On Weierstrass compact pseudometric spaces and a weak form of the axiom of choice

Kyriakos Keremedis
Department of Mathematics, University of the Aegean, Karlovasi, 83200, GREECE.
FAX: 0273 - 33896
e-mail: kker@aegean.gr

August 9, 1998

Abstract

We show that the countable multiple choice axiom CMC is equivalent to the assertion: Weierstrass compact pseudometric spaces are compact.

The countable axiom of choice CAC (Form 8 in [3]) is the assertion: For every set \(\mathcal{A} = \{ A_i : i \in \omega \} \) of non empty disjoint sets there exists a set \(C \) consisting of one and only one element from each element of \(\mathcal{A} \). The countable multiple axiom of choice, CMC, is the proposition:

Every set \(\mathcal{A} = \{ A_i : i \in \omega \} \) of non empty disjoint sets has a countable multiple choice. i.e. a family \(\mathcal{F} = \{ F_i : i \in \omega \} \) of finite non empty sets such that for every \(i \in \omega \), \(F_i \subseteq A_i \).

Let \((X, T)\) be a topological space. \(X \) is said to be countably compact iff every countable open cover \(\mathcal{U} \) of \(X \) has a finite subcover \(\mathcal{V} \). \(X \) is said to be Weierstrass compact iff every infinite set \(Y \subseteq X \) has a limit point \(a \). i.e., every open set \(O \) including \(a \) meets \(Y \) in an infinite set. WCC stands for the statement:

\[\text{WCC} = \text{Weierstrass-compact pseudometric spaces are compact.} \]
In [1] it is asked what is the set theoretical status of WCC. The aim of this note is to show that WCC is equivalent to CMC.

Lemma 1 CMC iff WCCC (Weierstrass-compact pseudometric spaces are countably compact).

Proof. (→) Assume on the contrary and let \((X, d)\) be a Weierstrass-compact but not a countably compact pseudometric space. Fix \(U = \{O_n : n \in \omega\}\) an open cover of \(X\) without a finite subcover. Clearly,

\[Q = \{Q_n = \cup\{O_m : m \leq n\} : n \in \omega\} \]

is an ascending open cover of \(X\) such that no \(Q_n\) covers \(X\). Use CMC to pick a sequence of non empty finite sets \(\mathcal{F} = \{F_n \subset X \setminus Q_n : n \in \omega\}\). Let \(x \in O_n\) be a limit point of \(\cup \mathcal{F}\). Then \(O_n\) must contain infinitely many points of \(\cup \mathcal{F}\) contradicting the choice of \(F_n\)'s. Hence \(U\) has a finite subcover and \(X\) is countably compact as required.

(←). Assume on the contrary that WCCC holds but CMC fails.

Claim 1. ([2] and [4]). CMC iff for every countable family \(\mathcal{A}\) of disjoint non empty sets there exists an infinite set \(C \subset \cup \mathcal{A}\) such that for every \(A \in \mathcal{A}\), \(0 \leq |C \cap A| < \omega\).

Proof of Claim 1. (→). This is straightforward.

(←). Fix \(\mathcal{A} = \{A_n : n \in \omega\}\) a family of disjoint non empty sets. Put

\[B = \{B_n = \prod_{m \leq n} A_m : n \in \omega\} \]

and let \(C = \{c_i : i \in \omega\}\) satisfy the conclusion of CMC for the infinite subfamily \(\{B_{n_i} : i \in \omega\}\) of \(B\). Based on \(C\) and taking projections we can easily construct inductively a set \(\mathcal{F} = \{F_n : n \in \omega\}\) satisfying CMC for \(\mathcal{A}\). □ (Claim 1)

Fix, by Claim 1, a countable family \(\mathcal{A} = \{A_i : i \in \omega\}\) of disjoint non empty sets having no infinite subfamily with a countable multiple choice set. Make \(X_i = A_i \cup \{i\}, i \notin A_i\) into a pseudometric space by requiring:

\[
 d_i(x, y) = \begin{cases}
 1 & \text{if } ((x = i) \land (y \neq x)) \lor ((y = i) \land (y \neq x)) \\
 0 & \text{otherwise}
 \end{cases}.
\]

2
Let X be the product of the family $\{(X_i, T_i) : i \in \omega\}$ endowed with the Tychonoff topology T, where T_i is the topology induced by the pseudometric d_i. It can be readily verified that T is the topology induced by the pseudometric d given by $d(x, y) = \sum_{n \in \omega} \frac{1}{2^n} d_n(x(n), y(n))$.

Claim 2. X is Weierstrass-compact.

Proof of Claim 2. Let G be an infinite subset of X. As \mathcal{A} has no partial multiple choice set, it follows that for every $g \in G$ there exists $n_g \in \omega$ $g(i) = i$ for all $i \geq n_g$. Put $G_n = \{g \in G : g(i) = i \text{ for all } i \geq n\}$. Clearly, for all but finitely many n’s G_n is infinite (otherwise \mathcal{A} would have a partial multiple choice set). Fix $n \in \omega$ such that G_n is infinite. Since $X_1 \times X_2 \times, ..., X_{n-1}$ is a compact space homeomorphic to the subspace

$$X^n = \{x \in X : x(i) = i \text{ for all } i \geq n\}$$

and $G_n \subseteq X^n$, it follows by the compactness of X^n, that G_n has a cluster point $x \in X^n$. It is easy to see that x is a cluster point of G_n in X. (Claim 2)

By Claim 2, X is Weierstrass compact. Hence X is countably compact. Thus $K = \{\pi_i^{-1}[A_i] : i \in \omega\}$ being a countable family of closed sets with the finite intersection property, satisfies $\cap K \neq \emptyset$ meaning that \mathcal{A} has a choice function which is a contradiction. Hence CMC holds finishing the proof of Lemma 1.

Lemma 2 CMC iff every compact pseudometric space (X, d) has a dense subspace Y which is written as a countable union of finite sets.

Proof. (\rightarrow). Fix (X, d) a compact pseudometric space. Using the compactness of X one can show, as usual, that for every $n > 0$,

$$X_n = \{Y \in [X]^{<\omega} : d(x, Y) < 1/n \text{ for all } x \in X\} \neq \emptyset.$$

Put $Z = \{X_n : n \in \omega\}$ and let $F = \{F_n : n \in \omega\}$ be a countable multiple choice for Z. i.e., $\emptyset \neq F_n \in [X_n]^{<\omega}$. Clearly $Y = \cup\{P_n = \cup F_n : n \in \omega\}$ is a dense subset of X which is expressed as a countable union of finite sets.

(\leftarrow). Fix $\{X_n : n \in \omega\}$ a family of disjoint non empty sets. Put $X = (\cup\{X_n : n \in \omega\}) \cup \{\infty\}, \infty \notin \cup\{X_n : n \in \omega\}$ and let $d : X \times X \to \mathbb{R}$ be given by $d(x, y) = d(y, x)$ and

$$d(x, y) = \begin{cases}
0 & \text{if } x, y \in X_n \text{ for some } n \in \omega \\
1/(n + 1) & \text{if } x = \infty \text{ and } y \in X_n \text{ for some } n \in \omega \\
\max\{1/n, 1/m\} & \text{if } x \in X_m, y \in X_n, m \neq n
\end{cases}.$$
It can be readily verified that \((X, d)\) is a compact pseudometric space (every open set containing \(\infty\) includes all but finitely many \(X_n\)'s). Let \(Y = \cup \{Y_m : m \in \omega\}\) be the dense set which is guaranteed by the hypothesis. For every \(n \in \omega\) let \(F_n = Y_{m_n} \cap X_n\) where \(m_n\) is the first \(v \in \omega\) such that \(Y_v \cap X_n \neq \emptyset\). Clearly \(\{F_n : n \in \omega\}\) is a multiple choice set for the family \(\{X_n : n \in \omega\}\) finishing the proof of Lemma 2.

By the same proof of Lemma 2 we can show Corollary 3.

Corollary 3 (i) \(CMC\) iff every compact pseudometric space \((X, d)\) has a dense subspace \(Y\) which is written as a well ordered union of finite sets.
(ii) \(CAC\) iff every compact pseudometric space \((X, d)\) is separable.

Theorem 4 \(CMC\) iff \(WCC\).

Proof. (\(\rightarrow\)). Since \(WCC\) clearly implies \(WCCC\) which in turn is equivalent to \(CMC\), we see that \(WCC\) implies \(CMC\).

(\(\leftarrow\)). It suffices to show that \(WCCC\) implies \(WCC\). Fix \((X, d)\) a Weierstrass compact countably compact pseudometric space.

Claim 1. If \(X\) has a dense subset which can be written as a countable union of finite sets then \(X\) is compact.

Proof of Claim 1. Let \(Y = \cup \{Y_n \in [X]^{<\omega} : n \in \omega\}\) be the dense subset of \(X\). For every \(n \in \omega\) let \(B_n = \{D(y, 1/m) : y \in Y_n, m > 0\}\). Clearly each \(B_n\) is countable and \(B = \cup \{B_n : n \in \omega\}\) is a base for \(X\). In order to show that \(X\) is compact it suffices to show that every open cover \(U = \{U_i : i \in I\} \subseteq B\) has a finite subcover. For every \(n \in \omega\) let \(Q_n = \cup G_n, G_n = U \cap B_n\). Clearly each \(G_n\) is countable and \(Q = \{Q_n : n \in \omega\}\) is a countable open cover of \(X\). It follows that \(Q\) has a finite subcover say, \(Q_1, Q_2, ..., Q_v\). Since \(G = G_1 \cup G_2 \cup ..., \cup G_v\) is again a countable cover of \(X\) it follows that it has a finite subcover \(V\). Clearly \(V\) is a finite subcover of \(U\) and \(X\) is compact as required.

Claim 2. \(X\) is totally bounded.

Proof of Claim 2. Assume the contrary. Then there exists \(r > 0\) such that for every \(n > 0\), \(A_n = \{Y \in [X]^n : (\forall x, y \in Y)(x \neq y \rightarrow d(x, y) \geq r)\} \neq \emptyset\). Put \(A = \{A_n : n \in \omega\}\) and let \(F = \{F_n : n \in \omega\}\) be a multiple choice set for
Claim 3. If X is totally bounded then X is compact.

Proof of Claim 3. For every $n \in \omega$ put $P_n = \{Y \in [X]^{<\omega} : d(x, Y) < 1/n$ for all $x \in X\}$. As X is totally bounded it follows that $P_n \neq \emptyset$. Set $P = \{P_n : n \in \omega\}$ and let $F = \{F_n : n \in \omega\}$ be a countable multiple choice for P. Clearly $Y = \bigcup (\cup F)$ is a dense subset of X that is expressed as a countable union of finite sets. Thus, an application of Claim 1 shows that X is compact finishing the proof of Claim 3 and Theorem 4.

References

