer to this question. We show that
CAC implies



PCMC = countable products of compact metrizable spaces are compact
metrizable.

We do not know the full answer to this question. We only know, see [7]
that in permutational models CAC < PCC.

2 PRODUCTS OF METRIC SPACES AND
THE AXIOMS CAC AND CMC.

In this section we shall be concerned with the following statements:

(1) : Countable products of metrizable spaces are metrizable.

(2) : Countable products of second countable spaces are second countable.
(3) : Countable products of first countable spaces are first countable.
(4) : Countable products of separable Ty spaces are separable.

Theorem 2.1 (i) CAC implies each of (2) and (4).
(ii) CMC implies (1) and (3).

Proof. (i) To see (2) follow any standard text such as [13] and replace any
occurrence of AC with CAC.

To see (4), fix A = {(X;,T;) : i € w} a family of disjoint separable
nonempty topological spaces and let X = [],., X; be the Tychonoff product
of A. Fix, by CAC, for each i € w a countable dense subset @; of X; and let
x = {x; 11 € w} be a choice set for {X; : i € w}. For every n € w put

Gn,={ye X :¥i<n,y(i) € Q; and Vi > n,y(i) = x; }.
Since []; <n Q; is countable it follows that (G, is countable and, by CAC,
G=U{G,:ncw}

is also countable. It is straightforward to verify that G = X. Thus X is
separable as required.

(ii) (1). Fix {(X,,T,) : n € w} a family of metrizable spaces. Put
A ={A, : n € w}, where A, is the set of all metrics on X,, producing T,,.
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Let F = {F, : n € w} be a multiple choice set for A. For every n € w define
a metric d,, on X,, by requiring

do((w,9)) = (Y p((x,9)/(1+ Y pl(z,9)).

pEF, pEF,

Clearly, d,, is a metric on X,, producing 7,, and we may finish the proof of
(1) as in [15].

To see (3), fix {(X;,T;) : i € w} a family of disjoint first countable
nonempty topological spaces and let X = [].. X be their Tychonoff prod-
uct. Fix z € X. We show that x has a countable neighborhood base in
X.

Since, for each 7 € w, X; is first countable, it follows that each point
y € X; has a countable neighborhood base V = {V}, : n € w}. Without loss
of generality we may assume that ) is strictly descending. That is we may
assume that V is well-ordered by D. Thus, 4; = {V :V = {V, : n € w}
is a neighborhood base for z(i) and the enumeration is compatible with D}
is nonvoid for all i € w. Put A = {A4; : i € w} and let F = {F; : i € w}
be a multiple choice set for A. For every i € w define a neighborhood base
Vi ={Vin : n € w} for (i) by letting

It can be readily verified that
U={U,:new},U,=n{r'(Vi):i<n}

is a countable neighborhood base for z in X finishing the proof of the theorem.

Theorem 2.2 CMC, is implied by each one of (1) and (3), and CAC, is
implied by each one of (2) and (4).

Proof. Fix A = {A; : i € w} a family of countable nonempty disjoint sets.
Let X; be the one point compactification of the discrete space A; by adjoin-
ing the point A;, and let X be the product of the spaces X;.

(1) = CMC,,. Clearly X; is metrizable. (If {a;, : n > 0} enumerates A; then

pi Xi x X; = R, piain, aim) = |1/n—1/m|, pi(ain, Ai) = pi(A;, ain) = 1/n
and p;(4;, A;) =0,



is easily seen to be a metric on X; producing its topology.) By (1) X
is also metrizable. Let d be a metric on X generating its topology and
a € X the element satisfying: a(i) = A;, for all i € w. Consider the family
{Di/n(a) : n > 0}, where D, (a) denotes the open disk of d radius 1/n,
centered at a. Clearly, Dy/,(a) is an open set of the product space X. As

{n€w:m(Dimla)) # Xit # 0,

(if m;(D1jn(a)) = X; for all n > 0, then {D;/,(a) : n > 0} fails to be a
neighborhood base),

n; = min{n € w: m(Dym(a)) # X;}
exists for every ¢ € w. It is straightforward to verify that

F = {E = Xz\ﬂ'z(Dl/nl(a)) 11 € LU}
satisfies CMC,, for A.
(3) = CMC,. Work as in (1) — CMC,,.
(2)—-CAC,. By (2) X is second countable. Let B = {b, : n € w} be a
basis for X. For every ¢ € w, let

n; = min{n € w: m;(b,) # {A;} is a singleton}.

Clearly

is a choice set for A.

(4)—-CAC,. By (4) X is separable. Fix D = {d, : n € w} a countable
dense set. For every i € w, let

n; =min{n € w: d,(i) # A;}.
Clearly, ¢ = {¢; = d,,, (i) : i € w} is a choice set for A. I

Corollary 2.3 (A) CMC iff (1) + w-CMC iff (3) + w-CMC.

(B) CAC iff (2) + w-CMC iff (4) + w-CMC.

(C) The statement “the product of countably many metrizable spaces is first-
countable” implies CMC,,.



The Second Fraenkel Model N2 satisfies CMC but not CAC,,, see [4], p.
178. Thus in A2 (1) and (3) hold but (2) and (4) are false.

Of course, if a metric space is compact then it is also countably compact.
All known (to us) proofs of the converse,

CCMC = a countably compact metric space is compact,

use the axiom of dependent choices DC. Furthermore,

e CCMC implies “every infinite set A can be written as a countably
infinite union of disjoint nonempty sets”.

Indeed, A with the discrete topology is not compact. Hence, by CCMC,
A has a countable cover U = {U,, : n € w} without a finite subcover. Using
U we can easily find a countable partition V' = {V}, : n € w} of A.

Since the statement “every infinite set is the union of two disjoint infinite
sets”, form 64 in [4], is false in the Basic Fraenkel Model, model N'1 in [4]
(the set of atoms A is countably infinite, the group of permutations G is the
group of all permutations on A and the ideal of supports S is the set of all
finite subsets of A), it follows from the above that if we endow A with the
discrete metric d then CCMC fails in N'1. If not then A, in view of the
above, has a partition V' = {V}, : n € w}. Clearly Q; = U{V4, : n € w} and
Qs = U{Va,41 : n € w} form a partition of A into two infinite sets which is
impossible, see [4], p. 176. Hence, CCMC is not valid in N'1 and CCMC is
not provable in ZF~.

Next we show that a form of choice weaker than DC suffices for the proof
of CCMC.

Theorem 2.4 CAC implies CCMC.

Proof. Fix (X,d) a countably compact metric space. For every ¢ > 0 U.
will denote the set of all open e-discs of X. First we show that:

Claim 1. A separable metric space (X,d) is compact iff it is countably
compact.

Proof of Claim 1. Fix (X,d) a sepapable metric space. It suffices to



show that if X is countably compact then X is compact. It is known (see
Theorem 16.11, p. 112 in [15]) that a separable metric space (X, d) has a
base B = {B, : n € w}. Let U be an open cover of X. Express each member
UofU as U = U{B € B: B C U} and use the fact that B is count-
able and X is countably compact to get finitely many members of B, say
By, B,...B,, all subsets of members of U/, covering X. For each By, Bs...B,
pick Uy, Us...U,, € U with B; C U;. It follows that Uy, Us...U, is a finite sub-
cover of U and X is compact as required.

Claim 2. CAC implies the statement: “A countably compact metric space
(X, d) is precompact (for every € > 0 U. has a finite subcover)”.

Proof of Claim 2. Assume the contrary that (X,d) is countably com-
pact but not precompact i.e., there exists an € > 0 such that . has no
finite subcover. This clearly implies that for all n > 0, the set A, of
all n-tuples (zg,2;...x,_1) of elements of X satisfying d(z;,z;) > ¢ for all
i,j € n,i # j is nonempty. Put A = {A, : n € w\1} and let by CAC,
Q ={Q, € A, : n € w\1} be a choice set of A. Clearly, the set G of all
elements of X appearing in some member of Q is countable. Y = G, being
closed is countably compact, and since it is separable, by Claim 1, Y is also
compact, hence precompact. Thus, there exists a finite number of elements,
say D(x1,e/3), D(x2,¢/3)...D(x,,2/3), of U./3 covering Y. Hence, there are
T,y € Quy1 and m < n with z,y € D(x,,,£/3). We have

e <d(z,y) <d(zpm,y)+dz,x,) <e/34+¢/3 =2¢/3.
This contradiction terminates the proof of Claim 2.

We prove now that (X, d) is compact. Assume the contrary and let U
be an open cover of X without a finite subcover. Put F = {F, : n € w\1}
where F,, is the set of all finite subcovers of U jo». By Claim 2, it follows that
each F,, # (. Let {V, € F,, : n € w\1} be a choice set for F. In view of CAC
we may assume that there is a function assigning to each n a well-ordering
of V,.

We shall choose, for every n = 1,2,3... a set D(x,,1/2") € V, which
cannot be covered by finitely many elements of .

For n =1 we let D(x,1/2) € V; be the first disc of V; which cannot be
covered by finitely many members of .



Assume that
D(x1,1/2) € Vi, D(2,1/2%) € Vy...D(2,,1/2") € V,
have been chosen in such a way that for all 1 <m < n,
D(2p-1,1/2™""N N D(2pn,1/2™) # 0

and D(zp,,1/2™) cannot be covered by finitely many members of U. Since
Vi1 covers X, V,iq also covers D(z,,1/2"). As D(z,,1/2") is not cov-
ered by finitely many members of U, we see that some member of V,
which meets D(x,,1/2") is not covered by finitely many members of . Let
D(y41,1/2™"1) be the first element of V,,,; which has this property.

As X is countably compact it follows that (x,)ne, has a convergent sub-
sequence, say (T,)necw again, to some point © € X. As U covers X, z € U
for some U € U. Pick m large enough so that

D(z,1/2™) C U.
Fix v > m + 3 with z, € D(x,1/2™"3). Then,
D(z,,1/2") C D(z,1/2™) C U.

This contradicts the fact that D(x,,1/2") is not covered by finitely many
elements of U and finishes the proof of the theorem. |

Tychonoff’s theorem for countable products of finite discrete spaces, hence
compact metrizable, is equivalent to the aziom of choice for countable fami-
lies of finite sets (see [10]). Hence the statement PCMC, in view of Theorem
2.2, implies CAC,,. Next we show that CAC implies PCMC. For this reason
we shall need the following characterization of CAC.

Theorem 2.5 CAC iff every s.l.c. space is countably compact.

Proof. (—) Fix a space X such that each of its sequences has a cluster
point. Let U = {O,, : n € w} be an open cover of X. If U has no finite
subcover then

Q={Q,=U{O :m <n}:ncw}

is an ascending open cover of X such that no @), covers X. Use CAC to
pick a sequence (Z,,)new, Tn € X \Q@n. Let z be a cluster point of (z,,),e, and
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let O, contain z. Then O, must contain infinitely many terms of (z,)ncw
contradicting the choice of x,,’s. Hence U has a finite subcover as required.

(«-) If CAC fails then (see Form 8 in [4]) there exists a family A = {A; :
i € w} of nonempty sets having no infinite subfamily with a choice function.
Topologize X; = A; U{A;}, A; ¢ A; by declaring neighborhoods of z € A; to
be all cofinite subsets of A; and, {A;} to be a neighborhood of A;. Let X be
the product of the spaces X;.

Claim. In X every sequence (2,),e, has a cluster point.

Proof of Claim. As no infinite subfamily of A has a choice function, it

follows that, for every z in X, for some n € w x(i) = A; for all i > n. Fur-

thermore, we can readily verify, using the well ordering of (2, ),cw, that there

exists n € w such that x,,(i) = A; for all m € w and 7 > n. Since X; X XX
. xX,_1 is a compact space homeomorphic to the subspace

G={xe X :z(i) = A, forall i >n}

and (2,)new C G, it follows by the compactness of G, that (z,),e, has a
cluster point € G. It is easy to see that x is a cluster point of (z,),e, in
X.

By the claim, X satisfies “every sequence has a cluster point”. Hence X
satisfies “each countable open cover of X has a finite subcover”. Thus F =
{m;'[4;] : i € w} being a countable family of closed sets with the finite
intersection property, satisfies NF' # () meaning that A has a choice function
which is a contradiction. Hence CAC holds finishing the proof of the theorem.
|

Remark 2.6 Clearly, in view of Theorem 2.5, if CAC fails then there is an
s.l.c. space X which is not countably compact. We would like to point out
here that if Form 13 in [4] i.e. the statement “every infinite subset of the real
line has a countably infinite subset” fails there exists an s.l.c. metric space
(X, d) which is not countably compact. Indeed, if A is an infinite subset of
the real line R having no countably infinite subset then clearly A with the
standard metric d is s.l.c. but not countably compact.

Corollary 2.7 CAC is equivalent to the conjunction: “Fvery sequentially
compact metric space X is countably compact” + CMC.

11



Proof. (—) This can be proved as in Theorem 2.5.

(«—) Assume that CAC fails. Then there exists a family A = {4, : i € w} of
nonempty finite sets having no infinite subfamily with a choice function. Let
X; and X be as in Theorem 2.2. Working as in Theorem 2.5 we show that
A has a choice set reaching a contradiction. |

Theorem 2.8 CAC implies PCMC.

Proof. Fix X = {(X;,T;) : i € w} a family of disjoint compact metrizable
spaces. By Theorem 2.1, X the product of X, is a metric space. To complete
the proof of the theorem it suffices, in view of Theorem 2.4, to show that
X is countably compact. In view of Theorem 2.5, it suffices to show that
X is s.l.c. To this end, fix G = {z, : n € w} C X and let Y = [[,. Vi,

Y, = m For each n € w fix, by CAC, a countable base B,, for Y,,. (Let,
by CAC, d; be a metric producing T;. m;(G) is a countable dense subset of
Y; and consequently B, the set of all open d;-disks of radius 1/m, m € w\1
centered at points of m;(G) is the required countable base B,,).

Let B be the set of all open sets b in Y such that

<n
b=]o:
€W

meaning O; = Y; for all i > n and O; € B;, O; # Y, Diameter(0;) < 1/n
for all i < n. Clearly, B is a countable base for Y. Using the fact that B is
countable we can pick, via an easy induction, a set

<n
B:{bn:HOiEB:nEw\l}

€W

such that:

b, C b, for all n,m € w with m < n and each b, includes a subsequence of
(xn)TLEw-

Set

C; ={0;, CY;:j <nand Oj, appears in the expression of b, € B}.
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By the compactness of Y; it follows that NC; # 0 for all j € w. Furthermore,
since the diameter of the O;,’s tends to 0 as n tends to oo, it follows that
NC; = {¢;} is a singleton. As B is a neighborhood base for the element

ceY, c(j) =cy,

it follows that c is a cluster point of (z,,),e. finishing the proof of the theorem.
1

Corollary 2.9 CAC iff PCMC + w-CMC.

Question. Does PCMC imply w-CMC?

We recall that a topological space (X, T) is limit point compact, l.p.c. for
abbreviation, iff every infinite subset of X has a limit point. It is not hard
to verify (see exercise 17F p. 125 in [15]) that CAC implies:

A Ty topological space is I.p.c iff it is countably compact.

If (X,T) is T and Lp.c., then it is easily seen to be s.l.c. and this with-
out any choice. For the converse, i.e., the statement

a Ty s.l.c. topological space is l.p.c.
some choice is needed because it does not hold in the Basic Fraenkel Model
N1. Indeed, the set of atoms A with the discrete topology, as seen before, is

countably compact and it has no limit point.

In complete analogy with Theorem 2.5 we have:

Theorem 2.10 CMC holds iff for every T, topological space, l.p.c. is equiv-
alent to countable compactness.

Proof. (—). Working as in the first part of Theorem 2.5, one can readily
verify that CMC implies:

Lp.c. Ty topological spaces are countably compact.
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For the converse we need the following easy result.

Claim. CMC implies for every infinite set A there exists a denumerable
(countably infinite) subset B of [A]<¥.

Proof of the claim. Put § = {G,, = [A]" : n € w\1} and let F =
{F, : n € w\1} be a multiple choice for G. For every n € w\1 set K,, = UF},.
Without loss of generality we may assume that each B, = K, \K, is a
nonempty set. Then B = {B, : n € w} is the required denumerable set.

Now we can complete the proof of (—) as in Corollary 1.11 with UB in
place of the sequence (x,,)ncq-

(«-). If CMC fails then, by Lemma 1.2, there exists a family A = {A; :
i € w} having no infinite subfamily with a multiple choice. Let X; and X be
as in Theorem 2.5.

Claim. In X every infinite set () has a limit point.

Proof of Claim. As A has no partial multiple choice, it follows that for
every ¢ € () there exists n € w such that ¢(i) = A; for all ¢ > n. Thus,

Q=U{Q,:necw},Q,={qg€Q:q() =4 for all i > n}.

Furthermore, as A has no partial multiple choice, it follows that not all
Q,’s are finite. Thus, there exists n € w with @, infinite. Since X; x XyXx
. XX, _1 is a compact space homeomorphic to the subspace

G={xe X :z(i)= A, forall i >n}

and ), C G, it follows by the compactness of GG, that (), has a limit point
x € G. (If not we can find, by the compactness of G, a finite open cover U of
G each member of whose includes finitely many members of @),,). It is easy
to see that z is a limit point of @), in X.

By the claim, X is l.p.c. and consequently X is countably compact. It follows
that NF # (), where F is as in Theorem 2.5 and consequently A4 has a choice
function which is a contradiction. Hence CMC holds as required. |

Corollary 2.11 If CMC fails then there is an l.p.c. space X which is not
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countably compact.
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