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1 Introduction
The Fibered Farrell–Jones Conjecture (FJC) is the main conjecture in geometric topology. It is used for the
calculation of the obstruction groups that appear in geometric rigidity and in classi�cation problems. In this
paper,we are interested in the K- and L-theory FJC and its variation, the Fibered Farrell–Jones Conjecturewith
�nite wreath products (FJCw). If we do not specify the pre�x, by FJC we will mean either of the two versions
of the conjecture. The FJCw has been proved for an extensive list of classes of groups. One notable case which
remains open is the group Aut(Fn), the automorphism group of the free group on n letters. In [14], the K-FJC
is proved for n = 2. Actually, in [14], the K-FJC is proved for Hol(F2), the holomorph of F2. We notice that
the extension to K-FJCw is a direct computation. In this paper, we extend the result to certain subgroups of
Aut(Fn) that are constructed from Hol(F2). More precisely, there is a monomorphism Hol(Fn)→ Aut(Fn+1).
We construct a sequence of groups with

H(0) = F2, H(1) = Hol(F2), H(n) = Fn+1 ⋊H(n−1), n ≥ 2.

Notice thatH(n) < Hol(Fn+1).
The main result of the paper is the following theorem.

Theorem (Main Theorem). The FJCw holds for the groupsH(n).

As an application of the Main Theorem, we calculate the lower K-theory groups ofH(n) as follows.
(i) Ki(ℤH(n)) = 0, i ≤ −1.
(ii) K̃0(ℤH(n)) ≅ NK0(ℤD4) ⊕ NK0(ℤD4).
(iii) Wh(H(n)) ≅ NK1(ℤD4) ⊕ NK1(ℤD4).

The main point of the general FJCw is that the K- and L-groups of a group (and its �nite wreath products)
can be computed from the K- and L-theory of their virtually cyclic subgroups.

The FJCw satis�es the following properties (see [9, 18]).
(i) If the FJCw holds for a group G, then it holds for all the subgroups of G.
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(ii) If the FJCw holds for a group G contained in Γ as a subgroup of �nite index, then the FJCw holds for Γ.
(iii) Let

1 → H
f
Ú→ G

g
Ú→ K → 1

be an exact sequence of groups. We assume that
(a) the FJCw holds for H and K;
(b) the FJCw holds for g−1(C), where C is any in�nite cyclic subgroup of K.
Then, the FJCw holds for G.
For the proof of theMain Theorem,we use induction and properties (ii) and (iii) of the FJCw.We show that

the groups that are the inverse images of in�nite cyclic groups are either hyperbolic groups or CAT(0)-groups
for which the FJCw holds.

In [14], it was shown that the �nite subgroups of Hol(F2) are isomorphic to one of the groups

ℤ/2ℤ, ℤ/3ℤ, ℤ/4ℤ, D2, D4.

For the calculations of the lower K-groups we need to look at two types of subgroups: �nite groups and
groups that admit an epimorphism to ℤ with �nite kernel. The third type of virtually cyclic groups (those
that admit an epimorphism to the in�nite dihedral group with �nite kernel) is not needed in the calculation
(see [7]).

The only subgroups of the second type are isomorphic toℤ/2ℤ ×ℤ. This implies that the �nite subgroups
of H(n) are isomorphic to one from the above list. Also, we show that the subgroups of the second type are
isomorphic to products of �nite groups timesℤ. In other words, semi-direct products do not appear.

Moreover, we notice that the part of K-theory of H(n) which is detected from the �nite groups vanishes.
The result follows from the calculation of the cokernel of the map from the K-theory detected from the �nite
subgroups to the total K-theory. For this, we use [1].

2 Preliminaries and notation
For a group G let Aut(G) be the group of automorphisms of G. The holomorph of G is the semi-direct product
Hol(G) = G ⋊ Aut(G) de�ned by the natural action of Aut(G) on G. Thus, we have the universal split extension

1 → G → Hol(G)→ Aut(G)→ 1

determined by G. In general, there is an embedding E : Hol(G)→ Aut(G ∗ℤ) given by the following: for
g ∈ G by

E(g)(x) =
{
{
{

x, x ∈ G,
gxg−1, x ∈ ℤ,

and for α ∈ AutG by

E(α)(x) =
{
{
{

α(x), x ∈ G,
x, x ∈ ℤ.

Thus, we can de�ne the split group extension (G ∗ℤ) ⋊ (Hol(G)) < Hol(G ∗ℤ) < Aut((G ∗ℤ) ∗ℤ).
Let Fn−1 be the free group in n − 1 generators. Inductively, we de�neH(i)(G) to be

H(0)(G) = G, H(1)(G) = Hol(G), H(n)(G) = (G ∗ Fn−1) ⋊ (H(n−1)(G)), n ≥ 2,

where H(n−1)(G) is considered as a subgroup of Aut(G ∗ Fn−1) by the embedding given by repeatedly apply-
ing E. We writeH(n) = H(n)(F2) for the group corresponding to F2. Then, there is a split exact sequence

1 → Fn+1 → H(n) → E(H(n−1))→ 1.

We are interested in the Fibered Farrell–Jones Conjecture (FJC) for the groups H(n). We will review the
general constructions. Let G be a group and let C be a class of subgroups. Then, ECG denotes the classifying
space of the class C. We are interested in the following classes of subgroups of G.
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∙ 1, the class of the trivial subgroup.
∙ F, the class of �nite subgroups.
∙ FBC, the class of �nite-by-cyclic subgroups.
∙ VC, the class of virtually cyclic subgroups.
∙ All, the class of all subgroups.

It is obvious that 1 ⊂ F ⊂ FBC ⊂ VC ⊂ All. Instead of the classical theoretic FJC, we will consider the
Isomorphism Conjecture with coe�cients in an additive category A (with involution in the L-theory case).
It is known that this implies also the Fibered Isomorphism Conjecture (see [4]).
(i) The K-FJC states that the assembly map

HGn (EVCG;KA)→ HGn (EAllG;KA) = HGn (pt;KA)

is an isomorphism.
(ii) The L-FJC states that the assembly map

HGn (EVCG;L⟨−∞⟩
A ) → HGn (EAllG;L

⟨−∞⟩
A ) = HGn (pt;L

⟨−∞⟩
A )

is an isomorphism.
If a group satis�es this conjecture, we say that the group satis�es the FJC. We say that a group G satis�es

the FJCw if the wreath product G ≀ H satis�es the FJC for each �nite group H and with coe�cients.
We need the following basic facts.

Remark 2.1. (i) Word hyperbolic groups satisfy the FJCw (see [2, 3]).
(ii) CAT(0)-groups satisfy the FJCw (see [18]).
(iii) Strongly poly-free groups or, more generally, weak strongly poly-surface groups satisfy the K-FJCw

(see [16]).

Now, we recall some results that are relevant to the K-FJCw. In [1], it was shown that for a ring R the rela-
tive map

HGn (EFG;KR−∞)→ HGn (EVCG;KR−∞)

is a split injection. Also, in [7], it was shown that the natural map

HGn (EFBCG;KR−∞)→ HGn (EVCG;KR−∞)

is an isomorphism. Taking the corresponding cokernels, we have that

HGn (EFG → EVCG;KR−∞) ≅ HGn (EFG → EFBCG;KR−∞).

Let the group G satisfy the condition MF⊂FBC of [11], which states that every in�nite group in FBC is con-
tained in a unique maximal group in FBC. Then,

⨁
V∈M

HNG(V)n (EFNG(V)→ E1WG(V);KR−∞)
≅
Ú→ HGn (EFG → EFBCG;KR−∞).

Here, M is a set of representatives of the conjugacy classes of the maximal in�nite groups in FBC and
WG(V) = NG(V)/V is the Weyl group of V (see [11, Corollary 6.1]). Remark 6.2 in [11] implies that there is a
spectral sequence

E2p,q = HWG(V)
p (E1WG(V);HVq (EFNG(V)→ {pt});KR−∞)⇒ HNG(V)p+q (EFNG(V)→ E1WG(V);KR−∞). (2.1)

This is obtained by choosing X = E1WG(V) and noticing that EFNG(V) × E1WG(V) is a space of type EFNG(V)
with the diagonal action. Also, [11, Example 6.3] implies that if V = F ⋊ℤ, then HVq (EFNG(V)→ {pt}) is the
non-connective version of Farrell’s twisted Nil-term. Thus, the spectral sequence becomes

E2p,q = HWG(V)
p (E1WG(V);NilR)⇒ HNG(V)p+q (EFNG(V)→ E1WG(V);KR−∞). (2.2)
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Remark 2.2. In [14], the following were shown.
(i) The �nite subgroups of Aut(F2) and Hol(F2) are isomorphic toℤ/2ℤ,ℤ/3ℤ,ℤ/4ℤ, D2 and D4. The max-

imal �nite subgroups areℤ/3ℤ and D4. From the construction, the same is true forH(n) for all n ≥ 1.
(ii) Although this is not explicitly shown in [14], up to isomorphism, there are various in�niteFBC subgroups

of Hol(F2) which are isomorphic to ℤ/2ℤ × ℤ. In fact, the construction of H(n) shows that the in�nite
FBC subgroups are F × ℤ, where F < H(n) is �nite. The subgroup ℤ is a subgroup in the factors that are
complementary to Hol(F2). That is because each element that belongs to Fi < H(n), 3 ≤ i ≤ n, commutes
with the subgroups of Hol(F2).
Thus, the maximal in�nite FBC subgroups are of the typesℤ/2ℤ ×ℤ,ℤ/3ℤ ×ℤ and D4 ×ℤ.

Wewill show that certainmapping tori of the free groups that are contained inH(n) are CAT(0)-groups. Notice
that, by the work of Brady [5], all mapping tori F2 ⋊ℤ contained in F2 ⋊ Aut(F2) are CAT(0). We show that
this is true for all mapping tori Fn+1 ⋊ℤ contained in Fn+1 ⋊ E(H(n−1)).

Proposition 2.3. Let Gn = Fn+1 ⋊ℤ < Fn+1 ⋊ E(H(n−1)). Then, Gn is CAT(0).

Proof. Set Gn = Fn+1 ⋊ℤ < H(n). By de�nition, theℤ-action on Fn+1 is from an element ofH(n−1). Thismeans
that in the �rst two generators, it is an automorphism of the free group they generate, and on the other gen-
erators, it is conjugation by words on the previous generators. We will use induction. For n = 1, G1 = F2 ⋊ℤ,
which is CAT(0) (see [5]).

For general n, let Fn+1 = ⟨x1, x2, . . . , xn+1⟩. Notice thatH(n−1) = Fn ⋊H(n−2). Then, every g ∈ H(n−1) can
be written as g = g1g2 with g1 ∈ Fn and g2 ∈ H(n−2). Then, the embedding H(n−1) in Aut(Fn+1) sends g to g̃
with

g̃(xi) = g2(xi), i = 1, 2, . . . , n, g̃(xn+1) = g1xn+1g−11 .

Then,

Gn = Fn+1 ⋊g̃ ℤ = ⟨t, x1, x2, . . . , xn+1 : txi t−1 = g2(xi), i = 1, 2 . . . , n, txn+1t−1 = g1xn+1g−11 ⟩

with g1 a word in xi, i = 1, 2, . . . , n. Setting α = g−11 t and solving for t, we get

Gn = ⟨α, x1, x2, . . . , xn+1 : αxiα−1 = g−11 g2(xi)g1, i = 1, 2, . . . , n⟩ ∗ℤ ⟨α, xn+1 : [α, xn+1] = 1⟩,

whereℤ = ⟨α⟩. Then, Gn = H ∗ℤ ℤ2. To characterize the group H, we set β = g1α to get

H = ⟨β, x1, x2, . . . , xn : βxiβ−1 = g2(xi), i = 1, 2, . . . , n⟩.

If n = 2, then H = F2 ⋊ℤ = G1. If n > 2, then g2 ∈ H(n−2). Thus, H = Gn−1. So, Gn = Gn−1 ∗ℤ ℤ2, which is
CAT(0) by induction and [6, Part II, Proposition 11.19].

The following result is in [18].

Corollary 2.4. The groups Gn in Proposition 2.3 satisfy the FJCw.

In [14], it was shown that the only in�nite, virtually cyclic subgroup of type (I) in Hol(F2) isℤ ×ℤ/2ℤ.

Corollary 2.5. The group Fn ⋊ (ℤ ×ℤ/2ℤ) < H(n−1) satis�es the FJCw.

Proof. In [19], it was shown that CAT(0)-groups satisfy the FJCw. This means that �nite extensions of CAT(0)-
groups satisfy the FJCw. The result follows.

Remark 2.6. In the Appendix, we will show that certain groups that appear in Corollary 2.5 are CAT(0).

We are also able to prove the following result.

Proposition 2.7. Let D be a �nite subgroup of Aut(F2) and let E(D) be its image inH(n). Then, there are in�nite
cyclic-by-�nite subgroups of the formℤ × E(D) inHol(Fn) \ Aut(Fn), n ≥ 3.Moreover, everyG = Fm ⋊ (ℤ × E(D))
inH(m−2) is CAT(0) for all m > n.
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Proof. Assume that Fn = ⟨x1, . . . , xn⟩. By the de�nition of E, for allϕ ∈ E(D)wehave thatϕ(xi) = xi for every
i > 2. Hence, in Hol(Fn), ⟨xi⟩ with i > 2 commutes with ϕ for all ϕ ∈ E(D) and so ⟨xi , E(D)⟩ is isomorphic to
ℤ × E(D) for every i > 2.

Let us now regard ℤ × E(D) as a subgroup of Hol(Fn), ℤ = ⟨xn⟩, n ≥ 3, and embed it in Aut(Fn+1). Then,
the action ofℤ = ⟨ξxn⟩ on xn+1 is conjugation by xn and is trivial on every other generator of Fn+1. Then, G has
a presentation of the form

G = ⟨x1, . . . , xn+1, ξxn , E(D) : [ξxn , E(D)] = 1, [ξxn , xj] = 1, j < n + 1,
ξxn xn+1ξ−1xn = xnxn+1x−1n , [xi , E(D)] = 1, i > 2⟩.

Set z = x−1n ξxn and get rid of xn to get the presentation

G = ⟨x1, . . . , xn−1, z, xn+1, E(D) : [ξxn , E(D)] = 1, [z, xj] = 1, j < n + 1, j ̸= n,
[ξxn , z] = 1, [xi , E(D)] = 1, i > 2, i ̸= n, [z, E(D)] = 1⟩.

Now, decompose G as an amalgamated free product G = G1 ∗ℤ×E(D) G2 with

G1 = ⟨x1, x2, ξxn , E(D)⟩ ≅ F2 ⋊ (ℤ × E(D)),

G2 = ⟨x3, . . . , xn−1, xn+1, z, ξxn , E(D)⟩ ≅ ⟨x3, . . . , xn1 , xn+1, z, ξxn⟩ × E(D).

Now, notice that the subgroup generated by ⟨x3, . . . , xn1 , xn+1, z, ξxn⟩ has a presentation

⟨x3, . . . , xn1 , xn+1, z, ξxn : [ξxn , z] = 1, [ξxn , xj] = 1 for all j < n, [z, xn+1] = 1⟩,

which makes it a right-angled Artin group and so is CAT(0) by [8]. Thus, G is CAT(0) by [6, Part II, Proposi-
tion 11.19].

Remark 2.8. In the last proposition, we showed that the group G is CAT(0) and thus it satis�es the FJCw.
But we can use Proposition 2.3 to show directly that G satis�es the FJCw. This is done as in Corollary 2.5.

Remark 2.9. Note the following two properties of the groups described in Lemma 2.7.
(i) Every such subgroup is contained in a maximal cyclic-by-�nite subgroup. This is an immediate conse-

quence of the fact that Aut(F2) decomposes as an amalgamated free product with maximal elements of
�nite order.

(ii) The normalizer of every maximal such subgroup coincides with the normalizer of its �nite subgroup
in Aut(F2).

Now, let us introduce some notation from [14]. The group Aut(F2) admits a presentation of the form

⟨p, x, y, τa , τb : x4 = p2 = (px)2 = 1, (py)2 = τb , x2 = y3τ−1b τa , p
−1τap = x−1τax = y−1τay = τb ,

p−1τbp = τa , x−1τbx = τ−1a , y−1τby = τ−1a τb⟩,

where τa , τb are the inner automorphisms of F2 corresponding to a, b, respectively. Moreover, any element
of Aut(F2) can be written uniquely in the form pru(x, y)x2sw(τa , τb), where r, s ∈ {0, 1}, w(τa , τb) is a re-
duced word in Inn(F2) and u(x, y) is a reduced word, where x, y, y−1 are the only powers of x, y appearing
(see [12, 13]).

Moreover, a presentation for GL2(ℤ) is given by

GL2(ℤ) = ⟨P, X, Y : X4 = P2 = (PX)2 = (PY)2 = 1, X2 = Y3⟩

and Aut(F2)maps homomorphically onto GL2(ℤ) by p Ü→ P, x Ü→ X, y Ü→ Y, τa , τb Ü→ 1.

Lemma 2.10. Let D4 be the subgroup of Aut(F2) generated by ⟨p, x⟩. Then, the normalizer NAut(F2)(D4) of D4
in Aut(F2) is D4 itself.
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Proof. Let pru(x, y)x2sw(τa , τb) be an element of Aut(F2) that belongs to the normalizer of D4. Then, it nec-
essarily conjugates elements of order 4 to elements of order 4. But the only elements of order 4 in Aut(F2) are
conjugates of x±1 (see [13]). Hence, we have the relation

prux2sw ⋅ x ⋅ w−1x−2su−1p−r = x±1 (2.3)

or, equivalently,
ux2sw ⋅ x ⋅ w−1x−2su−1 = prx±1x−r ,

i.e.,
ux2sw ⋅ x ⋅ w−1x−2su−1 = x±1.

Now, project this relation to GL2(ℤ). It reduces to U(X, Y)X2sXX−2sU−1 = X±1 or UXU−1 = X±1. This last re-
lation implies that U = X and, therefore, u = x, since the projection maps y to D6 \ D2 and x to D4 \ D2 and,
therefore, U and X freely generate a free group.

Thus, (2.3) reduces to w(τa , τb)xw−1(τa , τb) = x±1, which implies that w = 1. Hence, the only words
of Aut(F2) that normalize x are of the form prxs, hence NAut(F2)(D4) = D4.

Corollary 2.11. The normalizer NH(n) (D4 ×ℤ) = D4 ×ℤ.

Proof. This follows from Lemma 2.10 and Remark 2.9.

3 The lower K-theory forH(n)
The algebraic calculations of the previous section allow us to prove the theoretic Isomorphism Conjecture for
the groupsH(n) using induction.

Theorem 3.1. The groupsH(n) satisfy the FJCw.

Proof. We will use induction on n. For n = 0, H(0) = F2, for which the FJCw holds (see [2, 3]). For n ≥ 1 we
have an exact sequence

1 → Fn+1 → H(n)
p
Ú→ H(n−1) → 1.

We assume that the FJCw holds forH(n−1). Given that the FCJw holds for Fn+1, it su�ces to show that the FJCw
holds for p−1(C), where C is an in�nite cyclic subgroup of H(n−1). But in that case, Proposition 2.3 implies
that p−1(C) is CAT(0). Thus, it satis�es the FJCw.

Corollary 3.2. The FJCw holds for Aut(F2) and Hol(F2).

Proof. Since Hol(F2) = H(1), the FJCw holds for Hol(F2). Also, Aut(F2) < Hol(F2) and thus the FJCw holds for
Aut(F2).

Using Theorem 3.1, we calculate the lower K-theory ofH(n).

Theorem 3.3. The groups Kq(ℤH(n)) = 0 for q ≤ −1. For q = 0, 1 the reduced K-groups are

K̃q(ℤH(n)) =
{
{
{

0, n = 0, 1
NKq(ℤD4) ⊕ NKq(ℤD4), n ≥ 2

Proof. For n = 0,H(0) = F2,which is ahyperbolic group, and the result iswell known. For n = 1,H(1) =Hol(F2),
and the result was proved in [14]. So wemay assume that n ≥ 2. Since the groupsH(n) satisfy the K-FJCw, we
have that

Kq(ℤH(n)) ≅ H
H(n)
q (EFBCH(n);Kℤ−∞)

≅ HH(n)
q (EFH(n);Kℤ−∞) ⊕ ⨁

V∈M
H
NH(n)V
q (EFNH(n)V → E1WH(n)V;Kℤ−∞),

whereM is a set of representatives of the conjugacy classes of maximal in�nite groups in FBC.
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The calculations of [14] show that HH(n)
n (EFH(n);Kℤ−∞) = 0 for n ≤ 1. For each of the summands, there

is a spectral sequence

E2p,q = H
WH(n)V
p (E1WH(n)V;HVq (EFV → pt;Kℤ−∞))⇒ H

NH(n)V
p+q (EFNH(n)V → E1WH(n)V;Kℤ−∞).

In Remark 2.2, it was shown that themaximal in�nite groups inH(n) are of the types (ℤ/2ℤ) ×ℤ, (ℤ/3ℤ) ×ℤ,
D4 ×ℤ, and there is only one conjugacy class for each of the groups (ℤ/3ℤ) ×ℤ and D4 ×ℤ.
(i) If V is (ℤ/2ℤ) ×ℤ or (ℤ/3ℤ) ×ℤ, then HVq (EFV → pt;Kℤ) = 0, q ≤ 1 because the Nil-groups of the two

cyclic groups vanish. Thus, for these groups (cf. the spectral sequence (2.2)),

H
NH(n)V
n (EFNH(n)V → E1WH(n)V;Kℤ−∞) = 0, i ≤ 1.

(ii) For V = D4 ×ℤ, we have that NH(n)V = V (cf. Corollary 2.11) and the spectral sequence (cf. the spectral
sequence (2.1)) reduces for q ≤ 1 to the isomorphism

H
NH(n)V
q (EFNH(n)V → E1WH(n)V;Kℤ−∞) ≅ HVq (EFV → pt;Kℤ−∞) ≅ NKq(ℤD4) ⊕ NKq(ℤD4).

It is known that NKq(ℤD4) = 0 for q ≤ −1 and that it is in�nitely generated for q = 0, 1 (see [20]).
Combining the above information, we have the following for n ≥ 2.
(i) Ki(ℤH(n)) = 0, i ≤ −1.
(ii) K̃0(ℤH(n)) ≅ NK0(ℤD4) ⊕ NK0(ℤD4).
(iii) Wh(H(n)) ≅ NK1(ℤD4) ⊕ NK1(ℤD4).

Remark 3.4. In [20], it was shown that NK0(ℤD4) is isomorphic to the direct sum of an in�nite free ℤ2-
module with a countably in�nite free ℤ4-module. Also, NK1(ℤD4) is a countably in�nite torsion group of
exponent 2 or 4.

4 Concluding remarks
In general, if the group G is linear (i.e., it admits a faithful �nite-dimensional real or complex representation),
then the K-FJCw can be proved for G. The problem is that Aut(Fn) is not linear for n ≥ 3. The group that was
used to show that Aut(Fn) is not linear is the Formanek–Procesi group FP (see [10]). This group is given by a
split extension

1 → F3
f
Ú→ FP

p
Ú→ F2 → 1

and has the presentation

FP = ⟨α1, α2, α3, ϕ1, ϕ2 : ϕiαjϕ−1
i = αj , ϕiα3ϕ−1

i = α3αi , i, j = 1, 2⟩.

In [10], it was shown that FP is not linear and FP < Aut(F3). On the other hand, it is obvious that the group G
is not word hyperbolic (since it contains a subgroup isomorphic to ℤ ×ℤ) and it is not known if it is CAT(0).
The point here is that FP has “enough” CAT(0)-subgroups so that it satis�es the FJCw.

Proposition 4.1. The group FP satis�es the FJCw.

Proof. Let V be an in�nite cyclic subgroup of F2 that is generated by a word on ϕ1 and ϕ2 and their inverses.
Then, the action of the generator on F3 �xes the �rst two generators and sends α3 to the element α3c, where c
is a word in α1, α2 and their inverses. Then, F3 ⋊ V is a CAT(0)-group from [17, Theorem4.4]. Thus, it satis�es
the FJCw. Therefore, FP satis�es the FJCw.

A Appendix
Wewill show the result stated inRemark 2.6, that certain groups of type Fn ⋊ (ℤ ×ℤ/2ℤ) < H(n−1) are CAT(0).
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Our investigation, similar to the one in [14, Proposition 3.2], shows that subgroups of Aut(F2) isomorphic
to F2 ⋊ (ℤ ×ℤ/2ℤ) occur when the action ofℤ/2ℤ on F2 is of the form

t(x1) = x−11 , t(x2) = x2 or t(x1) = x1, t(x2) = x−12 .

We show that in all the above cases these subgroups are CAT(0).

Lemma A.1. Let ℤ/2ℤ ≅ ⟨t1⟩ < Aut(F2) be such that t1(x1) = x−11 and t1(x2) = x2, as above. Let ℤ ≅ ⟨t2⟩ <
Hol(F2) so thatℤ ×ℤ/2ℤ < Hol(F2). Then, we have the following cases.
(i) If t2 ∉ Aut(F2), then t2 = xk2 ∈ F2, k ∈ ℤ, k ̸= 0.
(ii) If t2 ∈ Aut(F2), then t2(x1) = xk2x

±1
1 x

−k
2 , t2(x2) = x±12 , k ̸= 0 (four cases).

Proof. First, we assume that t2 ∉ Aut(F2). Because t1 and t2 commute, t1 acts trivially on t2. Let w(x1, x2) be
theword in F2 representing t2. Then,w(x−11 , x2) = w(x1, x2). Thismeans that x1 does not appear inw(x1, x2).
Thus, w(x1, x2) = xk2.

Now, let t2 ∈ Aut(F2). Then, t2(x1) = w1(x1, x2) and t2(x2) = w2(x1, x2). Since t1t2 = t2t1, we have that

w1(x−11 , x2) = w1(x1, x2)−1, w2(x−11 , x2) = w2(x1, x2).

As before, the second relation implies that the word w2 = xk2, k ∈ ℤ. Looking at the �rst relation, we get that
w1 = cxℓ1c−1, ℓ ∈ ℤ. But w1 and w2 must be a generating set for F2. This means that k, ℓ ∈ {±1}. Also,

(t1∘t2)(x1) = t1(c(x1, x2)x±11 c(x1, x2)
−1) = c(x−11 , x2)x

∓1
1 c(x

−1
1 , x2)

−1,

(t2∘t1)(x1) = t2(x−11 ) = c(x1, x2)x
∓1
1 c(x1, x2)

−1.

Since t1 ∘ t2 = t2 ∘ t1, we have c(x1, x2) = c(x−11 , x2) and thus c = xk2, k ∈ ℤ.

Lemma A.2. Let G = F2 ⋊ (ℤ ×ℤ/2ℤ), where the generator t1 ofℤ/2ℤ acts as

t1(x1) = x−11 , t1(x2) = x2,

and the generator t2 ofℤ acts as
t2(x1) = xk2x

±1
1 x

−k
2 , t2(x2) = x±12 .

Then, G is a CAT(0)-group.

Proof. The group G has the presentation

⟨t1, t2, x1, x2 : t1x1t−11 = x−11 , t1x2t
−1
1 = x2, t21 = [t1, t2] = 1, t2x1t−12 = xk2x

±1
1 x

−k
2 , t2x2t

−1
2 = x±12 ⟩.

We set ξ = x−k2 t2. Then, the presentation becomes

⟨t1, x1, x2, ξ : t1x1t−11 = x−11 , t1x2t
−1
1 = x2, t21 = [t1, ξ] = 1, ξx1ξ−1 = x±11 , ξx2ξ

−1 = x±12 ⟩.

Now, we consider four cases.

Case 1. In this case,

G = ⟨t1, x1, x2, ξ : t1x1t−11 = x−11 , t1x2t
−1
1 = x2, t21 = [t1, ξ] = 1, ξx1ξ−1 = x1, ξx2ξ−1 = x2⟩.

Now, let L1 = ⟨x2, t1, ξ : t21 = [t1, x2] = [t1, ξ] = [x2, ξ] = 1⟩ < G, which is isomorphic to ℤ2 ×ℤ/2ℤ and,
thus, it is CAT(0). Also, let L2 = ⟨x1, t1, ξ : t1x1t−11 = x−11 , ξx1ξ−1 = x1, t21 = [t1, ξ] = 1⟩. Then,

L2 = ⟨ξ⟩ × ⟨x1, t1 : t1x1t−11 = x−11 ⟩ ≅ ℤ × D∞.

The in�nite dihedral group is a CAT(0)-group because it is a Coxeter group (see [15]). Thus, L2 is a CAT(0)-
group, as a direct product of CAT(0)-groups. Also, L = ⟨t1, ξ : t21 = [t1, ξ] = 1⟩ ≅ ℤ ×ℤ/2ℤ. But then, G =
L1 ∗L L2 is CAT(0) (see [6, Part II, Corollary 11.19]).
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Case 2. We assume that

G = ⟨t1, x1, x2, ξ : t1x1t−11 = x−11 , t1x2t
−1
1 = x2, t21 = [t1, ξ] = 1, ξx1ξ−1 = x−11 , ξx2ξ

−1 = x2⟩.

By setting ξ2 = t1ξ and rewriting the presentation, we are back in Case 1.

Case 3. We assume that

G = ⟨t1, x1, x2, ξ : t1x1t−11 = x−11 , t1x2t
−1
1 = x2, t21 = [t1, ξ] = 1, ξx1ξ−1 = x1, ξx2ξ−1 = x−12 ⟩.

We repeat the same method as before. Let

L1 = ⟨x2, t1, ξ : t21 = [t1, x2] = [t1, ξ] = 1, ξx2ξ−1 = x−12 ⟩ ≅ ⟨t1 : t
2
1 = 1⟩ × ⟨x2, ξ : ξx2ξ−1 = x−12 ⟩.

Therefore, L1 ≅ ℤ/2ℤ × (ℤ ⋊ℤ). Now, the second group can be written as an HNN-extension ℤ∗r, where r
is the non-trivial automorphism of ℤ. Then, ℤ ⋊ℤ is a CAT(0)-group (see [6, Part II, Corollary 11.22]) and,
thus, L1 is CAT(0). Now, L and L2 are as in Case 1 and, thus, G = L1 ∗L L2 is CAT(0).

Case 4. We assume that

G = ⟨t1, x1, x2, ξ : t1x1t−11 = x−11 , t1x2t
−1
1 = x2, t21 = [t1, ξ] = 1, ξx1ξ−1 = x−11 , ξx2ξ

−1 = x−12 ⟩.

Again, set ξ2 = t1ξ and rewrite the presentation to arrive at Case 3.

Proposition A.3. The group Fn ⋊ (ℤ ×ℤ/2ℤ) < H(n−1) is a CAT(0)-group.

Proof. Let t1 be the generator ofℤ/2ℤ and let t2 be the generator ofℤ. We will consider two cases.

Case 1. Let t2 ∈ Hol(F2) and t2 ∉ Aut(F2). From Case 1 of LemmaA.1, t2 is an element xk2, k ∈ ℤ, k ̸= 0. Then,
G = Fn ⋊ (ℤ ×ℤ/2ℤ) has the presentation

⟨x1, x2, . . . , xn , t1, t2 : t21 = 1, t1x1t−11 = x−11 , t1xi t
−1
1 = xi , i = 2, . . . , n,

t2x1t−12 = x1, t2x2t−12 = x2, t2xi t−12 = xk2xix
−k
2 , i = 3, . . . , n, [t1, t2] = 1⟩.

We change the generators by setting ξ = x−k2 t2. First, notice that [t1, ξ] = 1 because t1 commutes with t2 and
x2. Then, the presentation becomes

⟨x1, x2, . . . , xn , t1, ξ : t21 = 1, t1x1t−11 = x−11 , t1xi t
−1
1 = xi , i = 2, . . . , xn ,

ξx1ξ−1 = x−k2 x1x
k
2, ξxiξ

−1 = xi , i = 2, . . . , xn , [t1, ξ] = 1⟩.

Set K1 = ⟨t1, ξ, x3, . . . , xn : t21 = [t1, ξ] = [t1, xi] = [ξ, xi]1, i = 3, . . . , n⟩ < Fn ⋊ (ℤ ×ℤ/2ℤ). Then, K1 is iso-
morphic to ℤn−1 ×ℤ/2ℤ, which is a CAT(0)-group. Let K = ℤ ×ℤ/2ℤ = ⟨t1, t2⟩, which is a virtually in�nite
cyclic group. Also, set K2 < G with presentation

⟨x1, x2, t1, ξ : t21 = 1, t1x1t−11 = x−11 , t1x2t
−1
1 = x2, ξx1ξ−1 = x−k2 x1x

k
2, ξx2ξ

−1 = x2, [t1, ξ] = 1⟩.

Notice that G = K1 ∗K K2. In order to show that G is CAT(0), it su�ces to show that K2 is a CAT(0) group.
To that end, we change generators in K2 by setting ζ = xk2ξ . Then, the presentation of K2 becomes

⟨x1, x2, t1, ζ : t21 = 1, t1x1t−11 = x−11 , t1x2t
−1
1 = x2, ζx1ζ−1 = x1, ζx2ζ−1 = x2, [t1, ζ] = 1⟩.

For Case 1 of Lemma A.2, K2 is CAT(0) and we are done.

Case 2. We assume that t2 ∈ Aut(F2). Using Case 2 of Lemma A.2, the group G has the presentation

⟨x1, x2, . . . , xn , t1, t2 : t21 = 1, t1x1t−11 = x−11 , t1xi t
−1
1 = xi , i = 2, . . . , xn ,

t2x1t−12 = xk2x
±1
1 x

−k
2 , t2x2t

−1
2 = x±12 , t2xi t

−1
2 = xi , i = 3, . . . , n, [t1, t2] = 1⟩.
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Set
K1 = ⟨t1, t2, x3, . . . , xn : t21 = [t1, t2] = [t1, xi] = [t2, xi] = 1, i = 3, . . . , n⟩ ≅ ℤn−1 ×ℤ/2ℤ

and K = ⟨t1, t2⟩ ≅ ℤ ×ℤ/2ℤ, which are two subgroups of G. Finally, set K2 to be

⟨t1, t2, x1, x2 : t21 = 1, t1x1t−11 = x−11 , t1x2t
−1
1 = x2, t2x1t−12 = xk2x

±1
1 x

−k
2 , t2x2t

−1
2 = x±12 , [t1, t2] = 1⟩.

It is obvious that G = K1 ∗K K2. To show that G is CAT(0), it su�ces to show that K2 is a CAT(0) group.
Set ζ = x−k2 t2 and the presentation becomes

⟨t1, x1, x2, ζ : t21 = 1, t1x1t−11 = x−11 , t1x2t
−1
1 = x2, ζx1ζ−1 = x±11 , ζx2ζ

−1 = x±12 , [t1, ζ] = 1⟩,

which is CAT(0) from Lemma A.2.

The reader should notice that there are more possibilities for the ℤ/2ℤ action on the F2 ⋊ℤ subgroups of
Aut(F2).
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