
Journal of Pure and Applied Algebra 78 (1992) 85~100 

North-Holland 

Groups with infinite virtual 
cohomological dimension which 
act freely on R”” X Sri--- 

Stratos Prassidis 
Department of Mathematics, Vanderbilt Universty, Nashville, TN 37240, USA 

Communicated by C.A. Weibel 

Received I2 June 1990 

Revised 20 February 1991 

Abstract 

Prassidis. S., Groups with infinite virtual cohomological dimension which act freely on 

R”’ X S” ‘. Journal of Pure and Applied Algebra 78 (1992) 85-100. 

In this paper free and proper discontinuous actions on Iw”’ x S” ’ are constructed of groups 

with infinite virtual cohomological dimension. 

Introduction 

In this paper there is an extension of the results given in [4], where free actions 

of groups with finite virtual cohomological dimension on R”’ x S”-’ have been 

studied. The purpose of this paper is to find groups G, with infinite virtual 

cohomological dimension, which act freely and properly discontinuously on 

R”’ X S”-’ for some m and II. As it is stated in [17, p. 5181, any group which acts 

freely and properly discontinuously on R” x S”- must satisfy periodicity in 

ordinary cohomology in high dimensions. The groups which appear in [14, 151 

satisfy this condition and many of them have infinite virtual cohomological 

dimension. So, those groups are candidates for such actions. In [4], it was proven 

that a countable group G with vcd(G) < 35 acts freely and properly discontinuous- 

ly on R”’ X S”-’ if and only if it has periodic Farrell cohomology [4, Theorem A]. 

(The Farrell cohomology is an extension of the Tate cohomology to infinite 

groups with finite virtual cohomological dimension [S].) In this paper, we study 

countable groups G with vcd(G) = x and for which the Farrell cohomology is 

defined [7, 81. It turns out that if such a group acts freely and properly discontinu- 

ously on R”’ X S”- ‘, then it has periodic Farrell cohomology. 

Notice that if a group G, with finite generalized cohomological dimension, for 
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which Farrell cohomology is defined [7,8], acts freely and properly discontinuous- 

ly on R”’ X S”-I, then it will have periodic cohomology after a finite number of 

steps (171. Then, Proposition 3 asserts that G has periodic Farrell cohomology. 

The main result of this paper (Theorem 10) is that there are groups with infinite 

cohomological dimension for which Farrell cohomology is defined and it is 

periodic which act freely and properly discontinuously on R”’ x S”-‘. 

The method of proof of the above result is based on the methods developed in 

[4]. We use groups G which act on a finite-dimensional acyclic complex X with 

finite or cohomologically nice isotropy groups. This acyclic complex replaces the 

complex %G constructed in [12] when vcd(G) < 30. Then, as in [4], we construct a 

finite-dimensional free G-complex E and a Hurewicz fibration rr : E-+ X with 

fibers the polarized complexes constructed in [16] for finite groups and in [4] for 

infinite groups with finite virtual cohomological dimension. The crucial point of 

the construction is that we choose groups G for which X can be chosen to be a 

tree and this has the advantage of avoiding the obstruction theory used in [4] for 

extending the fibration over higher skeleta. Once E is constructed, standard 

methods produce a free and properly discontinuous action of G on R”’ X S”-‘. 

Let G be a countable group of Ikenaga’s class C, (see [7] and Section 1 for the 

definition). Then G acts on a finite-dimensional acyclic simplicial complex and the 

isotropy groups of simplices have ‘better’ cohomological properties than G. This 

suggests an inductive process for constructing free and properly discontinuous 

actions of such groups on R”’ x Y ‘. The following problem generalizes the 

question asked by Wall in [18] for groups with finite virtual cohomological 

dimension and answered in [4]. 

Problem. A countable group of class C, acts freely and properly discontinuously 

on R”’ x ,Y ‘, for some m and II, if and only if it has periodic (extended) Farrell 

cohomology. 

One more interesting question is about group actions on R”’ X S”- ’ with 

compact quotient. In [9], there are given classes of groups which act freely, 

properly discontinuously, and with compact orbit space. In [6], there are con- 

structed such actions of groups which contain dihedral subgroups, disproving a 

conjecture by F.T. Farrell. 

For the inverse of this problem, there is a question asked by Wall in [17]: 

Question. Let G be a group which acts freely, properly discontinuously, and with 

compact quotient on 58”’ X S”- for some m and ~1. Does G have finite virtual 

cohomological dimension? 

1. Farrell cohomology 

In [7, 81, Ikenaga defines Farrell cohomology for groups with infinite virtual 

cohomological dimension. More precisely, for a group G, he defines the general- 
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ized cohomological dimension of G: 

cd(G) = sup{k 1 Ext:;(M, F) # 0, M is Z-free, F is ZG-free} . 

All the modules will be assumed to be left modules. 

In [7], it is proven that: 

(i) If G is finite cd(G) = 0. 

(ii) cd(G) 5 cd(G) with equality if cd(G) < x. 

(iii) If H < G, then cd(H) 5 cd(G) with equality if H has finite index in G. 

In particular, if vcd( G) < =, then cd(G) = vcd(G). 

The Farrell cohomology for groups G, with vcd(G) < x, is defined using 

complete resolutions [5,2]. A complete resolution of a LG-module M is an 

acyclic chain complex, { FX}kEL, consisting of projective Z G-modules which 

agrees with a projective resolution in sufficiently high positive dimensions. 

In [7], it is proven that if a group G has finite generalized cohomological 

dimension, and if the trivial LG-module Z admits a complete resolution, then the 

Farrell cohomology of G is well defined. His definition extends the definition of 

the Farrell cohomology for groups with finite virtual cohomological dimension 

(see [2, Chapter Xl). Most of the properties of the ordinary Farrell cohomology 

are also valid in this extended version. For example the Farrell cohomology 

functors satisfies Shapiro’s Lemma and they are effaceable and coeffaceable. 

Lemma 1. Let G be a group with cd(G) Cm. Let F, be a complete resolution 
which agrees with a projective resolution P, in sufficiently high dimensions. Then 
there is a chain 
two such maps 
dimensions. 

map i : F, + P,: which is the identity in high dimensions and any 
are chain homotopic through a homotopy which is zero in high 

Proof. In [7, p. 

maps are chain 

4221, the chain map i is constructed. The proof that any two such 

homotopic follows the method of the proof of Proposition 13 in 

[7]: Let i,i’ : F, -+ P, be two chain maps which are the identity in high dimen- 

sions. We define a chain homotopy s = 0 between i and i’ in high dimensions. We 

extend this homotopy on all dimensions: Assume that s,,_, : F,,_, + P,, has been 

defined for n 2 k. Let d,d’ denote the differentials in F,,P,, respectively. First, 

define a map s’ : ker d,-,+ Pkp, as follows: Let x E ker dk_z = Im d,_, , and 

there is y E Fk_,so that x = dk_,(y). Set s’(x) = i(y) - i’(y) - disk_,(y). This is 

a well-defined map: Let y’EFk_, with x=d,-,(y)=d,_,(y’), then y-y’E 

ker d,_, = Im d,, and there is z E Fk so that y - y’ = dk(z). Then: 

i(y)-i’(y)-d;s,_,(y)-(i(y’)-i’(y’)-dLs,-,(y’)) 

=i(y-y’)-i’(y-y’)-dLs,-,(y-y’) 

= idk(z) - i’dk(z) - dLs,_,d,(z) 

= d;i(z) - d;i’(z) - dLs,-,d,(z) 

= d;(i(z) - i’(z) - sAm,dk(z)). 



But by the inductive assumption. i - i’ = sI, _ ,d, + d;_ ,sA. Therefore, 

di(i(Z) - i’(z) - s,_,d,(z)) = -d;d;_,s,(z) = 0 

and the map s is well defined. Using the Corollary in [7, p. 4251, we can extend 

the map s’ to a map s_:: F,_?--+ P, _,. This way we can extend s to a chain 

homotopy between i and i’. 0 

Remark. If cdG 5 II and F, is a complete resolution of Z, using Proposition 14 of 

[7], we can choose the chain map above to be the identity in dimensions higher 

than n - 1. 

Corollary 2. Let G be u group with cd(G) 5 n and ussume that Z admits a 

complete resolution over UG. Then for each UG-module M there is a natural map 

L : H”(G, M)4?(G, M) w K h’ h LS epimorphism for * = n and isomorphism for 

+ > n. 

Proof. Immediate from the above remark. 0 

Let G be a group with cd(G) < =. and assume that Z admits a complete 

resolution. In [7], the definition of cup products in the Farrell cohomology is 

given which is compatible with the cup products in the ordinary cohomology via 

the map L. 

In [7], a special class of groups with finite generalized cohomological dimension 

is defined. It is the class C,. They are groups which act on finite-dimensional 

acyclic simplicial complexes in such a way that the generalized cohomological 

dimensions of the isotropy groups of the cells are bounded. The action of G on 

the complexes will be assumed always simplicial, i.e. G acts on a simplicial 

complex X by permuting the simplices. Let C,, be the class of finite groups and a 

group G belongs to the class C,, if there is an acyclic G-complex X, such that: 

(i) The isotropy group, G(,, of the cell c is of class C,, , 

(ii) sup{dim v + cd(G(,) ( cr is a cell of X} <x. 

An acyclic G-simplicial complex X which satisfies (i) and (ii) above is called 

admissible. 

Define the class C, = U ,rEPi C,,. 

The groups in the class C, have finite generalized cohomological dimension [7, 

Theorem l] and the trivial ZG-module Z admits a complete resolution [7, 

Theorem 21. For further properties of the groups in the class C,, see [7, Chapter 

VI. 
Let G be a group in the class C,. Then there is an admissible G-complex X. We 

may assume that the action is order preserving and the isotropy group of a cell 

fixes the cell pointwise [7, p. 4461. Then there is a spectral sequence 

E :‘” = <,;,, i?‘(G,,, M) 3 tj”+“(G, M)(S) , 
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where Zi;, is a set of representatives for the p cells of Xmod G, and M is a 

BG-module. This spectral sequence generalizes the spectral sequence (4.1) of 

Chapter X in [2]. Let X,, be the set of p cells of X. If v is a cell of X and g E G, 

let c(g-‘):” : Z?:‘(G,,, M)+ fij”‘(G,,,, M) be the conjugation induced isomorph- 

ism. Write c(g-I)“(U) = gu. We summarize the properties of this spectral se- 

quence (the proofs are similar to the proofs given in the case vcd(G) < x in [2, 

Chapter X, Section 41). 

(i) Ef” can be identified with the subgroup of n,,tX k”(G,,, M) consisting of 

those families (ucr)rrEX such that gu,, = uxcT for all g E G, (T E X,, The differential 

d/r” is the restriction t’o this subgroup of the map 

d : ,,I,! k”(G,,, M)-t n I;I”(G,,, M) 

P Urts,, i , 

defined by combining restriction and face maps as follows: 

Let r=(u,,,~,,...J$+, )EX,,+, with u,,<u,<...<u,,+,, let T,= 

(u,,. . . f , fi,> ” f > up+, ), i = 0, 1, . , p + 1, and let p, : h”(G7,, M)+ i?‘(GT, M) 

be the restriction map. Then d is given: 

(ii) In particular, Ei” = ker dy” can be identified with the subgroup of 

n,,,, k”(G,), M) consisting of those families (u,,),,~~(, satisfying the two condi- 

tions 

(1) gu, = UfiL’ for all gEG, uEX,,, 

(2) if e is a l-cell of X with vertices u,,,u,, then u,,, and u,, restrict to the same 

element of fi”(G,., M). 

Notice that the cup product on the cellular cochains of X with values in a 

commutative ring R with identity and a diagonal of a complete resolution F:!: [7, 

pp. 438-4401 induce a multiplicative structure on the spectral sequence above 

with coefficients in the ring R. We summarize the multiplicative properties of the 

spectral sequence (the proofs are the same as in [2, Chapter X. Proposition 4.5, 

Proposition 4.61): 

(iii) The differential d,. is a derivation with respect to the product on E,, i.e. 

d,(w) = d,.(u)u + (-l)“‘““ud,(u) 

(iv) The product on E,, , = H(E,) is obtained from the product on E, by 

passage to homology. 

(v) The product on E, is given by the composite of the cup product in the 

Farrell cohomology and the cup product in the cochains of X. More precisely, the 

product on E, is given by 
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fi’(G, C”(X)) @ Ij”‘(G, C”‘(X))+ fi"+"'(G, C”(X) 63 C”‘(X)) 

+ &‘+“‘(G, C”+“‘(X)) . 

(vi) The product on E, is associative for r 2 1 and commutative for r 2 2. 

(vii) The product on E, is compatible with the usual product on I?*(G, R) 

under the identification on E, with Gr fi*(G, R). 

(viii) The kernel of the restriction map 

is nilpotent. Notice that res is just the edge homomorphism in the spectral 

sequence. This property is a weak version of Quillen’s [lo] theorem for groups G 

with vcd(G) < a, which states that the restriction map 

res : Z?‘(G, Z) + lim Z?j4(H, Z) , 

where H ranges over the finite subgroups of G (or even better over the 

elementary abelian subgroups of G), is an F-isomorphism, i.e. the kernel and 

cokernel of the map consist of nilpotent elements. 

2. Groups with periodic Farrell cohomology 

The formulation of the Farrell cohomology suggests that we can extend the 

definition of groups with periodic Farrell cohomology from the class of groups 

with finite virtual cohomological dimension to the class of groups with finite 

generalized cohomological dimension. 

Definition. Let G be a group with cd(G) < x, and assume that H admits a 

complete resolution. Then G has periodic Farrell cohomology if there is a unit u, 

of degree 4 # 0, in the cohomology ring @(G, Z). In this case the map 

U u : fij’(G, n/r)* fi’+‘(G, M) 

is an isomorphism for each i E Z, and for each ZG-module M. 

Talelli defines cohomological periodicity for infinite groups [ 14, 151. She defines 

a group G to have period q after k-steps if a resolution which is periodic after 

k-steps, i.e. there is an exact sequence 

(*) O~R,+,--,P~+~,~,~...~P,~Pl_,...,P,,~a~O, 

where P,, 0 5 i 5 k + q - 1, are projective ZG-modules and ~3~ can be factored as 
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P,sRR,%PP,_,, where LY is an epimorphism, (Y’ is a monomorphism and R, = 
R k +4. It follows that a group has periodic cohomology after k-steps if and only if 

the functors H”(G, -) and H’+‘(G, -) are naturally isomorphic for all II 2 k + 1. 

In the following proposition we compare the two definitions: 

Proposition 3. Let G be a group with cd(G) <a. Then the following are equiv- 
alent: 

(i) The trivial ZG-module Z admits a complete resolution, cd(G) 5 k, and G 
has periodic Farrell cohomology of period q. 

(ii) G has period q after k-steps. 

Proof. Assume that (i) holds. Then there is an element u E fi’l(G, Z), q # 0, such 

that 

u u : Ej’(G, M)+ &+‘(G, M) 

is an isomorphism for each i E Z’, and for each ZG-module M. This isomorphism 

is natural with respect to change of modules [7, p. 4411. By Corollary 2, there is a 

natural isomorphism between the factors H”(G, -) and H”+“(G, -) for n 2 k + 1. 

There are two possibilities: 

(1) Assume that (i) holds and cd(G) = 0. Then, by Proposition 1.9 in [14], G is 

a finite group with periodic Tate cohomology of period q. 
(2) Assume that (i) holds and cd(G) > 0. Then, by Proposition 1.8 in [14], G 

has periodic cohomology after k-steps. 

Assume, now, that (ii) holds. Then the sequence (*) yields an exact sequence 

(**) O~R~P,+y_,~...--$Pl,jR~O. 

By splicing together from both sides the sequence (**), we get a complete 

resolution of Z. It is part of a projective resolution in dimensions higher than 

k - 1. Then, by Proposition 15 in [7], cd(G) 5 k. Therefore, the Farrell cohomol- 

ogy of G is defined. It remains to be proven that G has periodic Farrell 

cohomology. Notice that the exact sequence (*) yields an exact sequence: 

(***) O+R+P,_,...+P,,+Z+O 

By breaking the above sequence in short exact sequences and using the fact that 

&‘(G, P) = 0 for all i E Z and all projective ZG-modules P, we see that the 

iterated coboundary map 

6 : Ij’(G, Z)* Ij’+k(G, R) 

is an isomorphism for all i E Z. The same argument applied to (**) shows that the 

iterated coboundary map 

6’ : fi’(G, R)+ &+Y(G, R) , 



is an isomorphism for all i E Z. Combining 6 and 6 ‘, we get an isomorphism 

Denote this isomorphism by 3. Since A is a composition of coboundary maps 

and their inverses, Property 2’ in [7, p. 4421 states that 3 satisfies 

A(a u h) = A(u) U 6 

If we set a = I E fi”(G, Z), then we get that 

A(b) = A( 1 U b) = A( 1) U b . 

for all b E A’!‘((;, Z)~ So the map A is given as a cup product with the element 

A(1) = u E kY(G, Z). In particular, the map 

A : fi- “(G, Z)-+ fi”(G, a) 

is an isomorphism. So there is an element u E &“(G, Z’) such that A(u) = 

l+ u U u = 1. Therefore, cl is a unit, and G has periodic Farrell cohomology. q 

Remarks. (i) If G E C,, then cd(G) 5 k and G has periodic Farrell cohomology 

if and only if G has periodic cohomology after k-steps. 

(ii) If G is a group with cd(G) = 0, Z admits a complete resolution, and G has 

periodic Farrell cohomology, then G is a finite group. 

Let C,,(l) be the subclass of C,, consisting of those groups for which the 

admissible G-complex can be chosen to be a tree. As before, C,(l) = 

U ,,tl;w C,,(l). Let G belong to C,(l) and let X be a tree which is an admissible 

G-complex. We can assume that G acts on X without inversions. If Y = X/G, 

then G is isomorphic to the fundamental group of a graph of groups (G, Y) [13, 

Chapter I, Section 51. Notice also that the set of vertices (edges) of X mod G is 

equal to the set of vertices (edges) of the graph Y. For (T a cell in Y, G, denotes 

the isotropy group of a lifting of the cell u in X. 

Lemma 4. Let G be a group. Then the following ure equivalent: 

(1) GE C(1). 
(2) G is the fundamental group of a graph of groups (G, Y), where sup{cd(G,) 1 

u u vertex of Y}<=. 

Proof. Assume that G E C,( 1). Since 
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cd(G) 5 rnax{sup{cd(G,) 1 u a vertex of Y} 

+ sup{cd(G,) + 1 1 e an edge of Y}} < x, 

it follows that sup{cd(G,) 1 u a vertex of Y} <x. 

Conversely, let G be the fundamental group of a graph of groups (G, Y) and 

sup{cd(G,) 1 u a vertex of Y} < ~0. Choose a maximal tree T and an orientation A 

of Y. Then G acts on a tree X which is the universal covering of (G, Y) relative to 

T and A [13, Chapter I, Section 51. Since sup{cd(G,) 1 u a vertex of Y} <a, 

cd(G) 5 max{sup{cd(G,) / u a vertex of Y} 

+ sup{cd(G,) + 1 ) eanedgeof Y}}<x 

and therefore G belongs to C,(l). Cl 

Let G E C,(l), X a tree which is an admissible G-complex, 

orientation of Y. For each e E A, there are monomorphisms 

Y=X/GandAan 

L, : G, -+ Go,,, and i,,, : G, + G,(e) . 

Assume that the groups G, have periodic Farrell cohomology of period q for each 

u E ver Y. A collection {g, 1 v E ver Y} of units in &I”(G,, 22) is called compatible 

if 

ir,,< g,,,,,) = i,T,,( g,,,,) for each e E A . 

In [3], Theorem 1 states that there is an exact sequence of ZG-modules 

If M is ZG-module we have an exact sequence 

*Horn, (,% Z[G/G,], M)+O . 
This induces a long exact sequence in Farrell cohomology: 

(SE) .~&‘(G,M)+fij’ 
( G, n Hom,(Z[G/G,J, W) 

vfzvrr Y 

-+fi’ G, fl Hom,(Z[GiG,], M)j 
( 

P E A 

--+ fi’+‘(G, &f)+ . . . 
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Then, as in [l, Section 2.41, we obtain an exact sequence 

(El . . + fi’(G, M)-% uE;r y fi”(G, > W 

-% ,!! fi’(G, 3 W -% &‘+‘(G, M)-+ 

where cy is given by the product of the restriction 

composition of the coboundary map of the sequence 

isomorphisms given by Shapiro’s Lemma, and 

. . 

maps, a is given as the 

(SE) and the product of 

where f, E fi’(GV, M). This is proven, for ordinary cohomology, also in [3]. 

Notice that a collection of units {g, ( u Ever Y} is compatible if and only if 

Proposition 5. Let G be a group of class C,(l), X be a tree which is an admissible 

G-complex and Y = XIG a graph with orientation A. Then the following are 

equivalent: 

(i) G has periodic Farrell cohomology of period q. 

(ii) for each v Ever Y, the isotropy group GU of v has period q and there is a 

compatible family {g, 1 v E ver Y} of units in H”( G, , 77). 

Proof. We follow the proof of the corresponding result for ordinary cohomology 

given in [15, Theorem 2.11. We first assume that G has periodic Farrell cohomolo- 

gy of period q. Then there is a unit u E fijy(G, Z). Set uU = resg (u) E kjy(GU, Z) 

for each u Ever Y. Then {u, 1 v Ever Y} is a collection of units. But this 

collection belongs to the Im (Y and from the exact sequence (E) its image under p 

is zero and therefore it is a compatible family of units. 

We assume now that (ii) holds. Let {u, ( v E ver Y} be a compatible collection 

of units. Then 

and, from the exact sequence (E) there is u E @(G, Z) so that u, = resE,.(u) for 

each u E ver Y. It remains to be proven that u is a unit in fij”(G, Z). From the 

naturality properties of the exact sequence (E), we obtain a commutative 

diagram: 
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By the Five-Lemma Uu is an isomorphisrn for each i and for each ZG-module M. 

So, u is a unit and G has periodic Farrell cohomology. 0 

Remark. In [15], an example is given of a group of the class C,(l) for which all 

the vertex groups are cyclic but it does not have periodic cohomology after l-step 

and so it does not have periodic Farrell cohomology. 

Corollary 6. (i) A countable locally finite group has periodic Farrell cohomology 
of period q if and only if each finite subgroup has periodic cohomology of period 

4. 
(ii) Let G be h f d t e un amental group of a graph of groups (G, Y). Let A be an 

orientation of Y. Assume that G, = H for each u Ever Y, cd(H) <x, Z admits a 

complete resolution over H, and the inclusions i,., : G, + G,,,,, and i,~, : G, * G,(,, 

are equal for each e E A. Then G has periodic Farrell cohomology if and only if H 

has periodic Farrell cohomology. 

Proof. (i) This is [15, Theorem 3.71 together with Proposition 3 above. 

(ii) Notice that G acts on a tree X with G, = H for each vertex u of X, and 

cd(H) <m. By Lemma 4, we see that G is of class C’,(l). In particular, we can 

define Farrell cohomology for G. Let {u,(~,, u,(~)} be a collection of units 

u,(~),u,(~) E Z?‘(H, Z). If we choose u,(,) = u,(,), then the collection is compat- 

ible because the two maps ir:O and iz,, are equal. By Proposition 5, G has periodic 

Farrell cohomology. 

If G has periodic Farrell cohomology, then by Proposition 5, H has also 

periodic Farrell cohomology. 0 

Remark. A special case of Corollary 6 is the following: 

Let H be a group with cd(G) < = and such that Z admits a complete resolution 

over H. Let S be a subgroup of H, and G = H *s H the amalgamated free product 

where the two monomorphisms from S to H are equal. Then G has periodic 

Farrell cohomology if and only if H does. 

3. Free actions [w” X s”-’ 

In this section, we will show that there are groups of class C,(l) which act 

freely and properly discontinuously on 58” X S”-’ and have infinite virtual 
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cohomological dimension. We recall some terminology from [4]. For a group G of 

class C,, let x E H”(G, Z) be such that L(X) E fi”(G, 12) is a unit. By an 

x-polarized space we mean a free G-complex E and a class of homotopy 

equivalences E = S”-’ so that G acts trivially on H”(G, Z), E/G has the 

homotopy type of a countable finite dimensional complex, and the Euler class of 

the spherical fibration EG x (; E + BG is x. 

Remarks. (i) In [16], it was proven that, if G is a finite group, for each unit 

u E fi”(G, Z), n > 0, there is a u-polarized space. 

(ii) In [4], it was shown that if G is a group with vcd(G) <cc, and x E H”(G, Z) 

be such that L(X) E fi”(G, Z) 1s a unit, then there is a (x” + u)-polarized space, 

for some k 2 1 and u E H”(G, Z) is nilpotent. 

The first result is about groups of class C, (1). 

Proposition 7. Let G be a group of class C,( 1) and X a tree which is an admissible 
G-complex. Let x E H”(G, Z) be an element such that L(X) E l?‘(G, Z), n > 2, is a 
unit. Then there is a free G-complex E and a G-map rr : E+ X such that: 

(i) E = S”-’ and G acts trivially on H”(G, Z). 
(ii) n is a Hurewicz fibration. 

(iii) The Euler class of the spherical fibration E-, EG X,; E+ BG is x + U, 
where v E H”(G, Z) is nilpotent. 

Proof. The proof is similar to the proof given in [4, Proposition 2.41. Set u = L(X). 

Inductively, we construct a spherical fibration over the skeleta of the tree X. Let 

u Ever X and G, = H its isotropy group. Since H is finite, uH = resi(u) is a unit 

in the Tate cohomology of H and by (161 there is a (u,,)-polarized space Y,,. Set 

El, = Y,,. We can do this for a complete set of orbit representatives of the action 

of G on ver X and then define for a vertex u with isotropy group H, E((;, = 
G x,, (El,) and 7~ : EIGI,+ Gu, n(g, e) = gu, if (g, e) E G x,, (El,). This con- 

struction produces a free G-space El,,, x and a G-map which is a spherical 

fibration rr : El,,, x * ver X. The fiber over a vertex u with isotropy group H is a 

(resz(u))-polarized space. 

This fibration can be extended over the edges as follows: Let e be an edge with 

isotropy group S. Then El,, is an S-spherical fibration over the trivial S-space ae 

and the fiber is a (resF(u))-polarized space. There are no obstructions for 

extending S-equivariantly this fibration across e, see [4, Proposition 2.41. Define 

El(;, = El, x, G. 

This completes the construction of a the spherical fibration 7~. Notice that E is a 

free G-space and E = S”-‘. For each finite subgroup H, the Euler class of the 

fibration 

E* EH xF, E+ BH 
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is resE(x). Hence the Euler class of the fibration 

E+ EG x,; E+ BG 

is x + u, where resE(u) = 0 for all subgroups H which appear as isotropy groups of 

the G action on X. In particular, property (viii) of the spectral sequence (S) 

implies that L(U) is nilpotent, and therefore u is nilpotent. 0 

For the next result, we make an assumption about the groups we are going to 

study. A group G satisfies the property (P) if: 

(P) G is of class C, and for each x E H”(G, Z) such that L(X) E i?‘(G, Z) 

is a unit, there is an (x” + v)-polarized space, where u E H”(G, Z) 

is nilpotent and k 2 1, 

Remark. The remark above shows that finite groups and groups with finite virtual 

cohomological dimension satisfy property (P). 

Let G be a group of class C,(l). Let X be a tree which is an admissible 

G-complex such that there is a group H such that G, is isomorphic to H for each 

u E ver X. From the proof of Corollary 6(ii), there is a unit u E Z?j”(G, Z), y1> 2, 

such that res:j LI (u) = uH for all vertices u of X. 

Proposition 8. Let G, X, H, u be as above. Assume that H satisfies property (P). 

Let x E H”(G, Z) b e an element such that L(X) = u E Z?‘(G, Z), n > 2. Then there 
is a free G-complex E and a G-map rr : E-+ X such that: 

(i) E = S”-’ and G acts trivially on H”(G, Z). 
(ii) n is a Hurewicz fibration. 

(iii) The Euler class of the spherical jibration E+ EG x,; E* BG is xk + v, 
where k 2 1 and u E H”(G, Z) is nilpotent. 

Proof. The proof is similar to the proof of Proposition 7. Inductively, we 

construct a spherical fibration over the skeleta of the tree X. Let u Ever X and 

G, = H its isotropy group. Then uH = resg(u) is a unit in the Farrell cohomology 

of H. Let YH be an (resE(x’) + u)-polarized space, where u E H”(G, Z) is 

nilpotent and k 2 1. This way we can define E over the ver X as in Proposition 7. 

This construction produces a free G-space Ej,,c,x and a G-map which is a 

spherical fibration 7~ : El,,, ,.,, + ver X and the fiber over any vertex u is YH. 

This fibration can be extended over the edges as follows: Let e be an edge with 

isotropy group S. Then de = {u, w}, El,, is an S-spherical fibration over the trivial 

S-space de and the fiber is Y,. Define El, = Y, x [0, 11, where S acts on Y, by 

the restriction of the action of H on Y,,, and trivially on [0, 11. Extend El, over 

Ge by El,, = E[, xs G. 
As before, E is a free G-space and E = 9-I. For the subgroup H, the Euler 

class of the fibration 
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E-t EH X, E-t BH 

is resE(x’) + u. If y is the Euler class of the fibration 

E+EGx,E+BG. 

then res$( y) = resE(?) + u + resE( y - x”) is nilpotent 3 L(( y - x”)“‘) is the 

kernel of res: for all subgroups H which appear as isotropy groups of vertices of 

X. Therefore, L(( y - x”)“‘) is nilpotent and y - xk is nilpotent. So y = xk + p 

where p is nilpotent. 0 

Let G be as in Propositions 7 or 8. Assume further that G is countable and the 

tree X on which G acts is countable. 

Lemma 9. Let G be as above. Then the free complex E constructed in Propositions 
7 and 8 can be chosen so that E/G has the homotopy type of a countable 
finite-dimensional simplicial complex. 

Proof. Let p : E/G* X/G be the map induced by 7~. By construction pm’(ver(X/ 

G)) is a countable complex. Let e be an l-simplex of X/G of orbit type H. Then 

p-‘(e) = Y/H, where Y is an (resg(xk) + u)-polarized space, with u E H”(G, Z) 
nilpotent and k 2 1. Also p-‘(ae) is H-homotopy equivalent to Y/H x de. Then 

Y/H and Y/H x de have the homotopy type of countable simplicial complexes of 

dimension less than or equal to kn, and 

E/G=(p-‘(verX/G))U( U 
CEE(XI6) 

(Y,/G,xe)), 

where Y, is as above. The coproduct is taken over the 1-simplices of X/G and the 

attaching takes place along Y<,/G, X de. So E/G is homotopy equivalent to a 

countable complex. The details appear in the proof of Lemma 2.5 in [4]. 

The Euler class of the fibration 

E+ EG x,; E+ BG 

is xh + u, where u is nilpotent. Therefore, ‘(XI’ + u) = L(x’) + L(U) is a unit. So, in 

the Gysin cohomology sequence of the spherical fibration, the map given by cup 

product with (x’ + u) is an isomorphism in high enough dimensions. Therefore, 

H’(E/G, B) = 0 for i large and for each ZG-module B. 
The proof of the lemma is completed as in Lemma 2.6 in [4]. 0 

If a group G acts freely and simplicially on a simplicial complex so that the orbit 

space has the homotopy type of a countable finite-dimensional simplicial complex, 

then standard methods produce a free and properly discontinuous action of G on 
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R’” X Skn-’ (see, for example, [4, Lemma 2.8 and Proof of Theorem A]). We 

summarize in the following theorem: 

Theorem 10. Let G be a countable group which satisfies the assumptions of 

Proposition 7 or 8. Assume, also, that the admissible G-complex can be chosen to 

be a countable tree. Then for each x E H”(G, Z) such that L(X) E L?“(G, Z) is a 
unit there is a free and properly discontinuous action of G on IF!“’ x Sk”-‘, for some 

m and n, so that H,(R”’ x Sktrml, Z) is a trivial LG-module and the Euler class of 

the spherical fibration 

R” x Sk’l_’ + EG x, R” x Sk’-’ + BG 

is xk + u, where u E H”(R”’ x Sk”-‘, Z) is nilpotent. 0 

Using Theorem 10, we construct actions of groups with infinite virtual 

cohomological dimension on IR’” X Sk’-‘. 

(1) Let G be a countable locally finite group with period Farrell cohomology. 

In [15], it is proven that G is either locally cyclic or locally quartenionic group. In 

[7], a countable tree is constructed which is an admissible G-complex. So G is of 

class C, (1). Then Theorem 10 asserts that G acts freely and properly discontinu- 

ously on R” X S” ’ for some 1y1 and n. But G is a countable torsion group and 

vcd( G) = x. 

(2) The next example is constructed as follows [ll, 3.1, 3.21: Let A be the 

Higman group 

and B an infinite cyclic subgroup of A. Define C = A *HA the amalgamated 

product, where the two monomorphisms from B to A are equal to the inclusion 

map. It turns out that A and C are duality groups, H’(C, Z/kZ) = ZlkZ and 

H2(A, ZlkZ) = 0 [ll]. Let G be given by an extension 

which represents a nonzero element in H2(C, ZikZ) and therefore the exact 

sequence does not split. Then G is not a virtually torsion free group [ll, Theorem 

l] and therefore vcd(G) = a. If p : G * C is the epimorphism in the exact 

sequence above, then 

G= H*,sH, where H = p-l(A), S = p-‘(B) 

Notice that H and S of finite virtual cohomological dimension and have periodic 

Farrell cohomology since each finite subgroup is cyclic [2, Chapter X, Theorem 
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6.71. Therefore, H and S satisfy property (P) [4, Theorem A]. By [13], G acts on 

a tree X with fundamental domain a single edge e with G,,,,, = Grccj = H and 

G, = S. In particular, X is countable, G is of class C,(l) and Corollary 6(ii) 

shows that G has periodic Farrell cohomology. So G satisfies the assumptions of 

Proposition 8 and acts on a countable tree. Therefore, Theorem 10 applies to G, 

and G acts freely and properly discontinuously on R”’ X Sk”-’ for some m, ~1, and 

k. 
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