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Abstract. Let G � G0 �G G1 be an amalgamated free product, where G is a ®nitely generated
central subgroup of G0 and G1. We show that the negative Waldhausen Nil-groups that appear
in the calculation of the K-theory of ZG vanish. If G � H � T m is a decomposition of G with
H a ®nite group and T the in®nite cyclic group, we also show that the exponent of the NK0-
group depends on the order of H.
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1 Introduction

Let G be the amalgamated free product G0 �G G1, where G is a subgroup of Gi,
i � 0; 1. In calculating the K-theory of the integral group ring ZG, we encounter the
di½cult task of calculating certain exotic Nil-groups ([19]).

In the sequel, we will outline certain methods for calculating the Nil-groups which
appear in the computation of Ki�ZG� for i U 0 in the case that G is a central ®nitely
generated subgroup of Gi (i � 0; 1). In particular, G is of the form H � T m with H a
®nite abelian group and T an in®nite cyclic group.

Main Theorem. Let G be a ®nitely generated central subgroup of Gi, i � 0; 1. Then

(1) NKj�ZG; Z�G0 ÿ G�;Z�G1 ÿ G�� � 0, for j Uÿ1.

(2) NK0�ZG; Z�G0 ÿ G�;Z�G1 ÿ G�� has exponent a power of the order of H.

An immediate application of the Main Theorem is connected to a classical conjecture
about the vanishing of the lower K-groups of integral group rings. More precisely,
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Vanishing Conjecture. Let G be a discrete group. Then Ki�ZG� � 0 for i Uÿ2.

The Vanishing Conjecture has been proved for all subgroups of cocompact discrete
subgroups of Lie groups ([8], [9]) and for the groups of the form p1�K� � Zn where K

is a ®nite complex of nonpositive curvature ([12]). More examples of groups that
satisfy the Vanishing Conjecture can be found in [4] and [1].

Using the conclusion of the Main Theorem, we can extend the class of groups for
which the Vanishing Conjecture is true.

Theorem. Let Gi , i � 0; 1, be two groups for which the Vanishing Conjecture is true, and

let G be a ®nitely generated central subgroup of Gi �i � 0; 1�. Then the group G0 �G G1

satis®es the Vanishing Conjecture.

As a ®rst application the theorem provides an algebraic proof for the vanishing of
lower K-groups of an abelian virtually in®nite cyclic group G that admits an epi-
morphism (with ®nite kernel) to the in®nite dihedral group Dy ([9]).

Another application comes from combining the two classes of groups that were
mentioned above. Let G0 be a discrete subgroup of a discrete cocompact subgroup of
a Lie group which is not torsion free and contains Z as a central subgroup. Let G1 be
a torsion free cocompact subgroup of SLn�Q�p��, where Q�p� is the p-adic ®eld. Then
the Main Theorem implies that the group G � G0 �Z �G1 � Z� satis®es the Vanishing
Conjecture and G does not belong to any of the two classes mentioned above. More
complicated examples can be obtained by repeating the above construction.

The K-theory of amalgamated free products of groups has been studied in [17],
[18], [19]. Amalgamated free products are pushouts in the category of groups. The
failure of the Mayer-Vietoris sequence to be exact in this case is measured by certain
Nil-groups. The Nil-groups in this case have been de®ned in [18], [19], and [7]. In [7],
the Nil-groups were de®ned using twisted extensions of additive categories. We study
the functorial properties of the Nil-groups using the description in [7]. Using the
functorial properties of the Nil-groups we show that the lower Nil-groups vanish in
the setting of the Main Theorem. The method used for proving the vanishing result
is based in the methods used in [5] and [9] for proving the vanishing of the lower
K-groups for ®nite groups and virtually in®nite cyclic groups, respectively.

The calculation of the exponent of the NK0-group uses a modi®cation of the
methods that were developed in [6].

The methods developed in this paper work also for HNN-extensions of groups.
The relevant category theory could be developed as in [7] and a vanishing result will
follow exactly as in the amalgamated free product case.
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2 Review of the twisted polynomial extensions of additive categories

All the rings have identity, unless it is mentioned otherwise, and the property that
®nitely generated free modules have well-de®ned rank. All ring homomorphisms
preserve the identity.

We shall review certain basic constructions on rings and bimodules. Let R be a ring
and B an Rÿ R-bimodule. We write TR�B� for the tensor R-algebra de®ned by B.
The algebra TR�B� is an augmented graded algebra which admits a decomposition as
an R-bimodule

TR�B� � RlBl �BnR B�l � � � :
The multiplication is given by concatenation.

For any ring R, MR denotes the category of right R-modules, PR the subcategory of
®nitely generated projective right modules, and FR the subcategory of ®nitely gen-
erated right free R-modules. For A �M;P;F, An

R denotes the product category
AR �AR � � � � �AR (n times). Let T be the category with objects triples R �
�R; B0;B1� where R is a ring with unit and Bi, i � 0; 1, are R-bimodules. A morphism
� f ; f0; f1� : �R; B0;B1� ! �S; C0;C1� is a triple where f : R! S is a unit preserving
ring homomorphism, and fi : Bi nR S ! Ci is an Rÿ S-bimodule homomorphism
for i � 0; 1 (the R-module structure on Ci is induced by the map f ). Let

�R; B0;B1� �����!� f ;f0;f1� �S; C0;C1� �����!�g;c0;c1� �T ; D0;D1�

be two morphisms in T. Their composition is the morphism

�R; B0;B1� �����������������!�gf ;c0�f0 n 1T �; �c1�f1 n 1T �� �T ; D0;D1�:

Remark 2.1. Let R � �R; B0;B1� be an object in T and f : R! S be a unit pre-
serving ring homomorphism. Then f induces a morphism in T

� f � � � f ; f0; f1� : �R; B0;B1� ! �S; S nR B0 nR S;S nR B1 nR S�
where, for i � 0; 1, fi : Bi nR S ! S nR Bi nR S, is de®ned by fi�bn s� � 1n bn s.
The construction is natural. Let R be the category with objects �S; f � where S is a
ring and f : R! S is a ring homomorphism and morphisms given by ring homo-
morphisms making the corresponding diagrams commutative. Then the above con-
struction induces a functor �R� : R!T.

Main Construction. We shall de®ne functors

FA : T!Add

for A � P or F, where Add is the category of additive categories. The construction
is construction 2.1 of [7].
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Description of FA. Let R � �R; B0;B1� be an object of T as above. Then there is a
functor aR : M2

R !M2
R de®ned by

aR�M0;M1� � �M1 nR B0;M0 nR B1�

aR� f0; f1� � � f1 n 1; f0 n 1�:

Then FA�R� is the twisted polynomial extension construction on A2
R ([7]). More

precisely, the objects of FA�R� are the same as the objects of A2
R and

FA�R��u; v� �
Py
i�0

M2
R�u; a i

R�v�� �
Py
i�0

pit
i

where we write pi : u! a i
R�v� for the i-th component of the morphism. Let m �

� f ; f0; f1� : �R; B0;B1� ! �S; C0;C1� be a morphism in T. We shall construct a
functor FA�m� : FA�R� ! FA�S� between additive categories:

If u � �F0;F1� is an object in FA�R� then

FA�m��F0;F1� � �F0 nR S;F1 nR S�:

For the construction of FA on morphisms we ®rst note that, for any object v �
�G0;G1� of FA�R�, we can de®ne a morphism m1 in M2

S between FA�m��aR�v�� and
aS�FA�m��v��, as follows.

FA�m��aR�v�� � FA�m��G1 nR B0;G0 nR B1�

� ��G1 nR B0�nR S; �G0 nR B1�nR S�

!f �G1 nR C0;G0 nR C1�

F ��G1 nR S�nSC0; �G0 nR S�nSC0�

� aS�FA�m��v��;
where f � �1F1

n f0; 1F0
n f1�. Repeating the above process we construct a mor-

phism mi in M2
S from FA�m��a i

R�v�� to a i
S�FA�m��v��, for all i V 0. For a morphism

Py
i�0

pit
i A FA�u; v�;

where pi : u! a i
R�v�, de®ne

FA�m�
Py
i�0

pit
i

� �
�Py

i�0

�mi �FA�m��pi��ti;

where FA�m��pi� : FA�m��u� ! FA�m��a i
R�v�� is given by pi n 1S.

D. Juan-Pineda, S. Prassidis264



Remark 2.2. There are some immediate observations arising from the de®nition.

1. The operation ``t � 0'' induces a forgetful natural transformation

hA�R� : FA�R� !A2
R :

Equivalently, the functor hA�R� is induced by the morphism �R; B0;B1� ���!�1; 0;0�

�R; 0; 0� of objects of T.

2. The di¨erent choices of A are connected by a forgetful natural transformation

c : FF ! FP:

The main natural examples of such triples arise from the study of the K-theory of
pushout squares of rings ([18], [19]). Let

R ���!i0
A0

i1

???y ???y j0

A1 ���!j1
S

be a pushout diagram of rings, where the homomorphisms ii, i � 0; 1, are assumed to
be pure inclusions i.e. they are inclusions and there is a splitting Ai � ii�R�lBi as R-
bimodules. In this case, the structure of S has been described in [17] and [19]. Notice
that S contains the tensor algebras TR�B0 nR B1� and TR�B1 nR B0�. The structure
of a pushout diagram as above determines an object in T, namely the triple R �
�R; B0;B1�. In this context, a functor is de®ned in [7]

r : FA�R� !AS

connecting the two categories.

Let R � �R; B0;B1� be a triple in T. Set Bi � B0 for all even i V 0, Bi � B1 for all
odd i > 0, and put

B
� j�
i � Bi nR Bi�1 nR � � � nR Bi�jÿ1

for all i; j V 0. In particular, B
�0�
i � R, B

�1�
i � Bi. Similarly, if �Q0;Q1� is an object in

FA�R�, we put Qi � Q0 for all even i V 0, and Qi � Q1 for all odd i > 0. With this
notation

a i
R�Q0;Q1� � �Qi nR B

�i�
i�1;Qi�1 nR B

�i�
i �:

Thus, if u � �P0;P1� and v � �Q0;Q1� are objects in FA�R�, then
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FA�R��u; v�

� L
iV0

�MR�P0;Qi nR B
�i�
i�1�lMR�P1;Qi�1 nR B

�i�
i ��

� Py
i�0

�p�0; i�l p�1; i��t i : p�k; i� A MR�Pk;Qi�k nR B
�i�
i�k�1�; k � 0; 1

� �
:

The object r � �R;R� is a basic object in FP�R�, in the sense of Bass ([3], p. 197), i.e.,
each object u of FP�R� is isomorphic to a direct summand of rn � �Rn;Rn� for some
integer n. We write Rr � EndFP�R��r� for the endomorphism ring of r. We shall give

the structure of Rr in more detail. A morphism of degree i, f � �f0; i; f1; i�ti :

r! a i
R�r�, can be identi®ed with the element �f0; i�1�; f1; i�1�� A B

�i�
i�1 lB

�i�
i . Multi-

plication in Rr, i.e. composition of endomorphisms, is then given by concatenation
with the added convention that BiBi � 0, i � 0; 1. Considering the degree mod 2 of
components one obtains a natural splitting of Rr as an R� R-bimodule

Rr � Reven lRodd:

The even component Reven is a subring of Rr which is isomorphic to the product of
the tensor algebras TR�B1 nR B0� � TR�B0 nR B1�, and Rodd is an Reven-bimodule.
There is a split inclusion of rings i : R� R! Rr by considering pairs of elements of
R as endomorphisms of degree zero of r. The splitting z is given by the forgetful map
to the zero degree component of any endomorphism.

We shall give a description of Rr as a ``matrix ring''. De®ne

R 0r �
TR�B1 nR B0� B1 nR TR�B0 nR B1�

B0 nR TR�B1 nR B0� TR�B0 nR B1�
� �

;

with multiplication given as matrix multiplication and on each entry by concaten-
ation. There is a split inclusion of rings i 0 : R� R! R 0r given by

i 0�r1; r2� � r1 0

0 r2

� �
;

with splitting given by the natural projection z 0 to R� R.

Proposition 2.3. There is a natural ring isomorphism

k : Rr ! R 0r

such that k � i � i 0.

Proof. As an abelian group, EndFP�R��r� is generated by morphisms of degree i

for all iV 0. We shall de®ne the map k on morphisms of degree i and extend
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linearly. A morphism fi A EndFP�R��r�, of degree i is determined by a pair of elements

�bi�1; bi� A B
�i�
i�1 � B

�i�
i . Then k is de®ned:

k�fi� �

bi�1 0

0 bi

� �
if i is even

0 bi

bi�1 0

� �
if i is odd.

8>>>><>>>>: :

It is a straightforward calculation that k is a ring isomorphism that commutes with
the augmentation maps. r

In most calculations involving Rr from now on, we will represent elements of Rr as
2� 2 matrices as in Proposition 2.3.

In [15] (§7, §8) one ®nds de®nitions of the polynomial extension and the ®nite Laurent
extension of any additive category. The constructions are used for de®ning the lower
K-groups of an additive category following the ideas in [2]. We shall review the basic
de®nitions from [15]. We denote by P0�A� the idempotent completion of the additive
category A. Objects of the new category are pairs �a; p� where p is a self-morphism of
a such that p2 � p. A morphism f : �a; p� ! �b; q� is a morphism f : a! b such that
q f p � f . There is an embedding i : A! P0�A� that maps a to �a; 1a�. It follows that
([15])

K0�P0�A�� � Coker�K1�A�z��lK1�A�zÿ1�� ! K1�A�z; zÿ1���:

We de®ne the reduced K0-group fK0�A� to be the cokernel of the map induced by i on
the K0-group of the projective completion. Inductively, for an additive category A,

Kjÿ1�A� � Coker�fKj�A�z��l fKj�A�zÿ1�� ! fKj�A�z; zÿ1���; j U 0;

where the map is induced by the natural inclusion of categories. Reduced and
unreduced Kj groups are isomorphic for j Uÿ1.

Following [15], we de®ne the reduced K1-groups of the additive category A as follows
([15], §5): If L and M are two objects in A, the sign

e�L;M� � 0 1

1 0

� �
: LlM !M lL:

The isomorphism e�L;M� determines an element in K1�R�. De®ne

fK1�A� � Coker�e : K0�A�nK0�A� ! K1�A��:

The K1-group of an additive category is isomorphic to the K1 of its idempotent
completion. The same is true for the reduced K1-group.
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We shall study the polynomial and Laurent extensions of an additive category of the
form FA�R�. Let R � �R; B0;B1� as before. We write R�z; zÿ1� (R�z�, R�zÿ1�) for the
objects of T, �R�z; zÿ1�; B0�z; zÿ1�;B1�z; zÿ1�� (�R�z�; B0�z�;B1�z��, �R�zÿ1�; B0�zÿ1�,
B1�zÿ1�� respectively). Here Bi�z; zÿ1� � Bi nR R�z; zÿ1� (Bi�z� � Bi nR R�z�, Bi�zÿ1� �
Bi nR R�zÿ1� respectively), for i � 0; 1, and it is an R�z; zÿ1�-bimodule with z:b � bz

for b A Bi.

Lemma 2.4. There are equivalences of categories

f : FA�R��z; zÿ1� ! FA�R�z; zÿ1��

f� : FA�R��z� ! FA�R�z��

fÿ : FA�R��zÿ1� ! FA�R�zÿ1��:

Proof. We shall give the proof for the ®nite Laurent extension. The other cases follow
similarly. Let u � �F0;F1� A A2

R represent an object in FA�R��z; zÿ1�. We de®ne

f ��F0;F1��z; zÿ1�� � �F0�z; zÿ1�;F1�z; zÿ1��;

which is an equivalence on the set of objects ([15], Example 8.4). If u � �F0;F1�
is an object of FA�R� we write u�z; zÿ1� for the object �F0�z; zÿ1�;F1�z; zÿ1�� of
FA�R��z; zÿ1�. Then f �u� � u�z; zÿ1�. For the de®nition of f on morphisms, we need
the following general remark.

Claim. There is a natural isomorphism

a i
R�v��z; zÿ1�G a i

R�z; zÿ1��v�z; zÿ1��;

for each object v � �G0;G1� of FA�R�.

Proof. We shall prove the claim for i � 1. The general case follows by repeating the
argument.

�aR�v���z; zÿ1� � ��G1 nR B0�nR R�z; zÿ1�; �G0 nR B1�nR R�z; zÿ1��

G �G1 nR �R�z; zÿ1�nR�z; zÿ1� B0�z; zÿ1��;

G0 nR �R�z; zÿ1�nR�z; zÿ1� B1�z; zÿ1���

� �G1�z; zÿ1�nR�z; zÿ1� B0�z; zÿ1�;G0�z; zÿ1�nR�z; zÿ1� B1�z; zÿ1��

� aR�z; zÿ1��v�z; zÿ1��:
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Using the Claim and the de®nitions we will show that f induces an equivalence on
the morphisms.

FA�R��z; zÿ1��u; v� � �FA�R��u; v���z; zÿ1�

� Py
i�0

M2
R�u; a i

R�v��
� �

�z; zÿ1�

�Py
i�0

M2
R�u; a i

R�v���z; zÿ1�

�Py
i�0

M2
R�z; zÿ1��u�z; zÿ1�; a i

R�v��z; zÿ1��

G
Py
i�0

M2
R�z; zÿ1��u�z; zÿ1�; a i

R�z; zÿ1��v�z; zÿ1���

� FA�R�z; zÿ1���u�z; zÿ1�; v�z; zÿ1��:

which implies that f is an equivalence of categories. r

The calculations in the proof of Lemma 2.4 imply the following result.

Corollary 2.5. Let r�z; zÿ1� (r�z�, r�zÿ1�) be the basic element of the category

FF�R��z; zÿ1� (FF�R��z�, FF�R��zÿ1�, respectively). Then Rr�z; zÿ1�GRr�z; zÿ1� (Rr�z�G
Rr�z�, Rr�zÿ1�GRr�zÿ1� respectively).

The next result studies the maps induced on K-groups by the forgetful natural
transformation c de®ned in Remark 2.2, Part (2).

Lemma 2.6. For each object R � �R; B0;B1� of T the natural transformation c
induces an equivalence of categories

c�R� : P0�FF�R�� ! P0�FP�R��:
In particular, the map induced in K-groups is an isomorphism.

Proof. The proof is the same as the proof of the equivalence P0�FR�GP0�PR�. r

We shall compare the K-theory of P0�FF�R�� with the K-theory of the ring Rr. For
this, notice that there is a functor c : FRr

! FF�R� given by sending the free
Rr-module of rank n to rn. The functor c is full, faithful and co®nal.

Lemma 2.7. The functor c induces an isomorphism

cj : fK j�P0�FRr
�� ! fKj�P0�FP�R���; j U 1:
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Proof. For j � 1, the result is classical ([11], Thm. 1.1). We shall prove the Lemma for
j � 0. The other cases follow from Lemma 2.4, Corollary 2.5, and the de®nition of
lower K-groups. Since the functor c is co®nal, the functor induced on the idempotent
completions is also co®nal. Thus the map c0 is a monomorphism. We shall show
that c0 is an epimorphism. The image of c0 is generated by elements of the form
�rn; p�, where p is a projection in FF�R�. Let ��F ;G�; p� represent an element infK0�P0�FP�R���. Then F and G are ®nitely generated projective R-modules and p

is a projection in FP�R�. There are ®nitely generated projective modules F 0 and G 0

such that F lF 0GG lG 0 and both modules are ®nitely generated free R-modules.
Then, in fK0�P0�FP�R���,

���F ;G�; p�� � ���F ;G�; p�� � ���F 0;G 0�; 0�� � ���F lF 0;G lG 0�; pl 0��;

which belongs to the image of c0. r

Let R � �R; B0;B1� be an object of T and J be a two-sided ideal of R. Let
w : R! R=J be the projection map. So �R=J; w� determines an object of R. By
Remark 2.1, the projection w induces a functor

�w� : R! �R��R=J; w�:

Thus it induces also a functor

w� : FF�R� ! FF��R��R=J; w�� � w��FF�R��:

De®nition 2.8. The object R � �R; B0;B1� satis®es the condition �J ��, for a two-sided
ideal J of R, if JBi � BiJ for i � 0; 1.

Lemma 2.9. Let R satisfy condition �J �� for a two-sided ideal J.

(i) There is an isomorphism of R=J-bimodules

R=J nR Bi nR R=J GR=J nR Bi; i � 0; 1;

where the right action of R=J on R=J nR Bi is given by

��r� J�n b� � �r 0 � J� � �r� J�n �br 0�:

(ii) There is an isomorphism of R=J-bimodules B
� j�
i GR=J nR B

� j�
i for all i and j,

where

B
� j�
i � �R=J nR Bi nR R=J�nR=J �R=J nR Bi�1 nR R=J�

nR=J � � � �R=J nR Bi�jÿ1 nR R=J�:
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Proof. Condition �J �� guarantees that the maps

R=J nR Bi nR R=J ! R=J nR Bi; �r�J�n bn �r 0�J� 7! �r�J�n �br 0�

R=J nR Bi ! R=J nR Bi nR R=J; �r�J�n b 7! �r�J�n bn �1�J�

are inverse R=J-isomorphisms, proving Part (i).

Part (ii) follows by induction on j and Part (i). r

Let J be a two-sided ideal of R. We denote by J the two-sided ideal of Rr generated
by J � J.

Proposition 2.10. Let R satisfy condition �J �� for a two sided ideal J of R. Then there

is a ring isomorphism

wJ : Rr=J! �R=J�r=J ;

where r=J is the basic element of w��FF�R��.

Proof. Using Lemma 2.9, we get that

TR=J�B0 nR=J B1 ��GR=J nR TR�B0 nR B1�

GTR�B0 nR B1�=JTR�B0 nR B1�;

as rings. Repeating the same argument to all the entries of the matrix representation
of �R=J�r=J , we get a ring isomorphism (we write BB 0 for BnR B 0)

�R=J�r=J G
TR�B1B0�=J � TR�B1B0� B1TR�B0B1�=J � B1TR�B0B1�

B0TR�B1B0�=J � B0TR�B1B0� TR�B0B1�=J � TR�B0B1�
� �

:

The assumption on the bimodules implies that the ideal J has the following matrix
representation

J � J 0

0 J

 !
TR�B1B0� B1TR�B0B1�

B0TR�B1B0� TR�B0B1�

 !

� J � TR�B1B0� J � B1TR�B0B1�
J � B0TR�B1B0� J � TR�B0B1�

 !
:

Then it follows immediately that Rr=JG �R=J�r=J . r

Proposition 2.11. Let R be a triple which satis®es condition �J �� with J a two-sided

nilpotent ideal of R. Then the map
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wj : fK j�P0�FF�R��� ! fKj�P0�w��FF�R���; j U 0;

induced by w is an isomorphism.

Proof. We shall give the proof for j � 0. Since J is nilpotent, condition �J �� implies
that the ideal J is a two-sided nilpotent ideal of Rr. Then we have a sequence of
isomorphisms

fK0�P0�FF�R���GfK0�Rr� by Lemma 2:7

GfK0�Rr=J� by �2�; Ch: III; Proposition 2:12

GfK0��R=J�r=J� by Proposition 2:10

GfK0�P0�w��FF�R��� by Lemma 2:7: r

3 De®nition and properties of Nil-groups

Following [7], we can de®ne the Nil-functor associated to FF,

NFF : T!Add:

The objects of the category NFF�R� are pairs �u; n� where u is an object of FF�R�
and n : u! aR�u� is a degree one nilpotent morphism. Morphisms are given by
commutative diagrams as in [7]. The action of NFF�R� on morphisms of T is
de®ned as before. We are interested in the reduced version of the above functor.
Notice that there is a functor F2

R ! NFF�R� mapping an object u to the pair �u; 0�.
We de®ne

fNil0�R; aR� � Coker�K0�F2
R � ! K0�NFF�R���:

Following the ideas developed in the last section we de®ne the lower fNil-groups by

fNilj�R; aR� � Coker�Kj�F2
R � ! Kj�NFF�R��� j U 0:

There is an alternative way for constructing the lower fNil-groups using the methods
of [15], i.e. as the cokernel of the inclusion induced map:

fNilj�1�R�z�; aR�z��l fNilj�1�R�zÿ1�; aR�zÿ1�� ! fNilj�1�R�z; zÿ1�; aR�z; zÿ1��:

We shall compare the two de®nitions. For this, we ®rst need the analogue of Lemma
2.4 for the NFF-functors.
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Lemma 3.1. There are equivalences of categories

Nf : NFF�R��z; zÿ1� ! NFF�R�z; zÿ1��

N f� : NFF�R��z� ! NFF�R�z��

N fÿ : NFF�R��zÿ1� ! NFF�R�zÿ1��:

Proof. The proof is similar to the proof of Lemma 2.4. In the ®rst case, the equiva-
lence is de®ned by

Nf ��u; n��z; zÿ1�� � � f �u�; f �n��

where f is the equivalence de®ned in Lemma 2.4. The proof that Nf is an equiva-
lence follows as in Lemma 2.4. r

Lemma 3.2. There is an isomorphism

fNiljÿ1�R; aR�

GCoker�fNilj�R�z�; aR�z��l fNilj�R�zÿ1�; aR�zÿ1�� ! fNilj�R�z; zÿ1�; aR�z; zÿ1���

for all j U 0.

Proof. By de®nition, there is a diagram:

Kjÿ1�F2
R � � Coker�K j�F2

R�z��lK j�F2
R�zÿ1�� ! K j�F2

R�z; zÿ1 ���??y ??y
Kjÿ1�NFF�R�� � Coker�K j�NFF�R�z���lK j�NFF�R�zÿ1��� ! K j�NFF�R�z; zÿ1����??y ??yfNiljÿ1�R; aR� Coker�fNilj�R�z�; aR�z��l fNilj�R�zÿ1�; aR�zÿ1�� ! fNilj�R�z; zÿ1�; aR�z; zÿ1 ���

where the ®rst equality is directly from the de®nition, the second equality follows
from Lemma 3.1 and the bottom row consists of the cokernels of the vertical maps,
by de®nition. The result follows. r

Let NK1�R� be the kernel of the map induced by the forgetful functor hF�R� on the
K1-groups. As before, we de®ne NKj�R� for all j U 1.

Remark 3.3. The following are immediate from the de®nitions:

1. By construction, NKj and the reduced NKj are isomorphic for j U 1.

2. The construction in [7] (Proposition 2.9 and Lemma 2.10) and Lemma 3.2 imply
that there is an epimorphism sj : fNiljÿ1�R� ! NKj�R�, for all j U 1.
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3. There is a map c 0j : NKj�R� ! fKj�P0�FP�R�� which factors throughfKj�P0�FF�R��� i.e. c 0j is the composition of two inclusions ( j U 1):

c 0j : NKj�R� ÿ! fKj�P0�FF�R��� ÿ!
cj fKj�P0�FP�R���:

4. Lemma 2.7 implies that

NKj�R� � ker�fKj�Rr� ! fK j�R� R��:

The following is an immediate consequence of Lemma 2.6.

Lemma 3.4. There is a split exact sequence, for j U 1,

0 ÿ! NKj�R� ÿ!
c 0j fKj�P0�FP�R��� ÿ!

yj fKj�P2
R � ÿ! 0:

yj � �hP�j for j U 1.

We shall study a Mayer-Vietoris type property of the functors NKj. Let R be a
commutative ring and Bi (i � 0; 1) be two R-bimodules for which the left and the
right actions of R coincide, for i � 0; 1. Thus the triple �R; B0;B1� is an object of the
category T. Let

���
R ���!h2

R2

h1

???y ???y f2

R1 ���!f1
R0

be a pull-back diagram of rings such that either f1 or f2 is a ring epimorphism (usu-
ally such a diagram is called Milnor square). The rings Rj, j � 0; 1; 2, together with
the ring homomorphisms from R, are objects of the category R.

The above cartesian square is the reason we have introduced the category FP�R�.
The corresponding diagram of the categories of the free modules is not cartesian. So
we derive the following exact sequence from the cartesian square (�).

fK1�P2
R � ! fK1�P2

R1
�lfK1�P2

R2
� ! fK1�P2

R0
� !

fK0�P2
R � ! fK0�P2

R1
�lfK0�P2

R2
� ! fK0�P2

R0
� !

Kÿ1�P2
R � ! Kÿ1�P2

R1
�lKÿ1�P2

R2
� ! � � � :

Also, we form the pull-back of the following diagram of categories
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�2�
P ���!h 0

2 FP�R2�
h 0

1

???y ???yf 0
2

FP�R1� ���!f 0
1 FP�R0�

:

Notice that P0�P� is the pull-back of the projective completions.

Lemma 3.5. The above pull-back diagram of categories induces a Mayer-Vietoris

sequence in K-theory of the categories and their idempotent completions

fK1�P� ! fK1�FP�R1��lfK1�FP�R2�� ! fK1�FP�R0�� ! fK0�P0�P��

! fK0�P0�FP�R1���lfK0�P0�FP�R2��� ! fK0�P0�FP�R0���

! Kÿ1�P0�P�� ! Kÿ1�P0�FP�R1���lKÿ1�P0�FP�R2���

! Kÿ1�P0�FP�R0���:

Proof. We shall use the terminology of [2], Ch. VII. It is obvious that the two functors
f 01 and f 02 are co®nal. We shall show that, if f1 is a surjective ring homomorphism,
then f 01 is E-surjective in the sense of [2]. That means that for each object u of
FP�R0�, after stabilization by an object u 0, there is an object v of FP�R1� such that f 01
induces an epimorphism from the commutator subgroup of Aut�v� to the commuta-
tor subgroup of Aut�ul u 0�. So let u be an object of FP�R0�. We can stabilize u

such that ul u 0 � �F0;F1� where F0 and F1 are free modules of the same rank. Set
ri � �Ri;Ri�, i � 0; 1; 2, for the object in the corresponding category, consisting of
a pair of free modules of rank 1. As in the classical case, the commutator subgroup of
Aut�ul u 0� is generated by ``elementary'' matrices of the form eij�x� which is a
matrix with 1's in the diagonal and x A Mor�r0; r0�. A self-morphism of r0 can be
represented by a ®nite collection of pairs of elements in a tensor product of the
bimodules. Since the map f1 is surjective, it induces a surjective map on the elemen-
tary matrices. Thus, if v consists of a pair of free R1-modules of the same rank with
F0 (or F1), then f1 induces an epimorphism on the corresponding commutator sub-
groups of the automorphism groups. Then, by [2], Ch. VII, §4, Ch. XII §8, there is a
Mayer-Vietoris sequence in lower K-groups. The original argument in [2] gives an
exact sequence for absolute K-groups. That sequence induces a sequence of the
reduced K-groups. r

By the universal property of the pull-back diagrams of categories, there is a functor
g : FP�R� ! P making the resulting diagrams commute up to natural equivalence.

Lemma 3.6. The functor g induces a monomorphism for j U 1,

gj : fK j�P0�FP�R��� ! fK j�P0�P��:
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Proof. The ideas of the proof of Theorem 3.11 in [14] apply in our setting. The main
ingredient of the proof of the theorem is that the two-sided reduction of coe½cients
is isomorphic to the one-sided reduction. That is obvious in our setting. The result
in [14] implies that g is a full, faithfull and co®nal functor, which implies the
result. r

The above properties of the K-theory associated to a Milnor square imply the
following vanishing result for the lower NK-groups.

Theorem 3.7. Let ��� be a Milnor square as before and sU 0. If NKj�Ri� � 0 for
all j U s and i � 0; 1; 2, then NKjÿ1�R� � 0 for all j U s. Also, the boundary mapgKs�1�R0� ! fKs�R� induces an epimorphism. NKs�1�R0� ! NKs�R�.

Proof. By the naturality of the exact sequences associated to the pull-back diagrams
(1) and (2), we get a commutative diagram

fKj�P0�FP�R0��� ���! gKjÿ1�P0�P�� ��! gKjÿ1�P0�FP�R1���l gKjÿ1�P0�FP�R2���???y ???yy 0jÿ1

???yfKj�P2
R0
� ���! gKjÿ1�P2

R � ���! gKjÿ1�P2
R1
�l gKjÿ1�P2

R2
�:

The vertical maps are induced by the maps yj of Lemma 3.4. The NK-groups are
the kernels of the epimorphisms yj, j U s. Since they vanish, the maps yj are iso-
morphisms. The ®ve-lemma implies that the map,

y 0jÿ1 : Kjÿ1�P0�P�� ! Kjÿ1�P2
R �

is an isomorphism for j U s. But �yR�jÿ1 � y 0jÿ1gjÿ1. Lemma 3.6 implies that �yR�jÿ1

is a monomorphism and thus NKjÿ1�R� � 0 for j U s. A similar argument works
for the second part of the theorem. r

There are two more functors of interest to our calculations. They are de®ned in [19].

Nil W; fNil W : T!Add:

The objects of Nil W �R� (fNil W �R�) are quadruples �P;Q; p; q� where �P;Q� is an
object of P2

R (F2
R ) and

p : P! QnR B0; q : Q! PnR B1

are R-homomorphisms such that there are ®ltrations

0 � P0 HP1 H � � � HPn � P; 0 � Q0 HQ1 H � � � HQn � Q
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with the property that

p�Pi�1�HQi nR B0; q�Qi�1�HPi nR B1:

Morphisms are given by commutative diagrams. On morphisms Nil W (fNil W ) is
de®ned as before. Then we de®ne Nil W

0 �R� ( fNil W
0 �R�) to be the K0�Nil W �R��

(K0�fNil W �R�� respectively). Using the polynomial and Laurent extension categories
we can de®ne the lower Waldhausen's Nil-groups as in [15], §7 and §8. The lower
Waldhausen's Nil-groups appear in the extension of the main exact sequence in [18]
to the right. Notice that, for each object R of T, there are functors ([19]):

P2
R ��!i�R�

Nil W �R� ��!f �R�
P2

R :

The reduced Nil-groups are equal to the kernel of the map that f �R� induces in
K-theory. In [7], Proposition 2.6, a natural isomorphism is constructed

F0 : fNil0�R; aR� ! fNil W
0 �R�

in the case that Bi are free as left and right R-modules for i � 0; 1. Using Lemma 3.2,
we see that such an isomorphism exists for all lower Nil-groups.

We shall use vanishing theorems for Waldhausen's Nil-groups to derive correspond-
ing results for the twisted Nil-groups and the NK-groups. A ring R is called coherent

if the category of ®nitely presented R-modules is abelian. The basic properties of
coherent rings are summarized in [10]. In particular Noetherian rings are coherent.
In [19], it was shown that if the ring R is coherent and has ®nite cohomological di-
mension then the Waldhausen Nil-groups vanish. We will prove the result for quasi-
coherent rings (compare with the quasi-regular rings in [2], Proposition 10.1).

De®nition 3.8. A ring R is called quasi-coherent if there is a two-sided nilpotent ideal
of R such that R=J is coherent of ®nite cohomological dimension.

Proposition 3.9. If R and all ®nite polynomial and Laurent extensions of R are com-

mutative quasi-coherent rings then

NKj�R� � fNiljÿ1�R� � fNil W
jÿ1�R� � 0; j U 0:

Proof. We are going to show the result for j � 0. An application of Lemma 3.2 will
imply the general case.

There is a commutative diagram of exact sequences

0 ���! NK0�R� ���! fK0�P0�FF�R��� ���!hF fK0�F2
R � ���! 0???yw 0

???yw0

???yw 00

0 ���! NK0�R=J� ���! fK0�P0�FF�R=J��� ���!hF fK0�F2
R=J� ���! 0
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where the vertical maps are induced by the projection w : R! R=J of rings. By
Proposition 2.11, the map w0 is a monomorphism which implies that w 0 is a mono-
morphism. But the ring R=J is coherent and of ®nite cohomological dimension. ThusfNil W

0 �R=J� � 0. Therefore NK0�R=J� � 0 being the epimorphic image of fNil W
0 �R=J�

under s0Fÿ1
0 . Since w 0 is a monomorphism, NK0�R� � 0. r

Remark 3.10. A commutative quasi-regular ring R satis®es the assumption of Pro-
position 3.9 ([2]). This is essentially Hilbert's basis theorem.

We now specialize to the case of amalgamated free products of rings as in [19]. Let
S � A0 �R A1 be the pushout in the category of rings ([19]). For simplicity we assume
that all the maps are ring monomorphisms and we identify a ring with its image in
the larger ring. We assume that Ai � RlBi as R-bimodules, i � 0; 1. In this case,
the epimorphism

sj : fNiljÿ1�R; aR� ! NKj�R�

is an isomorphism for all j U 1, and both of the groups are naturally isomorphic
to Waldhausen's lower Nil-groups ([7]). Actually in this case there is a functor r :
FF�R� !FS, r�F0;F1� � �F0 lF1�nR S such that the following diagram commutes

fNilj�R; aR� ���!sj�1
Kj�1�FF�R��

Fj

???y ???yr�

fNil W
j �R� ���!sj�1

Kj�1�S�

where sj�1 is the split injection de®ned in [19]. The commutativity of the digram
follows from Proposition 2.6 of [7] with the usual methods of extending results on
K0-groups of an additive category to lower K-groups.

Of course there is a more direct de®nition of the NK-groups as relative K-groups,
using the result of Lemma 2.7. More speci®cally,

NKj�R� � ker�fKj�Rr� ! fK j�R� R��; j U 1:

In other words, NKj�R�G fKj�Rr; I� where I is the augmentation ideal i.e. the kernel
of the augmentation map. Actually this description allows us to de®ne relative NKj-
groups. Let J be an ideal of Rr and J is its image under the augmentation map. Then
J is an ideal of R� R. We de®ne

NKj�Rr; J� � ker�fKj�Rr; J� ! fKj�R� R; J�:

With this interpretation the following result becomes classical

D. Juan-Pineda, S. Prassidis278



Lemma 3.11. With the above notation, there is a long exact sequence

NK1�Rr; J� ! NK1�Rr� ! NK1�Rr=J� ! NK0�Rr; J� ! � � � :

Proof. Let I be the augmentation ideal as above. The exact sequence stated in the
lemma is derived from the exact sequence of ideals

0! IX J! J! J=IX J! 0:

The details appear in [13]. r

4 On the Nil-groups of commutative rings

Let R be a commutative Artinian ring and Bi (i � 0; 1) be two R-bimodules such that
the right and left R actions coincide. Let J be the Jacobson radical of R and J be the
ideal of the endomorphism ring Rr generated by J. Then J is a nilpotent ideal. Let I

be the augmentation ideal of Rr ! R� R. Set J for the ideal JX I.

Lemma 4.1. With the above notation, NK1�Rr; J� is the image of the inclusion induced

map

K1�Rr; J� ! K1�Rr; J�:

Proof. By de®nition, the augmentation map induces isomorphisms

Rr=IGR� R; J=JG J � J:

Thus the augmentation map induces an isomorphism of relative groups

K1�Rr=I; J=J�GK1�R� R; J � J�:
With this observation, the exact sequence of the triple JH JHRr

K1�Rr; J� ! K1�Rr; J� ! K1�Rr=I; J=J�;

is reduced to

K1�Rr; J� ! K1�Rr; J� ! K1�R� R; J � J�:

The result follows from the de®nition of NK1�Rr; J� as the kernel of the augmenta-
tion map. r

Let U�Rr; J� be the units of Rr which map to the identity in Rr=J.

Lemma 4.2. With the above assumptions,

U�Rr; J� � 1� J:
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Proof. Since J is nilpotent, 1� JHU�Rr; J�. Also, if u A U�Rr; J�, then uÿ 1
belongs to J which proves the other inclusion. r

Proposition 4.3. The inclusion induced map

1� J! K1�Rr; J�
is an epimorphism.

Proof. The result follows from Theorem 9.1, p. 266 of [2]. r

Combining Proposition 4.3 with Lemma 4.1, we derive the following

Corollary 4.4. The image of the composition

1� J! K1�Rr; J� ! K1�Rr; J�
is NK1�Rr; J�.

Combining the above results with Lemma 3.11, we derive the following:

Corollary 4.5. The composition

1� J! NK1�Rr; J� ! NK1�R�

is an epimorphism.

Proof. Since R is Artinian, the Jacobson radical is nilpotent and R=J is regular. By
Proposition 3.9, NK1�R=J� vanishes. Thus Lemma 3.11 implies that the second map
is an epimorphism. The result follows from Corollary 4.4. r

The following lemma follows directly from the general form of the elements of the
ring Rr.

Lemma 4.6. The group 1� J is generated by elements of the form

1� j 0 0

0 1� j 00

� �
;

1 m 0

0 1

� �
;

1 0

m 00 1

� �
;

where j 0 A JTR�B1 nB0�, j 00 A JTR�B0 nB1�, m 0 A JB1 nTR�B0 nB1�, f 00 A JB0 n
TR�B1 nB0�.

Proof. A general element of 1� J has the form

1� j 0 m1

m2 1� j 00

� �
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Set m 01 � �1� j 0�ÿ1
m1 and m 02 � �1� j 00�ÿ1

m2. Then

1� j 0 m1

m2 1� j 00

� �
� 1� j 0 0

0 1� j 00

� �
1 m 01

m 02 1

� �
:

Now the last matrix can be written as a product

1 m 01
m 02 1

� �
� 1 0

0 1ÿm 02m 01

� �
1 0

�1ÿm 02m 01�ÿ1
m 02 1

� �
1 m 01
0 1

� �
:

The form of the decomposition completes the proof of the lemma. r

We further assume that Bi is isomorphic, as an R-bimodule, to a direct sum of
copies of R. Let fx�i�l i

gl i A Li
be a basis for the module Bi, i � 0; 1. We write F �i; i 0� for

the free algebra on the set fx�i�l i
:x
�i 0�
l i 0

: �li; li 0 � A Li �Li 0 g, where i 01 �i ÿ 1�mod 2.

The algebra F �i; i 0� is a subalgebra of the free algebra W on the union of the two

sets of generators i.e. the set fx�i�l i
; x
�i 0�
l i 0

: �li; li 0 � A Li �Li 0 g We also write

M�i; i 0; i� � L
l i ALi

x
�i�
l i

F �i 0; i� � L
l i ALi

F�i; i 0�x�i�l i
;

for the F �i; i 0� ÿ F�i 0; i�-bimodule (again i 01 �i ÿ 1�mod 2). All the operations take
place in the free algebra W.

Lemma 4.7. With the above notation, there is a ring isomorphism

Rr G
F�1; 0� M�1; 0; 1�

M�0; 1; 0� F�0; 1�
� �

:

Proof. When the bimodules are direct products of copies of the ring, then the tensor
algebra is isomorphic to the free algebra on the set of generators. The result follows
directly from this observation. r

Corollary 4.8. Under the assumptions of Lemma 4.7, an element of 1� J has the form

1� p1;0 p1;0;1

p0;1;0 1� p0;1

� �
:

where pi; j A JF �i; j� and pi; j; i A JM�i; j; i�. In particular, the entries of the matrix can

be represented as polynomials on non-commuting variables with coe½cients in J.

Thus we have a relatively complete description of the generators of NK1 in the case of
interest.
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Proposition 4.9. Let R and J be as above. Then NK1�R� is generated by the images of

elements of the form

1� p1;0 0

0 1� p0;1

� �
;

1 p1;0;1

0 1

� �
;

1 0

p0;1;0 1

� �
;

under the composition

1� J! K1�Rr; J� ! NK1�Rr; J� ! NK1�R�:

Proof. By Corollary 4.5 the composition is an epimorphism. But Lemma 4.6 and
Corollary 4.8 imply that the three types of matrices generate 1� J.

5 Calculation of the generating set

Now we specialize to the case of interest. Let G be a ®nitely generated abelian group,
G � H � T m with H a ®nite abelian group of order n and T the in®nite cyclic group.
Set R � ZH and R 0 � ZG. Then R 0 is the Laurent ring of R in m commuting vari-
ables i.e. R 0 � R�s1; s

ÿ1
1 ; . . . sm; s

ÿ1
m �. Also, let n � pk1

1 pk2

2 � � � pks
s be the decomposition

of n into prime factors. Choose integers l1; . . . ; ls such that plr
r V krn for all r and set

n 0 � pl1
1 pl2

2 . . . pls
s . Let Bi (i � 0; 1) be two R 0-bimodules such that the right and left

R 0 actions coincide and R 0 � �R 0;B0;B1�.

Theorem 5.1 (Main Theorem). With the above notation

(i) NKj�R 0� � 0 for j Uÿ1,

(ii) n 0NK0�R 0� � 0.

Proof. The proof is classical in this context. The basic ideas can be traced back to
Bass ([2]) but we use more the methods of Connolly±daSilva ([6]). Let ZH HM H
QH be a hereditary order. Then nM HZH and we get the following cartesian square
of ring homomorphisms

ZG ���! M�s1; s
ÿ1
1 ; . . . sm; s

ÿ1
m �???y ???y

�ZG=nM��s1; s
ÿ1
1 ; . . . sm; s

ÿ1
m � ���! �M=nM��s1; s

ÿ1
1 ; . . . sm; s

ÿ1
m �:

The ring M is regular and the rings R=nM and M=nM are quasi-regular because
they are ®nite rings. Thus the Laurent rings satisfy the same properties. Therefore the
result of Theorem 3.7 implies that

(i) NK j�R 0� � 0 for j Uÿ1.

(ii) NK1�M=nM� ! NK0�R 0� is an epimorphism
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Combining part (ii) from above and Corollary 4.5 we have an epimorphism

1� J! NK1�M=nM� ! NK0�R 0�;

where J is the Jacobson radical of M=nM, J is the ideal of the endomorphism ring of
the basic object of M=nM generated by J, and J is the intersection of J with the
augmentation ideal. We shall show that each member of the generating set of
NK0�R 0� induced by the generators of 1� J described in Proposition 4.9 has expo-
nent n 0. Let x1 be the image of the generator of the form

x1 � q
1� p1;0 0

0 1� p0;1

� �
:

The elements p1;0 and p0;1 are polynomials on non-commuting variables with co-
e½cients in the ideal J�s1; s

ÿ1
1 ; . . . sm; s

ÿ1
m �. The calculations in the proof of the main

theorem, part (b) in [6] show that

�1� p1;0�n
0 � �1� p0;1�n

0 � 1;

which implies that n 0x1 � 0. For the other generators, notice that if a A
J�s1; s

ÿ1
1 ; . . . sm; s

ÿ1
m �, na � 0 and thus n 0a � 0 because njn 0. Therefore

1 p1;0;1

0 1

� �n 0

� 1 n 0p1;0;1

0 1

� �
� I :

That implies that n 0-times the generator which is the image of the above matrix
vanishes in NK0�R 0�. A similar argument applies for the other type of generators. r

Let Gi, i � 0; 1, be two groups that satisfy the Vanishing Conjecture. We can use
Waldhausen's splitting theorem for amalgamated free products and the vanishing
result of Theorem 5.1 to show that certain amalgamated products of Gi, i � 0; 1,
satisfy the Vanishing Conjecture.

Theorem 5.2. Let Gi, i � 0; 1, satisfy the vanishing condition and G a ®nitely generated

central subgroup of their intersection. Let G � G0 �G G1. Then

Kj�ZG� � 0; j Uÿ2:

Proof. By Theorem 5.1 the exotic Nil-groups vanish. Thus there is an exact sequence,
for j Uÿ1

���� Kj�ZG0�lKj�ZG1� ! Kj�ZG� ! Kjÿ1�ZG�:

But Kj�ZGi� � K j�ZG� � 0, for i � 0; 1, j Uÿ2 by assumption. The vanishing result
follows. r
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For the discrete subgroups of the cocompact discrete subgroups of Lie groups, the
Kÿ1-group is generated by the images of Kÿ1-groups of ®nite subgroups ([8], [9]). We
generalize the result to certain amalgamated free products of such groups.

Corollary 5.3. With the notation as in Theorem 5.2, assume further that Kÿ1�ZGi�
is generated by the images of Kÿ1 of its ®nite subgroups, i � 0; 1. Then Kÿ1�ZG� is

generated by the images of its ®nite subgroups.

Proof. For j � ÿ1, the exact sequence ���� provides an epimorphism

Kÿ1�ZG0�lKÿ1�ZG1� ! Kÿ1�ZG� ! 0:

By assumption, the groups Kÿ1�ZGi�, i � 0; 1, are generated by the images of the
Kÿ1-groups of their ®nite subgroups. Thus Kÿ1�ZG� is generated by the images of
the Kÿ1-groups of the ®nite subgroups of G0 or G1. By the Corollary in [16], p. 36,
every ®nite subgroup of G is contained in a conjugate of G0 or G1. Since inner auto-
morphisms induce the identity in K-theory, the images of Kÿ1�ZF 0�, where F 0 is a
®nite subgroup of G0 or G1, and the images of Kÿ1�ZF � in Kÿ1�ZG� generate the same
subgroup. The result follows. r
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