Sequential compactness for subsets of \mathbb{R} is countably productive in ZF

Kyriakos KEREMEDIS and Eleftherios TACHTSIS

November 19, 2002

Abstract

We show that the property of sequential compactness for subspaces of \mathbb{R} is countably productive in ZF. Also, in the language of weak choice principles, we give a list of characterizations of the topological statement \textit{sequentially compact subspaces of \mathbb{R} are compact}. Furthermore, we show that forms 152 (= every non-well-orderable set is the union of a pairwise disjoint well-orderable family of denumerable sets) and 214 (= for every family A of infinite sets there is a function f such that for all $y \in A$, $f(y)$ is a non-empty subset of y and $|f(y)| = \aleph_0$) in [9] are equivalent.

AMS subject Classification: 03E25, 54D30, 54D55, 54D20.

Keywords and Phrases: Weak forms of the axiom of choice, compactness, sequential compactness, Tychonoff product.

1 Introduction

Zermelo's axiom of choice AC has been proven to be an indispensable tool in mathematics. One of the most typical examples is Tychonoff's compactness theorem, which was proven to be equivalent to AC by John Kelley [11] in 1950. Adopting Kelley's proof one can similarly show that Tychonoff's theorem for countable families of non-empty compact spaces can neither be proved in ZF. For an extensive study on versions of the countable Tychonoff theorem the reader is referred to [7]. Naturally, one may ask what happens
when the compact spaces involved in the countable version of Tychonoff's theorem are subsets of the real line. Peter Loeb [17] using the fact that every family of non-empty closed subsets of \(\mathbb{R} \) has a constructive choice function (see for a generalization of this fact to conditionally complete linearly ordered spaces in [15]), established that the countable Tychonoff theorem for compact subsets of \(\mathbb{R} \) is true in ZF. The interested reader is also referred to [2] for a generalization of this version of Tychonoff's theorem to well-ordered families of compact subsets of \(\mathbb{R} \). In the realm of sequentially compact subsets of \(\mathbb{R} \) we show in Theorem 5 that this notion of compactness is also countably productive in the settings of ZF.

Fundamental properties of the topology of the real line such as “every subspace of \(\mathbb{R} \) is separable” or, “\(x \in A \) if and only if there exists a sequence \((x_n)_{n \in \omega} \subseteq A \) converging to \(x \)” cannot be proved without using some form of the axiom of choice. In fact, Horst Herrlich and George Strecker [6] have shown that the latter statements are topological characterizations of CC(\(\mathbb{R} \)), the axiom of countable choice restricted to non-empty subsets of \(\mathbb{R} \). Complete definitions will be given in the next section. It is well-known theorem of ZF (the Zermelo-Fraenkel set theory) that: A subspace \(X \) of \(\mathbb{R} \) is compact if and only if \(X \) is closed and bounded. But the well-known ZFC (ZF plus AC) theorem, and Form 74 in [9], “sequentially compact (= every sequence has a convergent subsequence) subspaces of \(\mathbb{R} \) are compact” is not a theorem of ZF. Indeed, in the original Cohen model (\(\mathcal{M}_1 \) in [9]), the set \(A \) of the countably many added generic reals is sequentially compact, since it has no countably infinite subsets in the model, which fails to be compact or even Lindelöf. This example implicitly suggests that there is some connection between Form 74 and the principle “every infinite subset of \(\mathbb{R} \) has a countably infinite subset” labeled as Form 13 in [9]. In [12] it is shown that the statement “every metric space having the property that each of its sequences has a cluster point, is countably compact” implies Form 13. Since \(\mathbb{R} \) is hereditarily second countable, sequential compactness for subsets of \(\mathbb{R} \) coincides with the above mentioned property and, the argument in [12] readily adapts to show that 74 implies 13.

In Theorem 3 we give a list of characterizations of 74.

For further study on non-constructive properties of the real line the reader is also referred to Howard’s and Rubin’s long term project “Consequences of the Axiom of Choice” [9], to Jech’s book “The Axiom of Choice” [10] and to the papers [3], [4], [5], [6], [8], [14] and [18].
2 Notation and some preliminary results

Let (X, T) be a topological space.

X is called **compact** if every open cover of X has a finite subcover.

X is called **countably compact** if every countable open cover of X has a finite subcover.

X is called **Lindelöf** if every open cover has a countable subcover.

X is called **separable** if X has a countable dense subset.

X is called **sequentially compact** if every sequence in X has a convergent subsequence.

X is called **complete** if every Cauchy sequence in X converges.

Let $A \subseteq X$. A point $x \in X$ is called a **cluster point** of A if every neighborhood of x meets A in at least one element other than x.

Let $(x_n)_{n \in \omega}$ be a sequence in X. A point $x \in X$ is called a cluster point of $(x_n)_{n \in \omega}$ if every neighborhood of x contains infinitely many terms of $(x_n)_{n \in \omega}$.

A subset A of a partially ordered set (P, \leq) is said to be **cofinal in P** if for every $p \in P$, there exists $a \in A$ such that $p \leq a$.

CC (Form 8 in [9]) = For every family $\mathcal{A} = \{A_i : i \in \omega\}$ of non-empty sets there exists a set $c = \{c_i : i \in \omega\}$ such that for all $i \in \omega$, $c_i \in A_i$.

CC(\mathbb{R}) (Form 94 in [9]) = CC restricted to countable families of non-empty subsets of \mathbb{R}.

ω-AC(\mathbb{R}) = For every family A of non-empty subsets of \mathbb{R} there exists a function f such that for all $x \in A$, $f(x)$ is a non-empty countable subset of x.

ω-CC(\mathbb{R}) = ω-AC(\mathbb{R}) restricted to countable families.

Pω-CC(\mathbb{R}) = For every family $\mathcal{A} = \{A_i : i \in \omega\}$ of non-empty subsets of \mathbb{R} there is an infinite family $\mathcal{B} = \{B_m : i \in \omega\}$ of non-empty countable sets such that for all $i \in \omega$, $B_m \subseteq A_m$.

WO-AC(\mathbb{R}) = For every family A of non-empty subsets of \mathbb{R} there exists a function f such that for all $x \in A$, $f(x)$ is a non-empty well-orderable subset of x.

WO-CC(\mathbb{R}) = WO-AC(\mathbb{R}) restricted to countable families.

CC(sc-R) = CC(\mathbb{R}) for families of non-empty complete subsets of \mathbb{R}.

CC(sc-R) = CC(\mathbb{R}) for families of non-empty sequentially compact subsets of \mathbb{R}.

Form 13 in [9] = Every infinite subset of \mathbb{R} has a denumerable (= countably infinite) subset.

Form 74 in [9] = Every sequentially compact subspace of \mathbb{R} is compact.
Form 152 in [9] = Every non-well-orderable set is the union of a pairwise disjoint well orderable family of denumerable sets.
Form 214 in [9] = For every family A of infinite sets there is a function f such that for all $y \in A$, $f(y)$ is a non-empty subset of y and $|f(y)| = \aleph_0$.

The axiom ω-AC(\mathbb{R}) was introduced in [14] and its weaker forms were first considered in [4].

Theorem 1 ([4]) 1. ω-CC(\mathbb{R}) implies WO-CC(\mathbb{R}).
2. WO-CC(\mathbb{R}) implies every sequentially compact subset of \mathbb{R} is compact.
3. If every sequentially compact subset of \mathbb{R} is compact, then Form 13 holds.

Theorem 2 (ZF) Every sequentially compact, closed subspace of \mathbb{R} is compact.

Proof. Fix A a sequentially compact and closed subspace of \mathbb{R}. A is separable follows from the observation that the family $\{A \cap [p,q] : p, q \in \mathbb{Q}\} \setminus \{\emptyset\}$ is a countable family of non-empty closed subsets of \mathbb{R} and the fact that $G = \{G \subset \mathbb{R} : G \neq \emptyset \text{ and closed} \}$ has a choice set in ZF (see, [2], [15], [17]). The assertion that A is bounded is straightforward.

Proposition 1 Form 13 if and only if every infinite sequentially compact subset of \mathbb{R} has a denumerable subset.

Proof. (\Rightarrow) Straightforward.
(\Leftarrow) Let A be an infinite set. If A has no denumerable subsets, then A is trivially sequentially compact. By our hypothesis, A has a denumerable subset. A contradiction.

3 Characterizations of the axiom CC(sc-\mathbb{R})

Theorem 3 The following are pairwise equivalent: 1. $CC(c,\mathbb{R})$.
2. $CC(sc,\mathbb{R})$.
3. A countable Tychonoff product of non-empty sequentially compact subsets of \mathbb{R} is non-empty.
4. $PCC(sc,\mathbb{R})$ (= for every family $A = \{A_i : i \in \omega\}$ of sequentially compact subspaces of \mathbb{R} there is an infinite family $B = \{b_n : i \in \omega\}$ such that for all $i \in \omega$, $b_n \in A_n$).
5. ω-CC(sc-\mathbb{R}) (= for every family $A = \{A_i : i \in \omega\}$ of sequentially compact subspaces of \mathbb{R} there is a family $B = \{B_i : i \in \omega\}$ of non-empty countable
sets such that for all \(i \in \omega, B_i \subseteq A_i \).
6. \(P_\omega\text{-}CC(\text{sc-}\mathbb{R}) \) \((= \) for every family \(A = \{ A_i : i \in \omega \} \) of sequentially compact subspaces of \(\mathbb{R} \) there is an infinite family \(B = \{ B_n : i \in \omega \} \) of non-empty countable sets such that for all \(i \in \omega, B_n_i \subseteq A_n_i \).
7. Every sequentially compact subspace of \(\mathbb{R} \) is compact.
8. Every sequentially compact subset of \(\mathbb{R} \) has a cofinal subset which can be expressed as a well-ordered union of well-orderable sets.
9. Every unbounded sequentially compact subset of \(\mathbb{R} \) has a countable unbounded subset.

Proof. (1) \(\iff \) (7) This has been established in [4].

(7) \(\Rightarrow \) (2) \(\iff \) (3) \(\Rightarrow \) (4) \(\Rightarrow \) (6), (3) \(\Rightarrow \) (5) \(\Rightarrow \) (6) and (7) \(\iff \) (9) are straightforward.

(6) \(\Rightarrow \) (7) In view of Theorem 2, it suffices to show that \(P_\omega\text{-}CC(\text{sc-}\mathbb{R}) \) implies sequentially compact subspaces of \(\mathbb{R} \) are closed. The latter implication is, in view of Theorem 3.2 from [4], straightforward.

(7) \(\Rightarrow \) (8) Fix \(A \subseteq \mathbb{R} \) a sequentially compact space. By (7) it follows that \(A \) is closed and bounded. Therefore, \(\{ \sup A \} \) is the required cofinal subset of \(A \).

(8) \(\Rightarrow \) (6) Fix \(A = \{ A_i : i \in \omega \} \) a family of non-empty sequentially-compact subsets of \(\mathbb{R} \). Without loss of generality assume that for each \(i \in \omega, A_i \subseteq (i, i+1) \) (Let \(f : \mathbb{R} \to (0, 1) \) be a homeomorphism and let for each \(i \in \omega, f_i : \mathbb{R} \to (i, i+1) \) defined by \(f_i(x) = f(x) + i \). Then \(f_i(A_i) \) is a sequentially compact subset of \(\mathbb{R} \) such that \(f_i(A_i) \subseteq (i, i+1) \).

 Assume that \(P_\omega\text{-}CC(\text{sc-}\mathbb{R}) \) can not be applied to \(A \). Then clearly \(\bigcup A \) is unbounded and sequentially compact (every sequence \((x_n)_{n \in \omega} \) in \(\bigcup A \) is such that \((x_n)_{n \in \omega} \subseteq \bigcup_{i \leq m} A_i \) for some \(m \in \omega \). Thus, \((x_n)_{n \in \omega} \) necessarily meets some \(A_i \) in infinite many terms and since \(A_i \) is sequentially compact, \((x_n)_{n \in \omega} \) has a convergent subsequence. Let by our hypothesis, \(B = \bigcup\{ B_i : i \in \alpha \}, \alpha \) an ordinal and each \(B_i \) well-orderable, a cofinal subset of \(\bigcup A \). Via an easy inductive argument construct a strictly increasing sequence of integers \((i_n)_{n \in \omega} \) and a family \(C = \{ C_{i_n} : n \in \omega \} \) such that for each \(n \in \omega, C_{i_n} \) is a non-empty well-orderable subset of \(A_{i_n} \).

Since for all \(n \in \omega, A_{i_n} \) is sequentially compact and \(C_{i_n} \) is well-orderable, it follows that \(C_{i_n} \subseteq A_{i_n} \) for all \(n \in \omega \). Then any choice set \(c \) of the family \(C = \{ C_{i_n} : n \in \omega \} \) satisfies \(P_\omega\text{-}CC(\text{sc-}\mathbb{R}) \) for the family \(A \). This contradiction completes the proof of the Theorem.

Remark 1. (A) Similar to the proof of Theorem 3, one may show that
ω-CC(\mathbb{R}) is equivalent to its partial version P_ω-CC(\mathbb{R}).

A similar argument cannot be applied to complete subspaces of \mathbb{R}, since completeness is not preserved under homeomorphisms.

(B) The following statements can be added to the list of Theorem 3:

(i) Every sequentially compact subset A of \mathbb{R} is countably compact.

(ii) Every sequentially compact subset A of \mathbb{R} is weakly Lindelöf. (A is weakly Lindelöf if every open cover of A has a countable subfamily with dense union in A).

(iii). Every sequentially compact subset A of \mathbb{R} is pre-Lindelöf. (A is pre-Lindelöf if for every $\varepsilon > 0$, A can be covered by countably many open discs of radius ε.)

It is evident that the statement \textit{sequentially compact subsets of \mathbb{R} are compact} implies each one of (i), (ii) and (iii). Now, (i) \Rightarrow (ii) is straightforward (every second countable and countably compact space is compact without appealing to any form of choice) and (ii) \Rightarrow (iii) has been proved in [13] generally for metric spaces. To see that (iii) implies back that the notions of compactness and sequential compactness coincide, in view of Theorem 3, it suffices to show that (iii) implies every unbounded sequentially compact subset of \mathbb{R} has an unbounded sequence. Fix such a subset $A \subseteq \mathbb{R}$. Consider the open cover of $A \cup = \{D(x, \varepsilon) : x \in A\}$, where $D(x, \varepsilon) = \{y \in A : |x-y| < \varepsilon\}$. As A is pre-Lindelöf, \cup has a countable subcover $\mathcal{W} = \{D(x_n, \varepsilon) : n \in \omega\}$. It is evident that the sequence $(x_n)_{n \in \omega}$ is unbounded.

Clearly, the statement \textit{“if $A \subseteq \mathbb{R}$ is sequentially compact, then \overline{A} is sequentially compact”} is a theorem of ZF+CC. We show next that it is unprovable in ZF by establishing its equivalence to the weak choice principle CC(sc-\mathbb{R}).

Theorem 4 The following statements are equivalent: 1. CC(sc-\mathbb{R}).
2. If $A \subseteq \mathbb{R}$ is sequentially compact, then \overline{A} is sequentially compact.
3. If $A \subseteq \mathbb{R}$ is sequentially compact, then \overline{A} is bounded.
4. If $A \subseteq \mathbb{R}$ is sequentially compact, then \overline{A} is compact.
5. If $A \subseteq \mathbb{R}$ is sequentially compact, then \overline{A} is Lindelöf.

Proof. (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) are straightforward in view of Theorem 2 and the equivalence between (2) and (7) of Theorem 3.

(5) \Rightarrow (1) Let $\mathcal{A} = \{A_i : i \in \omega\}$ be a family of non-empty sequentially compact subspaces of \mathbb{R}. Assume that \mathcal{A} has no choice function. Then the axiom CC(\mathbb{R}) fails. Horst Herrlich [5] proved that for T_1 spaces, Lindelöf \equiv

\[6\]
compact if and only if $CC(\mathbb{R})$ fails. By our hypothesis and Herrlich’s result we conclude that for each $i \in \omega$, $\overline{A_i}$ is compact, thus bounded. Therefore, each A_i is bounded. For each $i \in \omega$, let $a_i = \sup(A_i)$.

Claim. For all $i \in \omega$, $a_i \in A_i$.

Proof of the claim. Assume on the contrary that for some $i \in \omega$, $a_i \notin A_i$. Let $H : (-\infty, a_i) \to \mathbb{R}$ be an increasing homeomorphism. Then $H(A_i)$ is an unbounded sequentially compact subset of \mathbb{R}. Since $\overline{H(A_i)}$ is sequentially compact we see that $\overline{H(A_i)}$ is bounded. Thus, $H(A_i)$ is bounded, a contradiction. This completes the proof of the claim.

By the claim we immediately have that $c = \{a_i : i \in \omega\}$ is a choice set for \mathcal{A}. This contradiction completes the proof of the Theorem. \qed

Remark 2. It can be readily verified that each of the following propositions is a theorem of ZF.

(i) If $A \subseteq \mathbb{R}$ is separable, then \overline{A} is separable.
(ii) If $A \subseteq \mathbb{R}$ is complete, then \overline{A} is complete.
(iii) If $A \subseteq \mathbb{R}$ is bounded, then \overline{A} is bounded.
(iv) If $A \subseteq \mathbb{R}$ is compact, then \overline{A} is compact.

4 Sequential compactness for subsets of \mathbb{R} is countably productive in ZF

Theorem 5 (ZF) A countable Tychonoff product of sequentially compact subspaces of \mathbb{R} is sequentially compact.

Proof. Let $A = \{X_i : i \in \omega\}$ be a family of sequentially compact subspaces of \mathbb{R} and let $X = \prod_{i \in \omega} X_i$ be their Tychonoff product. For each $i \in \omega$, let π_i be the canonical projection of X onto X_i. Let $(x_n)_{n \in \omega}$ be a sequence in X and let f be a choice function on the set of all non-empty closed subsets of \mathbb{R}. Via an easy induction we shall construct a convergent subsequence of $(x_n)_{n \in \omega}$.

For $n = 0$, first define $G_0 = \{x \in X_0 : x$ is a cluster point of $(\pi_0(x_n))_{n \in \omega}\}$. Since X_0 is sequentially compact, it follows that $G_0 \neq \emptyset$. We assert that G_0 is closed in \mathbb{R}. To see this, fix $g \in \overline{G_0}$. Then for each $n \in \omega$, the set $V_n = (g - \frac{1}{n}, g + \frac{1}{n}) \cap G_0$ is non-empty and contains infinitely many terms of the sequence $s = (\pi_0(x_n))_{n \in \omega}$. Via a straightforward induction construct
a subsequence \(s' \) of \(s \) converging to the point \(g \). Since \(s' \subseteq X_0 \) and \(X_0 \) is sequentially compact, it follows that \(g \in X_0 \). Consequently, \(g \in G_0 \) and \(G_0 \) is closed. Let \(g_0 = f(G_0) \). Construct a subsequence \(h_0 \) of \((x_n)_{n \in \omega} \) so that \(\pi_0(h_0) \) converges to \(g_0 \).

Assume that subsequences of \((x_n)_{n \in \omega}, h_0, h_1, \ldots, h_n \) have been constructed so that \(h_j \) is a subsequence of \(h_{j-1} \) and \(\pi_j(h_j) \) converges to \(g_j \in X_j \) for all \(j = 0, 1, \ldots, n \). Now, \(X_{n+1} \) is a sequentially compact space, therefore, the set \(G_{n+1} = \{ x \in X_{n+1} : x \text{ is a cluster point of } \pi_{n+1}(h_n) \} \neq \emptyset \). Moreover, as in the case \(n = 0 \), it can be shown that \(G_{n+1} \) is closed in \(\mathbb{R} \). Thus, let \(g_{n+1} = f(G_{n+1}) \). Construct a subsequence \(h_{n+1} \) of \(h_n \) such that \(\pi_{n+1}(h_{n+1}) \) converges to \(g_{n+1} \).

It can be readily verified that the diagonal \((y_n)_{n \in \omega},\) where \(y_n \) is the \(n \)th term of \(h_n \), is a subsequence of \((x_n)_{n \in \omega} \) converging to \(y \in X \) defined by \(y(n) = g_n \) for all \(n \in \omega \). \(\Box \)

5 Characterizations of \(\omega\text{-AC}(\mathbb{R}), \text{WO-AC}(\mathbb{R}) \)
and the independence of \(\text{WO-CC}(\mathbb{R}) \) from 13

Theorem 6 The following propositions are equivalent: 1. Every non-well-orderable set is the union of a pairwise disjoint well orderable family of infinite well orderable sets.
2. For every family \(A \) of infinite sets there is a function \(f \) such that for all \(y \in A \), \(f(y) \) is an infinite well orderable subset of \(y \).

Proof. (1) \(\Rightarrow \) (2) Fix a family \(\mathcal{A} = \{ A_j : j \in k \} \) of infinite sets and let \(\mathcal{B} = \bigcup \mathcal{A} \). If \(\mathcal{B} \) is well-ordered, then there is nothing to show. Thus, we may assume that \(\mathcal{B} \) is not well-orderable, and by (1), we can express it as \(\bigcup \{ B_i : i \in \aleph \} \), where \(\aleph \) is a well-ordered cardinal and each \(B_i \) is an infinite well orderable set. For every \(j \in k \), let \(i_j \) be the first \(i \in \aleph \) such that \(B_i \cap A_j \) is infinite and put \(f(A_j) = B_{i_j} \cap A_j \). If no such \(i \) exists then \(|B_i \cap A_j| < \aleph_0 \) for all \(i \in \aleph \), and we may pick inductively a sequence \(\{ i_{j_v} : v \in \omega \} \subset \aleph \) such that \(0 < |B_{i_{j_v}} \cap A_j| < \aleph_0 \). In this case put \(f(A_j) = \bigcup \{ B_{i_{j_v}} \cap A_j : v \in \omega \} \).

Claim. \(|\bigcup \{ B_{i_{j_v}} \cap A_j : v \in \omega \}| = \aleph_0 \).

Proof of the claim. For each \(v \in \omega \), let \(n_v \) be the unique integer such that \(|B_{i_{j_v}} \cap A_j| = n_v \). Put \(K_{n_v} = \{ f \in (B_{i_{j_v}} \cap A_j)^{n_v} : f \text{ is injective} \} \). Clearly, \(K_{n_v} \):

8
is non empty and (1) implies that $\bigcup\{\prod_{k<v} K_{n_k} : v \in \omega\}$ has a denumerable subset $F = \{f_n : n \in \omega\}$. On the basis of F and via a straightforward induction construct an enumeration for $\bigcup\{B_{i,v} \cap A_j : v \in \omega\}$. This completes the proof of the claim and the implication.

(2) \Rightarrow (1) Let X be a non well orderable set and let f be a function which satisfies (2) for the set $\mathcal{P}^\infty(X) = \{Y \subseteq X : |Y| = \infty\}$. Using f and transfinite induction we construct a well ordered cover $\{X_i : i \in \alpha\}$, α an ordinal number, of X consisting of infinite well orderable subsets of X.

For $i = 0$ put $X_0 = f(X)$.
For $i = \lambda + 1$ a successor ordinal and having chosen infinite and well orderable subsets X_j, $j < \lambda + 1$, we put $X_i = f(X \setminus \bigcup\{X_j : j < \lambda + 1\})$ if the latter set difference is infinite. Otherwise the induction terminates.

For i a limit ordinal we work as in the non limit case.

Since $\mathcal{P}^\infty(X)$ is a set, the induction must terminate at some ordinal stage α. This means that $X \setminus \bigcup\{X_i : i \in \alpha\}$ is finite. Consequently, X is expressible as a well ordered union of infinite well orderable sets and the proof of the theorem is complete. \hfill \square

In Note 140 of [9] it is shown that 214 \implies 152 and in Table I of [9] the status of the reverse implication is indicated as unknown (see the section Notation and terminology for the definitions of the axioms). We fill this gap in the next corollary of Theorem 6 obtaining also two equivalent forms of the axioms ω-AC(\mathbb{R}) and WO-AC(\mathbb{R}) respectively.

Corollary 1 1. 152 if and only if 214.
2. The following are equivalent: (a) ω-AC(\mathbb{R}).
 (b) \mathbb{R} can be written as a well ordered union of denumerable subsets.
3. The following are equivalent: (a) WO-AC(\mathbb{R}).
 (b) \mathbb{R} can be written as a well ordered union of well-orderable subsets.

In sections 1 and 2 we mentioned that the implications WO-CC(\mathbb{R}) \implies Form 74 \implies Form 13 are valid. In this section we show that in ZF, Form 13 does not imply WO-CC(\mathbb{R}). We also give a straight proof of the implication WO-CC(\mathbb{R}) \implies Form 13.

Theorem 7 (i) WO-CC(\mathbb{R}) implies Form 13.
 (ii) In ZF, Form 13 does not imply WO-CC(\mathbb{R}).
Proof. (i) Fix A an infinite subset of \mathbb{R}. Assume that A has no countably infinite subsets. For each $n \in \omega$, define $A_n = \{ f \in A^n : f \text{ is injective} \}$. Clearly, each A_n is non empty and can be considered as a subspace of \mathbb{R}^ω ($|A_n| \leq |A^n| \leq |\mathbb{R}^\omega| \leq |\mathbb{R}^\omega|$). As \mathbb{R}^ω with the Tychonoff topology is a separable metrizable space, it follows that $|\mathbb{R}^\omega| = |\mathbb{R}|$ and consequently we may consider each A_n as a subset of \mathbb{R}. By WO-CC(\mathbb{R}), let $\{ F_n : n \in \omega \}$ be a family of sets such that for all $n \in \omega$, F_n is a non empty well-orderable subset of A_n. Since A has no countably infinite subsets, it can be readily verified that none of the F_n’s can be infinite (otherwise, $\bigcup \{ f[n] : f \in F_n \}$ would be an infinite well-ordered union of finite (linearly ordered) subsets of \mathbb{R}, thus well-ordered and infinite). Therefore, we may pick the least element f_n from each F_n. Via a straightforward induction construct a countably infinite subset of A. This contradicts our hypothesis and completes the proof of (i).

(ii) For our purpose we shall use Truss’s forcing model \mathcal{M}_κ in [18], where κ is a singular cardinal. (This model is $\mathcal{M}12(\kappa)$ in [9].) First we recall its definition. Let \mathcal{M} be a countable transitive model of ZF + $V = L$ and let κ be a singular cardinal in \mathcal{M}. For each ordinal α, the set of conditions Q^α is the set of finite sets p of triples (β, n, γ), where $\gamma < \beta < \alpha$ and $n \in \omega$ such that if $(\beta, n, \gamma_1), (\beta, n, \gamma_2) \in p$, then $\gamma_1 = \gamma_2$. Q_α is the set of finite sets p of pairs of the form (n, γ), where $\gamma < \alpha$ and $n \in \omega$ such that if $(n, \gamma_1), (n, \gamma_2) \in p$, then $\gamma_1 = \gamma_2$. Let G be an \mathcal{M}-generic subset of Q^κ. Then G_α, the projection of G onto Q_α, is an \mathcal{M}-generic subset of Q_α for each $\alpha < \kappa$. Let $f_\alpha = \bigcup G_\alpha$. Then \mathcal{M}_κ is the smallest model of ZF containing the same ordinals as \mathcal{M} and each sequence $(f_\alpha)_{\beta < \alpha}$ for $\alpha < \kappa$.

Truss shows that in \mathcal{M}_κ the following statements are true:

1. \aleph_1 is singular, i.e., it can be written as a countable union of countable sets,

2. A well ordered union of well orderable subsets of \mathbb{R} is well orderable, and

3. Every uncountable subset of \mathbb{R} has a perfect subset (= closed with no isolated points).

In view of the validity of (1) and (2) in \mathcal{M}_κ, we see that WO-CC(\mathbb{R}) must fail in \mathcal{M}_κ. Otherwise, CC(\mathbb{R}) would hold true in the model (obviously, (2) + WO-CC(\mathbb{R}) implies CC(\mathbb{R})). Now, CC(\mathbb{R}) implies that \aleph_1 is a regular cardinal, see [1], [8]. This contradicts the validity of (1) in \mathcal{M}_κ.

On the other hand, Truss shows that in ZF every perfect subset has cardinality 2^{\aleph_0}. By this fact and the validity of (3) in \mathcal{M}_κ, we deduce that Form 13 is true in this model and the proof is complete. \qed
References

Kyriakos Keremedis
Department of Mathematics
University of the Aegean
Karlovassi, 83200
Samos, GREECE
e-mail: kker@aegean.gr

Eleftherios Tachtsis
Department of Statistics and Actuarial Science
University of the Aegean
Karlovassi, 83200
Samos, GREECE
e-mail: Itah@aegean.gr