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Abstract. Poly-free groups are constructed as iterated semidirect products
of free groups. The class of poly-free groups includes the classical pure braid
groups, fundamental groups of fiber-type hyperplane arrangements, and certain
subgroups of the automorphism groups of free groups. The purpose of this article
is to compute centralizers of certain natural Lie subalgebras of the Lie algebra
obtained from the descending central series of poly-free groups Γ including some
of the geometrically interesting classes of groups mentioned above. The main
results here extend the result in Cohen, F. R., and S. Prassidis: On injective
homomorphisms for pure braid groups, and associated Lie algebras, J. Algebra
298 (2006), 363–370, for such groups. These results imply that a homomorphism
f : Γ → G is faithful, essentially, if it is faithful when restricted to the level of
Lie algebras obtained from the descending central series for the product FT ×Z ,
where FT is the “top” free group in the semidirect products of free groups and
Z is the center of Γ. The arguments use a mixture of homological, and Lie
algebraic methods applied to certain choices of extensions. The limitations of
these methods are illustrated using the “poison groups” of Formanek and Procesi
Formanek, E., and C. Procesi: The automorphism group of a free group is not
linear, J. Algebra 149 (1992), 494–499, poly-free groups whose Lie algebras do
not have certain properties considered here.
Mathematics Subject Index 2000: Primary 20E22, 20F14; Secondary 20F28,
20F36, 20F40, 32S22, 55R80.
Keywords and phrases: poly-free group, descending central series, Lie algebra
centralizer, McCool group, orbit configuration space, fiber-type arrangement

1. Introduction

A group Γ is poly-free if there is a sequence

{1} = Γ0 ≤ Γ1 ≤ · · · ≤ Γn = Γ

such that Γi+1 is a normal subgroup of Γi and the quotient Γi/Γi+1 is isomorphic
to a free group. Examples include the Artin pure braid group, the fundamental
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group of the configuration space of n ordered points in C , as well as fundamental
groups of certain orbit configuration spaces [5, 8]. There are also natural sub-
groups of the automorphism group of a free group which are poly-free. One such
example considered here is the “upper triangular” version of McCool’s subgroup of
basis-conjugating automorphisms [9]. Homological properties of such groups have
been investigated in [7] and [19]. Geometric properties of poly-free groups were
investigated in [1] and [17].

The main objective of this paper is to determine the centralizers of certain
Lie subalgebras of the Lie algebras which arise from the classical descending central
series of the families of discrete groups given above. These Lie algebras have
been used in contexts ranging from Vassiliev invariants of pure braids [21, 22] to
structures of simplicial groups and the loop space of the 2-sphere [2, 11]. Other
applications of these Lie algebras arise in the study of homotopy groups of higher
dimensional knot spaces, see [28].

For nonempty subsets U and V of a (discrete) group G , let [U, V ] denote
the subgroup of G generated by all commutators [u, v] = uvu−1v−1 of elements
u ∈ U and v ∈ V . Let Gn be the n-th stage of the descending central series
of G , defined inductively by G1 = G , and Gn+1 = [Gn, G] for n ≥ 1, and let
grn(G) = Gn/Gn+1 be the n-th associated quotient. Let gr∗(G) =

⊕
n≥1 grn(G).

There is a bilinear homomorphism

[−,−] : grp(G)⊗Z grq(G) −→ grp+q(G)

induced by the commutator map

c : G×G −→ G

(which is itself not in general a homomorphism).

The construction of gr∗(G) is a functor from the category of discrete groups
to the category of Lie algebras over Z . This construction has potential applications
to questions concerning representations. Specifically, if G is residually nilpotent
and a group homomorphism f out of G induces a Lie algebra monomorphism on
the corresponding Lie algebras, then f is itself a monomorphism ([11]). Based on
this property, conditions which insure that a representation of G is faithful are
recorded in Corollary 1.2 below. It should be noted, however, that these methods
have not yet succeeded in producing faithful representations of the poly-free groups
considered here.

Summary of the Results. Let B be a subset of the Lie algebra A . Then the
centralizer of B in A is defined by

CA(B) = {a ∈ A : [a, b] = 0, for all b ∈ B}.

Abbreviate CA(A) by C(A). The main result of this paper gives centralizers of Lie
subalgebras of gr∗(G) for the following groups G :

I. The “upper triangular McCool groups”, subgroups PΣ+
n of the automor-

phism group of the free group Fn = F [x1, . . . , xn] generated by automor-
phisms βi,j , 1 ≤ i < j ≤ n , defined by

βi,j(xk) =

{
xk, if k 6= j,

x−1
i xjxi, if k = j.
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II. Fundamental groups PG(n) of orbit configuration spaces associated to sur-
face groups G acting freely, and properly discontinuously on the upper
1/2-plane H . In this case, gr∗(PG(n)) is generated by Bσ

i,j with σ ∈ G ,
1 ≤ i < j ≤ n .

III. Fundamental groups P (r, n) of orbit configuration spaces associated to finite
cyclic groups, of order r , acting freely on C∗ , by rotation. The generators of
the Lie algebra gr∗(P (r, n)) are given by B

(p)
i,j with 1 ≤ p ≤ r , 1 ≤ i < j ≤ n ,

and Zk for 1 ≤ k ≤ n .

The groups Γn given by PΣ+
n , PG(n), or P (r, n) all have the property that

there is an extension

1 −−−→ Fα(n)
j−−−→ Γn

p−−−→ Γn−1 −−−→ 1 (1)

which satisfies the following properties.

Γ0 is a free group; (2a)

Fα(n) is a free group on a countable set α(n) of cardinality at least two; (2b)

the map p : Γn → Γn−1 is a split epimorphism; and (2c)

the action of Γn−1 on H∗(Fα(n)) is trivial. (2d)

By work in [20, 14, 29], for such a group Γn , there is a split extension of Lie
algebras

0 −−−→ gr∗(Fα(n))
gr∗(j)−−−→ gr∗(Γn)

gr∗(p)−−−→ gr∗(Γn−1) −−−→ 0. (3)

In particular the map j : Fα(n) → Γn induces an injection on the level of Lie
algebras

gr∗(j) : L[Vα(n)] = gr∗(Fα(n)) −→ gr∗(Γn),

where L[Vα(n)] denotes the free Lie algebra generated by the set α(n). Groups Γn

which admit this structure are the main focus of this paper.

Theorem 1.1. Let Γn be one of the groups described above. The centralizer of
the free Lie algebra L[Vα(n)] in gr∗(Γn) is given as follows:

I. If Γn = PΣ+
n is the upper triangular McCool group, then

Cgr∗(Γn)(L[Vα(n)]) = L[Bn],

where Bi,j is the image of βi,j in gr∗(PΣ+
n ), and Bn =

∑n
j=2 B1,j .

II. If Γn = PG(n) is the fundamental group of a surface group orbit configuration
space, then

Cgr∗(Γn)(L[Vα(n)]) = 0.

III. If Γn = P (r, n) is the fundamental group of a cyclic group orbit configuration
space, then

Cgr∗(Γn)(L[Vα(n)]) = L[∆(r, n)],

where

∆(r, n) =
n∑

k=1

Zk +
r∑

p=1

∑
1≤i<j≤n

B
(p)
i,j .
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For a poly-free group Γn satisfying conditions (2), the center of the Lie
algebra gr∗(Γn) is determined in section 2. Namely, it is shown in Proposition 2.1
that the center of gr∗(Γn) is either infinite cyclic or trivial. Furthermore, if the
free group Γ0 is of rank greater than one (as is the case for the groups Fα(k) by
(2b)), then both the center of gr∗(Γn) and the center of Γn itself are trivial. This
property need not be satisfied for an arbitrary poly-free group, as illustrated by
the direct product F1 × F1 , where F1 is free of rank one.

Recall the classical adjoint representation

ad : L −→ Der(L)

of a graded Lie algebra L , where Der(L) denotes the graded Lie algebra of graded
derivations of L . The map ad is defined by the equation ad(X)(Y ) = [X, Y ] for
X and Y in L . The center of L is precisely the kernel of ad : L → Der(L). If I
is a Lie ideal of L , then the natural restriction map is denoted by

ad |I : L −→ Der(I).

Let Γn be one of the groups considered above. Regard gr∗(Γn) as a graded
Lie algebra by the convention that grq(Γn) has degree 2q (as the axioms for a
graded Lie algebra are not satisfied without this convention). In these cases,
L[Vα(n)] is a Lie ideal. Consider the two adjoint representations:

ad : gr∗(Γn) −→ Der(gr∗(Γn)) and ad|L[Vα(n)] : gr∗(Γn) −→ Der(L[Vα(n)]).

Corollary 1.1. Let Γn be one of the above groups.

I. If Γn = PΣ+
n , then ker(ad) = ker(ad|L[Vα(n)]) is the cyclic group generated

by Bn in gr1(PΣ+
n ). Thus there is a short exact sequence of Lie algebras

0 −−−→ L[Bn] −−−→ gr∗(PΣ+
n )

ad |L[Vn]−−−−−→ Image(ad |L[Vn]) −−−→ 0.

II. If Γn = PG(n), then ker(ad) = ker(ad|L[Vα(n)]) is trivial. Thus there is an
isomorphism

gr∗(PG(n))
ad |L[Vn]−−−−−→ Image(ad |L[Vn]).

III. If Γn = P (r, n), then ker(ad) = ker(ad|L[Vα(n)]) is the cyclic group generated
by ∆(r, n) in gr1(P (r, n)). Thus there is a short exact sequence of Lie
algebras

0 −−−→ L[∆(r, n)] −−−→ gr∗(P (r, n))
ad |L[Vn]−−−−−→ Image(ad |L[Vn]) −−−→ 0.

Recent work on the Isomorphism Conjecture [15, 16] has renewed interest
in detecting monomorphisms on discrete groups, especially when the target space
is a finite dimensional linear group and the image is a discrete subgroup. The
linearity of the classical Artin braid groups, and hence the Artin pure braid
groups, was established by Bigelow [4] and Krammer [23]. Subsequently, Digne [12]
showed that Artin groups of crystallographic type are linear. This paper may be
viewed as an attempt to develop methods for detecting faithful finite dimensional
representations of poly-free groups, as illustrated by the following consequence of
Theorem 1.1 and the results of [10].
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Corollary 1.2. Let Γn be one of the poly-free groups PΣ+
n , PG(n), or P (r, n),

and f : Γn → G a homomorphism of groups. If the morphism of Lie algebras

gr∗(f)|L[Vα(n)] : L[Vα(n)] −→ gr∗(G)

is a monomorphism and

I. gr∗(f)|L[Bn] : L[Bn] → gr∗(G) is a monomorphism when Γn = PΣ+
n ;

II. no further conditions when Γn = PG(n);

III. gr∗(f)|L[∆(r,n)] : L[∆(r, n)] → gr∗(G) is a monomorphism when Γn = P (r, n),

then f is a monomorphism. In addition, the following two statements are equiva-
lent:

(i) The map f : Γn → G is one-to-one.

(ii) The maps of Lie algebras

gr∗(f)|L[Vα(n)] : L[Vα(n)] −→ gr∗(f(Γn))

is a monomorphism and

I. gr∗(f)|L[Bn] : L[Bn] → gr∗(f(PΣ+
n )) is a monomorphism when Γn =

PΣ+
n ;

II. no further conditions when Γn = PG(n);

III. gr∗(f)|L[∆(r,n)] : L[∆(r, n)] → gr∗(f(P (r, n)) is a monomorphism when
Γn = P (r, n),

where f(−) denotes the image of f .

The Artin pure braid groups, and the groups P (r, n), may be realized
as fundamental groups of complements of fiber-type hyperplane arrangements.
For any such arrangement, the fundamental group of the complement is poly-
free, and satisfies the conditions (2), see Falk and Randell [14]. Thus, there are
corresponding split, short exact sequences of descending central series Lie algebras
as in (3). Furthermore, using the linearity of the pure braid group [4, 23] and
topological properties of fiber-type arrangements [5, 6], one can show that the
fundamental group of the complement of any fiber-type arrangement is linear, see
Theorem 6.4. Consequently, many poly-free groups which fit into exact sequences
of the form (1) admit faithful finite dimensional linear representations.

There is, however, a dichotomy as follows. The “poison group” H of
Formanek and Procesi admits no faithful, finite dimensional linear representation
[18]. While this group is poly-free, and fits into a split exact sequence

1 −−−→ F3
j−−−→ H

p−−−→ F2 −−−→ 1,

where Fk is a rank k free group, information is lost upon passage to the descending
central series Lie algebra. Specifically, there are homomorphisms out of H which
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have non-trivial kernels, but induce monomorphisms on the level of descending
central series Lie algebras. The natural map

p× α : H −→ F2 ×H1(H),

given by the projection p : H → F2 and the abelianization map α : H → H1(H),
is one such homomorphism. The map p×α has non-trivial kernel but induces a
monomorphism on the Lie algebras. Thus, the Lie algebraic methods here fail to
inform on representations of the group H . This failure arises directly from the
fact that the local coefficient system in homology is non-trivial, that is, the action
of F2 on H∗(F3) is non-trivial. For details, see Proposition 7.1.

The above discussion suggests the following.

Question 1. Let Γ be a group that fits into a split exact sequence

1 −−−→ F −−−→ Γ −−−→ G −−−→ 1

with F a finitely generated free group and G a group that admits a finite dimen-
sional faithful linear representation. If G acts on F by basis-conjugating auto-
morphisms, does Γ then admit a finite dimensional faithful linear representation?
More generally, if G acts trivially on the homology of F , does Γ then admit a
finite dimensional faithful linear representation?

2. Centers

The purpose of this section is to identify the center of the descending central
series Lie algebra gr∗(Γn) in the case where Γn belongs to class of poly-free groups
which satisfy the conditions (2). Recall that such groups are given inductively by
extensions

1 −−−→ Fα(n)
j−−−→ Γn

p−−−→ Γn−1 −−−→ 1,

where Γ0 is a free group; Fα(n) is a free group of rank at least 2; the map
p : Γn → Γn−1 is a split epimorphism; and the action of Γn−1 on H∗(Fα(n)) is
trivial. Denote the center of a Lie algebra g by C(g), and write Fα(0) = Γ0 .

Proposition 2.1. Let Γn be a poly-free group satisfying conditions (2). Then
the center of gr∗(Γn) is cyclic. Furthermore, if Fα(k) is of rank at least two for
every k , 0 ≤ k ≤ n, then both the center of gr∗(Γn) and the center of Γn are
trivial.

Proof. By [14], there is a short exact sequence of Lie algebras

0 −−−→ gr∗(Fα(n))
gr∗(j)−−−→ gr∗(Γn)

gr∗(p)−−−→ gr∗(Γn−1) −−−→ 0,

where gr∗(j) and gr∗(p) are the maps induced by j and p , and the first homology
of Γk is free abelian for each k . Since Γ0 is free of rank at least one, the center of
gr∗(Γ0) is either infinite cyclic if Γ0 = Z , or is trivial if the rank of Γ0 is at least
two [10].

Assume inductively that the center of gr∗(Γn−1) is concentrated in degree
1 and is cyclic. Observe that gr∗(p)(C(gr∗(Γn)), the image of the center of gr∗(Γn)
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in gr∗(Γn−1), is also cyclic. In addition, it may be assumed inductively that the
center C(gr∗(Γn−1)) is trivial in case the rank of Fα(k) is at least two for all k ,
0 ≤ k ≤ n− 1.

Choose an element ∆1 in C(gr∗(Γn)) which projects to a generator of
gr∗(p)(C(gr∗(Γn)). Let ∆2 be an arbitrary element in the center C(gr∗(Γn)). If
∆2 is concentrated in degree greater than 1, then gr∗(p)(∆2) = 0. Consequently,
there is an element X in gr∗(Fα(n)) such that gr∗(j)(X) = ∆2 . Since the center of
gr∗(Fα(n)) is trivial whenever the cardinality of α(n) is at least two, ∆2 = 0. Thus
it suffices to assume that ∆2 is concentrated in degree 1 in case the cardinality of
α(n) is at least two.

It follows that there is an integer q such that q∆1 and ∆2 project to the
same element in C(gr∗(Γn−1)). Then ∆ = q∆1 −∆2 is an element of C(gr∗(Γn)),
and is in the image of gr∗(j), say ∆ = gr∗(j)(δ), where δ ∈ C(gr∗(Fα(n))).
However, the center of gr∗(Fα(n)) is trivial whenever the cardinality of α(n) is
at least two and so q∆1 − ∆2 = 0. Thus the center C(gr∗(Γn)) is cyclic, and is
trivial in the case where the rank of Fα(k) is at least 2 for all k , 0 ≤ k ≤ n .

To finish, assume that the rank of Fα(k) is at least 2 for all k , 0 ≤ k ≤ n .
Since the center of Fα(k) is trivial for 0 ≤ k ≤ n , the center of Γn is trivial by the
natural induction on n .

The previous proposition suggests the following.

Question 2. Let Γ be a group which fits into an exact sequence

1 −−−→ F −−−→ Γ −−−→ G −−−→ 1

where F is a free group of rank at least two and the center of gr∗(G) is cyclic. Is
then the center of gr∗(Γ) cyclic? Note that no assumptions are made regarding the
existence of a splitting, or the action of G on the homology of F .

3. Upper Triangular McCool Groups

Let Fn be the free group on the set {x1, x2, · · · , xn} . Let IAn denote the kernel
of the natural map

Aut(Fn) → GL(n, Z)

induced by the map of Fn to its abelianization. As shown by Nielsen, and Magnus,
the group IAn is generated by automorphisms βi,j , 1 ≤ i, j ≤ n , i 6= j , and Θj;[s,t] ,
where 1 ≤ j, s, t ≤ n and j, s, t are distinct, see [24]. These automorphisms are
given by

βi,j(xk) =

{
xk, if k 6= j,

x−1
i xjxi, if k = j,

and Θj;[s,t](xk) =

{
xk, if k 6= j,

xj[xs, xt], if k = j.

Let PΣn be the group of basis-conjugating automorphisms, the subgroup
of IAn generated by the automorphisms βi,j . McCool [25] showed that the group
PΣn admits a presentation with these generators and relations

[βi,j, βk,l] for i, j, k, l distinct
[βi,j, βi,k] for i, j, k distinct
[βj,k, βi,jβi,k] for i, j, k distinct

 . (4)



386 Cohen, Cohen, and Prassidis

Let PΣ+
n be the upper triangular McCool group, the subgroup of PΣn

generated by the automorphisms βi,j with i < j . The (relevant) relations (4) may
be used to show that PΣ+

n is a semidirect product, PΣ+
n = Fn−1 o PΣ+

n−1 , where
Fn−1 is the free group on the set

{βi,n : i = 1, 2, . . . n− 1}.

In other words, there is a split exact sequence

1 −−−→ Fn−1 −−−→ PΣ+
n −−−→ PΣ+

n−1 −−−→ 1,

see [9] (where the automorphisms βi,j are denoted by χ(j, i)). It is readily checked
that the action of PΣ+

n−1 on H∗(Fn−1) is trivial.

The structure of the Lie algebra gr∗(PΣ+
n ) is determined in [9]. Denote

the image of βi,j in gr∗(PΣ+
n ) by Bi,j . Then gr∗(PΣ+

n ) has generators Bi,j ,
1 ≤ i < j ≤ n , and relations

[Bi,j, Bk,l] = 0, for i, j, k, l distinct, (5a)

[Bi,j, Bi,k] = 0, for i, j, k distinct, (5b)

[Bj,k, Bi,j + Bi,k] = 0, for i, j, k distinct. (5c)

Note that the last of these is one of the classical infinitesimal braid relations. It is
not, however, the case that all of the infinitesimal braid relations are satisfied. For
example, if i < j < k , the element [Bi,k, Bi,j +Bj,k] need not vanish in gr∗(PΣ+

n ).

For 2 ≤ k ≤ n , let Vk = {Bi,k : 1 ≤ i ≤ k − 1} , and let L[Vk] be the
corresponding free Lie algebra. There is an additive isomorphism

gr∗(PΣ+
n ) ∼=

⊕
2≤k≤n

L[Vk].

Moreover, it is clear from the relations (5) that the Lie algebra gr∗(Fn−1) = L[Vn]
is a Lie ideal of gr∗(PΣ+

n ).

The next result is the portion of the Theorem 1.1 pertaining to Case I,
where Γn = PΣ+

n .

Theorem 3.1. The centralizer of L[Vn] in gr∗(PΣ+
n ) is the linear span of the

element

Bn =
n∑

j=2

B1,j.

Proof. Proposition 2.1 implies that an element in the centralizer of L[Vn] must
be of weight 1. Let

X =
∑

1≤i<j≤n

ai,jBi,j

be an element that centralizes L[Vn] . Since X centralizes L[Vn] ,

[X, B1,n] = 0.
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Relation (5a) implies that

n−1∑
j=2

a1,j[B1,j, B1,n] +
n−1∑
i=2

ai,n[Bi,n, B1,n] = 0.

Relation (5b) implies that each term in the first sum vanishes. Therefore,

n−1∑
i=2

ai,n[Bi,n, B1,n] = 0.

But the last equation takes place in the free Lie algebra L[Vn] . Thus, ai,n = 0 for
1 < i < n , and the element X has the form

X =
∑

1≤i<j<n

ai,jBi,j + a1,nB1,n.

Fix j , 1 < j < n . Start with the identity

[X, Bj,n] = 0.

Relation (5a) implies that

j−1∑
i=1

ai,j[Bi,j, Bj,n] +
n−1∑

k=j+1

aj,k[Bj,k, Bj,n] + a1,n[B1,n, Bj,n] = 0.

Relation (5b) implies that each term in the middle sum vanishes. Thus,

j−1∑
i=1

ai,j[Bi,j, Bj,n] + a1,n[B1,n, Bj,n] = 0.

Using the relation (5c), notice that the next relation follows

−
j−1∑
i=1

ai,j[Bi,n, Bj,n] + a1,n[B1,n, Bj,n] = 0

which implies that

−
j−1∑
i=2

ai,j[Bi,n, Bj,n] + (−a1,j + a1,n)[B1,n, Bj,n] = 0.

Since all the commutators are linearly independent, ai,j = 0 for 1 < i < j , and
a1,j = a1,n . Since j was arbitrary, these relations hold for all j with 1 < j < n .
The result follows.
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4. Surface Group Orbit Configuration Spaces

Let M be a manifold without boundary, and let G be a discrete group which
acts freely on M . The orbit configuration space consists of all ordered n-tuples of
points in M which lie in distinct orbits:

ConfG(M, n) = {(x1, . . . , xn) ∈ Mn : G · xi ∩G · xj = Ø if i 6= j}.

In [29], Xicoténcatl proves that, for ` ≤ n , projection onto the first `
coordinates,

pG : ConfG(M, n) → ConfG(M, `),

is a locally trivial bundle, with fiber ConfG(M \QG
` , n− `), where QG

` denote the
union of ` distinct orbits, G · x1, . . . , G · xn , in M . This result generalizes the
Fadell-Neuwirth theorem [13].

Let G be a discrete subgroup of PSL(2, R) acting freely and properly
discontinuously on the upper–half plane H2 by fractional linear transformations.
Let ConfG(H2, n) be the corresponding orbit configuration space and PG(n) its
fundamental group. Then there is a fiber bundle

H2\QG
n−1 → ConfG(H2, n) → ConfG(H2, n− 1).

This induces a split exact sequence:

1 −−−→ F −−−→ PG(n) −−−→ PG(n− 1) −−−→ 1,

where F is the free group on QG
n−1 . Notice that in this case F is an infinitely

generated free group.

The structure of gr∗(PG(n)) is determined in [8]. The generators are Bσ
i,j ,

where 1 ≤ i < j ≤ n and σ ∈ G . In this case, the infinitesimal braid relations
are:

[Bσ
i,j, B

τ
s,t] = 0, if {i, j}∩{s, t} = Ø,

[Bτ
i,j, B

τσ−1

s,j + Bσ
i,s] = 0, if 1 ≤ i < s < j ≤ n,

[Bσ
i,s, B

τ
i,j + Bτσ−1

s,j ] = 0, if 1 ≤ i < s < j ≤ n,

[Bτσ−1

s,j , Bτ
i,j + Bσ

i,s] = 0, if 1 ≤ i < s < j ≤ n.

(6)

The last equation follows from the previous two equations. Note that, for
0 < i < k < n , this last equation implies that

[Bτσ−1

k,n , Bτ
i,n + Bσ

i,k] = 0. (7)

Let Vj be the linear span of the set {Bσ
i,j : 1 ≤ i < j, σ ∈ G} . Then, there

is a splitting

gri(PG(n)) =
n⊕

j=2

gri(L[Vj]),

as abelian groups.

The next result is the portion of the Theorem 1.1 pertaining to Case II,
where Γn = PG(n).
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Theorem 4.1. The centralizer of L[Vn] in gr∗(PG(n)) is zero:

Cgr∗(PG(n))(L[Vn]) = 0.

Proof. Proposition 2.1 implies that elements in the centralizer are of weight 1.
Let

x =
∑̀
k=1

akB
σk
ik,jk

+

p∑
m=1

bmBτm
m,n

be such an element. Since G is infinite, there exists τ ∈ G such that

τσ−1
k 6= τm, for all k = 1, 2, . . . , `, m = 1, 2, . . . , p.

Since x centralizes L[Vn] ,

0 = [x, Bτ
1,n] =

∑̀
k=1

ak[B
σk
ik,jk

, Bτ
1,n] +

p∑
m=1

bm[Bτm
m,N , Bτ

1,n].

The infinitesimal braid relations (6) imply that

[Bσk
ik,jk

, Bτ
1,n] = 0, if 1 6= ik,

and that
[Bσk

1,jk
, Bτ

1,n] = −[B
τσ−1

k
jk,n , Bτ

jk,n].

Thus, for eack 1 ≤ ik < n ,

[Bσk
ik,jk

, Bτ
1,n] = −[B

τσ−1
k

jk,n , Bτ
1,n],

and

−
∑̀
k=1

ak[B
τσ−1

k
jk,n , Bτ

1,n] +

p∑
m=1

bm[Bτm
m,n, B

τ
1,n] = 0.

Since the commutators are all different and they are linearly independent, all the
coefficients are equal to 0 and thus x = 0.

5. Cyclic Group Orbit Configuration Spaces

Let G = Z/rZ be a finite cyclic group. The group G acts freely on the manifold
M = C∗ = C \ {0} by multiplication by the primitive r -th root of unity ζ =
exp(2π

√
−1/r). The corresponding orbit configuration space is given by

ConfG(C∗, n) = {(x1, . . . , xn) ∈ (C∗)n | xj 6= ζpxi for i 6= j and 1 ≤ p ≤ r}.

Denote the fundamental group of ConfG(C∗, n) by P (r, n).

Let `n = rn + 1, and define a map gn : ConfG(C∗, n) → Conf(C, `n) from
the orbit configuration space to the classical configuration space by sending a point
to its orbits (together with 0). Explicitly, if (x1, . . . , xn) ∈ ConfG(C∗, n), define

gn(x1, . . . , xn) = (0, ζx1, . . . , ζ
rx1, ζx2, . . . , ζ

rx2, . . . . . . , ζxn, . . . , ζ
rxn)

in Conf(C, `n). Then, one has the following result (see [5, Thm. 2.1.3] and [6, §3]).
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Theorem 5.1. The orbit configuration space bundle pG : ConfG(C∗, n + 1) →
ConfG(C∗, n) is equivalent to the pullback of the configuration space bundle p :
Conf(C, `n + 1) → Conf(C, `n) along the map gn .

Passing to fundamental groups, there is an induced commutative diagram
with split rows,

1 −−−→ F`n −−−→ P (r, n + 1) −−−→ P (r, n) −−−→ 1yid

y y(gn)∗

1 −−−→ F`n −−−→ P`n+1 −−−→ P`n −−−→ 1

(8)

where FN is a free group on N generators. Passing further to descending central
series Lie algebras, there is a commutative diagram, again with split rows (see [6,
§4]).

0 −−−→ L[V`n ] −−−→ gr∗(P (r, n + 1)) −−−→ gr∗(P (r, n)) −−−→ 0yid

y ygr∗(gn)

0 −−−→ L[V`n ] −−−→ gr∗(P`n+1) −−−→ gr∗(P`n) −−−→ 0

(9)

This realizes the Lie algebra gr∗(P (r, n + 1)) as the semidirect product of
gr∗(P (r, n)) by L[V`n ] determined by the homomorphism

θ`n ◦ gr∗(gn) : gr∗(P (r, n)) → Der(L[V`n ]),

where θN : gr∗(PN) → Der(L[VN ]) is given by θN(Bi,j) = ad(Bi,j), see [6,
Thm. 4.4]. More explicitly, the structure of gr∗(P (r, n)) is given in the following
theorem, proved in [5].

Theorem 5.2. Let gr∗(P (r, n)) be the Lie algebra associated to the descending
central series of the group P (r, n) = π1(ConfG(C∗, n)), where G = Z/rZ. Then,

gr∗(P (r, n)) ∼=
n−1⊕
j=0

L(rj + 1)

as abelian groups, where L(rj + 1) is generated by Zj+1 and B
(p)
i,j+1 , 1 ≤ i ≤ j ,

1 ≤ p ≤ r . The Lie bracket relations in gr∗(P (r, n)) are given by[
Zj + Zl +

r∑
q=1

B
(q)
j,l , Y

]
= 0 for Y = Zl, Y = B

(p)
j,l , 1 ≤ p ≤ r,

[B
(p)
i,j + B

(q)
i,k + B

(m)
j,k , Y ] = 0 for Y = B

(q)
i,k , B

(m)
j,k , q ≡ p + m mod r,

[B
(p)
i,j , B

(q)
k,l ] = 0 for {i, j} ∩ {k, l} = Ø, 1 ≤ p, q ≤ r, and

[Zk, B
(p)
i,j ] = 0 for k 6= i, j and 1 ≤ p ≤ r.

Proposition 5.3. The map gn : ConfG(C∗, n) → Conf(C, `n) induces injec-
tions on fundamental groups and descending central series Lie algebras. More
precisely, the maps

(gn)∗ : P (r, n) −→ P`n and gr∗(gn) : gr∗(P (r, n)) −→ gr∗(P`n)

induced by gn , are monomorphisms.
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Proof. The proof is by induction on n . In the case n = 1, notice that
ConfG(C∗, 1) = C∗ , and for x ∈ C∗ , g1(x) = (0, ζx, . . . , ζrx) ∈ Conf(C, r + 1).
Let γ ∈ π1(C∗) be the standard generator, and check that (g1)∗(γ) = ∆(r + 1)
generates the center of Pr+1 . It follows that both (g1)∗ : P (r, 1) → P`1 and
gr∗(g1) : gr∗(P (r, 1)) → gr∗(P`1) are injective.

Assume inductively that (gn)∗ : P (r, n) → P`n and gr∗(gn) : gr∗(P (r, n)) →
gr∗(P`n) are injective. It must be shown that (gn+1)∗ : P (r, n + 1) → P`n+1 and
gr∗(gn+1) : gr∗(P (r, n + 1)) → gr∗(P`n+1) are also injective, where `n = rn + 1 and
`n+1 = r(n + 1) + 1. Let g̃n : ConfG(C∗, n + 1) → Conf(C, `n + 1) denote the map
on the pullback induced by gn . Note that

g̃n(x1, . . . , xn, z) = (0, ζx1, . . . , ζ
rx1, . . . . . . , xn, ζxn, . . . , ζ

rxn, z).

The map g̃n may be factored as follows. Let pm,k : Conf(C, m) → Conf(C, k) be
the projection which forgets the last m− k points. Then g̃n = pm,k ◦ gn+1 , where
m = `n+1 and k = `n + 1.

Since (gn)∗ and gr∗(gn) are injective by induction, it follows from (8) and
(9) that (g̃n)∗ and gr∗(g̃n) are also injective. This, together with the fact that
g̃n = pm,k ◦ gn+1 , implies that (gn+1)∗ and gr∗(gn+1) are injective.

Corollary 5.4. The group P (r, n) is linear.

Proof. The group P (r, n) embeds in the Artin pure braid group, which is linear
[4, 23].

The next result is the portion of the Theorem 1.1 pertaining to Case III.
It is notationally convenient to state the result for the group Γn+1 = P (r, n + 1).

Theorem 5.5. The centralizer of L[V`n ] in gr∗(P (r, n + 1)) is the linear span
of the element

∆(r, n + 1) =
n+1∑
k=1

Zk +
r∑

p=1

∑
1≤i<j≤n+1

B
(p)
i,j .

Proof. Denote the generators of L[V`n ] by Zn+1 and B
(p)
i,n+1 , 1 ≤ i ≤ n ,

1 ≤ p ≤ r , and let

B`n = Zn+1 +
r∑

p=1

n∑
i=1

B
(p)
i,n+1.

Let x ∈ gr∗(P (r, n + 1)), and assume that [x, B] = 0 for all B ∈ L[V`n ] . Write
x = u + v , where u ∈ gr∗(P (r, n)) and v ∈ L[V`n ] . Then, for all B ∈ L[V`n ] , it
follows that gr∗(g̃n)[x, B] = [gr∗(gn)(u) + v, B] = 0 in gr∗(P`n+1). So gr∗(gn)(u) +
v = k ·∆(`n + 1) for some constant k . Consequently, gr∗(gn)(u) = k ·∆(`n) and
v = k · B`n . Since gr∗(gn) : gr∗(P (r, n)) → gr∗(P`n) is injective (as is gr∗(g̃n)), it
follows that the centralizer of L[V`n ] in gr∗(P (r, n + 1)) is the linear span of the
element

gr∗(g̃n)−1(∆(`n + 1)) = gr∗(gn)−1(∆(`n)) + B`n .
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So it suffices to show that

gr∗(gn)−1(∆(`n)) =
n∑

k=1

Zk +
r∑

p=1

∑
1≤i<j≤n

B
(p)
i,j .

The map gn : ConfG(C∗, n) → Conf(C, `n) is the restriction of the affine trans-
formation gn : Cn → C`n , defined by the same formula, and, abusing notation,
denoted by the same symbol. The orbit configuration space ConfG(C∗, n) may be
realized as the complement of the hyperplane arrangement A in Cn with hyper-
planes Hi = {xi = 0} , 1 ≤ i ≤ n , and H

(p)
i,j = {xi = ζpxj} , 1 ≤ i < j ≤ n ,

1 ≤ p ≤ r . The generators of the Lie algebra gr∗(P (r, n)) are in one-to-one corre-
spondence with the hyperplanes of A . If BH ∈ gr∗(P (r, n)) denotes the generator
corresponding to H ∈ A , it follows from [6, Prop. 3.4] that

gr∗(gn)(BH) =
∑

gn(H)⊂Hr,s

Br,s,

where Hr,s = {xr = xs} ⊂ C`n , and Br,s ∈ gr∗(P`n) is the corresponding
generator of the descending central series Lie algebra of the pure braid group.
Let Si = {Hr,s | gn(Hi) ⊂ Hr,s} and S

(p)
i,j = {Hr,s | gn(H

(p)
i,j ) ⊂ Hr,s} . Then, one

can check that the sets Si , 1 ≤ i ≤ n , and S
(p)
i,j , 1 ≤ i < j ≤ n , 1 ≤ p ≤ r , form

a partition of the (entire) set of
(

`n

2

)
hyperplanes Hr,s in C`n . It follows that

gr∗(gn)−1(∆(`n)) = gr∗(gn)−1
( ∑

1≤r<s≤`n

Br,s

)
=

n∑
k=1

Zk +
r∑

p=1

∑
1≤i<j≤n

B
(p)
i,j ,

completing the proof.

6. Fiber-Type Arrangements

In light of Corollary 5.4, it is natural to speculate that the fundamental group of
the complement of an arbitrary fiber-type hyperplane arrangement is linear. The
purpose of this section is to show that this is indeed the case.

A hyperplane arrangement A is a finite collection of codimension one affine
subspaces of Euclidean space Cn . See Orlik and Terao [26] as a general reference
on arrangements. The complement of an arrangement A is the manifold X =
X(A) = Cn \

⋃
H∈A H . Denote the fundamental group of the complement by

G(A) = π1(X(A)).

Definition 6.1. A hyperplane arrangement A in Cn+1 is strictly linearly fibered
if there is a choice of coordinates (x, z) = (x1, . . . , xn, z) on Cn+1 so that the re-
striction, p , of the projection Cn+1 → Cn , (x, z) 7→ x , to the complement X(A)
is a fiber bundle projection, with base p(X(A)) = X(B), the complement of an
arrangement B in Cn , and fiber the complement of finitely many points in C . In
this case A is said to be strictly linearly fibered over B .

Let A be an arrangement in Cn+1 , strictly linearly fibered over B ⊂ Cn .
For each hyperplane H of A , let fH be a linear polynomial with H = ker fH .
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Then Q(A) =
∏

H∈A fH is a defining polynomial for A . From the definition,
there is a choice of coordinates for which a defining polynomial for A factors as
Q(A) = Q(B) · φ(x, z), where Q(B) = Q(B)(x) is a defining polynomial for B ,
and φ(x, z) is a product

φ(x, z) = (z − g1(x))(z − g2(x)) · · · (z − gm(x)),

with gj(x) linear. Define g : Cn → Cm by

g(x) =
(
g1(x), g2(x), . . . , gm(x)

)
, (10)

Since φ(x, z) necessarily has distinct roots for any x ∈ X(B), the restriction of
g to X(B) takes values in the configuration space Conf(C, m). The next result,
proved in [5], generalizes Theorem 5.1.

Theorem 6.1. Let B be an arrangement of m hyperplanes, and let A be
an arrangement of m + n hyperplanes which is strictly linearly fibered over B .
Then the bundle p : X(A) → X(B) is equivalent to the pullback of the bundle
of configuration spaces pn+1 : Conf(C, n + 1) → Conf(C, n) along the map g .
Consequently, the bundle p : X(A) → X(B) admits a cross-section, and has
trivial local coefficients in homology.

Passing to fundamental groups, there is an induced commutative diagram
with split rows.

1 −−−→ Fm −−−→ G(A) −−−→ G(B) −−−→ 1yid

y yg∗

1 −−−→ Fm −−−→ Pm+1 −−−→ Pm −−−→ 1

(11)

realizing G(A) as a pullback.

Lemma 6.2. Given a pullback of groups

P −−−→ Hy y
1 −−−→ K −−−→ G −−−→ Q −−−→ 1

if G and H are linear, then the pullback P is also linear.

Proof. The pullback P is a subgroup of G × H , which is linear if G and H
are.

Corollary 6.3. If A is strictly linearly fibered over B , and G(B) is linear,
then G(A) is also linear.

Definition 6.2. An arrangement A = A1 of finitely many points in C1 is fiber-
type. An arrangement A = An of hyperplanes in Cn is fiber-type if A is strictly
linearly fibered over a fiber-type arrangement An−1 in Cn−1 .

Examples include the braid arrangement with defining polynomial Q(A) =∏
i<j(yi − yj), and complement X(A) = Conf(C, n), and the full monomial ar-

rangement with defining polynomial Q(A) = x1 · · ·xn

∏
i<j(x

r
i − xr

j), and comple-

ment X(A) = ConfG(C∗, n), where G = Z/rZ .
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Theorem 6.4. The fundamental group of the complement of a fiber-type hy-
perplane arrangement is linear.

Proof. Let A = An be a fiber-type arrangement in Cn , with complement
X(An). The proof is by induction on n .

In the case n = 1, denote the cardinality of A1 by d . If d = 0 (A1 is the
empty arrangement), then X(A1) = C and G(A1) is the trivial group. If d > 0,
then X(A1) has the homotopy type of a bouquet of d circles and G(A1) = Fd is
a free group on d generators. So G(A1) is linear.

Assume the result holds for any fiber-type arrangement An in Cn , and
let An+1 be a fiber-type arrangement in Cn+1 . Then A = An+1 is strictly
linearly fibered over B = An , a fiber-type arrangement in Cn . By induction,
the fundamental group G(B) = π1(X(B)) is linear. Hence, G(A) = π1(X(A)) is
also linear by Corollary 6.3.

7. The Poison Group

One group which does not admit a faithful finite dimensional linear representation
is the so-called poison group. This group appears in the work of Formanek and
Procesi [18], where it is realized as a subgroup of Aut(Fn) for n ≥ 3, proving that
the latter admits no faithful finite dimensional linear representation. The poison
group may also be realized as a subgroup of IAn for n ≥ 5, see Pettet [27]. On the
other hand, Brendle and Hamidi-Tehrani [3] have shown that the mapping class
group of a genus g surface with one fixed point has no subgroup isomorphic to the
poison group.

The purpose of this section to show how the Lie algebraic criteria in this
article fail in a strong way for the poison group H , a group given by a split
extension

1 −−−→ F3
j−−−→ H

p−−−→ F2 −−−→ 1.

The group H admits the following presentation:

H = 〈a1, a2, a3, φ1, φ2 | φiajφ
−1
i = aj, φia3φ

−1
i = a3ai, i, j = 1, 2〉. (12)

From this presentation, it is clear that H = F3 o F2 is a semidirect product,
where F3 is generated by {a1, a2, a3} and F2 by {φ1, φ2} . Thus, H is poly-free,
and it is natural to consider how the structure of the descending central series
Lie algebra fails to inform on representations for this group. For a group G , let
α : G → H1(G) denote the abelianization map.

Proposition 7.1. There is a split exact sequence of Lie algebras

0 −−−→ Z −−−→ gr∗(H)
gr∗(p)−−−→ gr∗(F2) −−−→ 0

with the center, C(gr∗(H)), given by Z, generated the class of a3 .

The induced map

gr∗(F3)
gr∗(j)−−−→ gr∗(H)

factors through the center C(gr∗(H)) = Z, and

gr∗(H)/C(gr∗(H))
gr∗(j)−−−→ gr∗(F2)



Cohen, Cohen, and Prassidis 395

is an isomorphism of Lie algebras.

Furthermore, the natural map

p× α : H −→ F2 ×H1(H)

has non-trivial kernel, but induces a monomorphism

gr∗(p× α) : gr∗(H) −→ gr∗(F2 ×H1(H))

on the level of descending central series Lie algebras.

Consequently, the Lie algebra obtained from the descending central series of
H provides little information about embeddings as the subgroup F3 = 〈a1, a2, a3〉
has image which factors through Z on the level of Lie algebras.

Proof. It follows from the presentation (12) that, for 1 ≤ i, j ≤ 2, the relations
[φi, aj] = 1 and [φi, a3] = a3aia

−1
3 hold in H . Denote the images of the generators

φi and aj in gr∗(H) by the same symbols. Then, for 1 ≤ i ≤ 2, ai = 0 in gr1(H)
since ai is conjugate to a commutator in H . For any element X ∈ gr∗(H), it
follows that [ai, X] = 0 in gr∗(H) if 1 ≤ i ≤ 2. Also, since [φi, a3] = [a3, ai] · ai

in H , [φi, a3] = 0 in gr1(H). It follows that the map gr∗(j) : gr∗(F3) → gr∗(H)
factors through the Lie subalgebra generated by a3 :

gr∗(j) : gr∗(F [a1, a2, a3]) −−−→ L[a3] −−−→ gr∗(H)

Since [φi, a3] is zero in gr∗(H), the class of a3 centralizes gr∗(H). It follows
that the Lie algebra kernel of gr∗(p) : gr∗(H) → gr∗(F2) is exactly C(gr∗(H)), a
copy of the integers generated by a3 .

Note that H1(H) is free abelian of rank 3, generated by the classes of φ1 ,
φ2 , and a3 . It follows that the natural map p × α : H → F2 ×H1(H) induces a
monomorphism

gr∗(p× α) : gr∗(H) −→ gr∗(F2 ×H1(H))

on the level of Lie algebras, which completes the proof.
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