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Abstract

We study the nil groups in the algebrait-theory of the group ring of a virtually cyclic group.
We prove these vanish in low degrees and mention some consequences in case the Farrell-Jones
Isomorphism conjecture is valid.
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1. Introduction

A group is calledvirtually cyclicif it is either finite or has an infinite cyclic subgroup
of finite index. The relevance of studying properties of virtually cyclic groups is that the
so-called Isomorphism Conjecture (IC) suggests that they completely determine algebraic
and topological invariants such as the algeb#itheory of the group ring of any discrete
group, see also [8] for other invariants. This conjecture has been verified in special cases.
Our main result is the following, this may be regarded as a natural consequence of the
resultsin [11,12].
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Main Theorem. Let I" be a virtually cyclic group and denote the ring of integers in an
algebraic extension of the rationals. Then

N'K;(R[')=0, forr>1,i<-1

The case of finite groups and infinite virtually cyclic groups of the type T where
H is a finite group and the infinite cyclic group is in [3], hence our contribution is the
case of infinite virtually cyclics.

Our analysis of infinite virtually cyclic groups is based on the following classification
theorem due to P. Scott and T. Wall:

Proposition 1 [19, Theorem 5.12]Let I" be an infinite virtually cyclic group. Thef is
isomorphic to

Type 1. A semidirect producH x T whereH is a finite group and’ is the infinite cyclic
group, or
Type 2. A nontrivial amalgam of finite groups of the form

Go * G1,
H
where|Go: H|=2=1|G1: H|.

Thus, the techniques arevidied accordingly. For grups of type 1 we use a twisted
version of Bass—Heller—Swan formula found by Farrell and Hsiang in [7] then extended in
[5] and in [9]. Groups of type 2 require the analysis of Waldhausen'’s nil groups associated
to a co-Cartesian square of rings. These techniques are essentially those of the paper by
Connolly and Da Silva in [3] and then explored extensively by Connolly and Prassidis [5],
Prassidis and Juan-Pineda [12], Farrell and Jones [9] and Juan-Pineda [11]. An important
improvementin our techniques is that it allows us to work with group rings of the fafm
whereR is any ring of integers in an algebraic extension of the rationals and not only the
integers. This is relevant as more general Isomorphism Conjectures have been proposed,
see, for example, [2].

This paper is organized as follows: we first recall the background material to study the
algebraicK -theory of RI" whenTI is an infinite virtually cyclic group. Since there are two
classes of infinite virtually cyclics we recalie¢ machinery for each. Finally, we prove the
main result in the last two sections. We thank the referee for many valuable suggestions to
improve this presentation.

2. Statement of results

We set up our Main Theorem in this section, mention some of its consequences and
relate these to other results. For any ridget K; (R) denote the algebraik -groups ofR
for all i € Z. In the process of studying the&egroups one is led to study the relation in
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algebraicKk -theory of a ring with that of its polynomial (Laurent) extension, this was done
by Bass—Heller—Swan [1] and leads to the discovery of the nil groups. These are defined as

NK;(R) =Ker[K; (R[1]) <> K;(R)],

wheree, is induced by the augmentatien R[] — R. The relation betweek; (R) and
K;(R[t]) is given explicitly by Bass—Heller—Swan formula, [18, 3.2.22]:

Ki(RIT]) Z K;(R) ® Ki—1(R) ® 2NK;(R) fori <1.

One instance in which there are no nil terms is the following

Theorem 2 (Bass—Heller—Swan).et R be a regular ring then
Ki(RIT) = Ki(R)® K;_1(R) foralli<1.

Higher nils,N", are defined inductively by takinB[z1, ..., ¢,]. An alternative definition
may be found in [3].

Main Theorem. Let I" be a virtually cyclic group and® denote the ring of integers in an
algebraic extension of the rationals. Then
N'K;(R[N =0, forr>1,i<-1
To put this in context, we explain the motivation for looking at the nil groups associated
to virtually cyclic groups. LeiG be a discrete group and denote Bythe family of all

virtually cyclic subgroups o6, by O the orbit category o restricted taF, and byKR
the Davis—Luck functor [6]:

KR:0O — SPECTRA

This functor evaluated at each objeGy H is weak homotopic to the nonconnective
delooping [14] of the algebrai& theory spectrum of the rin@ H; with this machinery
Davis and Liick [6] constructed a generalized homology theory on the categGrCyf/-
complexes:

Hy(=—; KR),
and associated to this we have a correspondgsgmblymap:

Ag 7 Hi(E/G; {KR}) — K« (RG), @)
where&/G denotes a classifying space for the famffy The Isomorphism Conjecture

proposes:

Isomorphism Conjecture. Ag 7 is an isomorphism for any discrete grodp and any
ring R.

The Isomorphism Conjecture has been fiedi in some cases, for example, in [2],
Bartels, Farrell, Jones and Reich prove the conjecture for anyRinghen G is the
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fundamental group of a compact Riemannian manifold with strictly negative sectional
curvature and < 1, see also [10].

Recall that the assembly maps are natural in the Rngnd the groupG, with this
observation we have a split cofibration of spectra over the orbit category

KR — KR[t]— NR

induced by the inclusio® — R[¢] and whereN' R is by definition the cofiber and has
homotopy groups the nil groups &H at the objecG/H.

From the long exact sequence in generalized homology associated to thesphbve
cofibration and from the identit®[¢]G = RG[¢], we have the following, compare with [2,
Proposition 7.4].

Proposition 3. AssumeAg £ is an isomorphism. ThedA g, # is an isomorphism if and
only if

NAg 7 H(E/G; NR) — NK.(RG)
is an isomorphism as well, wheré A is the assembly map corresponding to the spectrum
valued functorV'R.

We may rephrase the above propositity saying that the nil groups &G depend on
regular nil groups, twisted nil groups and Waldhausen nil groups as well. The precise way
in which all of these interact is built in the groups

H.(E/G; N'R).
and in the spacé&/G.

Corollary 4. Assume the assembly map
Ag.7 H.(€/G; {KR}) — K«(RG),

is an isomorphism for the ring of integeRsin an algebraic extension of the rationals, its
polynomial extensio®[¢]; and forx < 1. Then

NK;(RG)=0 fori< -1

Proof. From Proposition 3 we have that
NAg 7 H(E/G; NR) - NK(RG)

is an isomorphism fox < 1. There is an Atiyah—Hirzebruch—Quinn [15] spectral sequence
computingH.,.(£/G; N'R) with E2-term given by

Elth = H[’(g/G§ {NKq(RH)}) :>Hp+q(8/G;NR),

WhereH,(£/G; {NK,(RH)}) is the homology of the spa/ G with local coefficients
the NK,(RH)-groups andd runs over the virtually cyclic subgroups 6f. Now, in the
rangep + g < —1, we have by our Main Theorem thatK,(RH) = 0, this gives that
E3 ,=0and therefore & H;(£/G; NR) = NK;(RG) fori <—1. O
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3. Background material

In this section we outline the basic definitions and results to be needed. Given a finite
group H of ordern. Let R be the ring of integers in an algebraic extensiorof the
rationals. One of the main ideas is to find an appropriaterder A with the property
that RH C A andnA C RH, the consequence is that we may place the ®¥g in
a Cartesian square where everything elsequiasi-regular. Hence the Mayer Vietoris
sequence associated to this square will give the vanishing ofkheV(" K;)-groups in a
certain range. This has been observed by many authors, e.g., [16,17]. The extra ingredient
is that we have to consider not only the ri®gZ but an automorphisra: RH — RH
as well, hence we need aninvariant order inRH that is maximal with this property.

If it were only maximal it would also be hereditary, hence the difficulty is to find this
invariant underr, this was achieved in [9, Theorem 1.2] for the cae- Z and in the
above generality in [11, Theorem 2], it has also been accomplished by Kuku and Tang in
[13]. The precise statement is:

Proposition 5 [11, Theorem 2]Let H be a finite group of order anda: H — H an
automorphism. Then there exists Rrorder A € L H with the following properties

(1) RH C 4;

(2) A is a-invariant,

(3) A is aright hereditary ring, hence right regular
(4) nACRH.

Corallary 6. Given a finite groupH of ordern, a ring R and automorphismn as above,
let A be anR order as in the above theorem. Then the following is a Cartesian square
RH——A

L

RH/nA——A/nA
Now, recall that given a Cartesian square of rings where at least one of the morphisms
landing inS is surjective:
R——=Ap
Al——S
we have, forr > 1, a Mayer Vietoris exact sequence associated to this [1, Theorem 8.3,
p. 677]
N"K1(R) — N"K1(Ao) ® N"K1(A1) — N"K1(S)
— N"Ko(R) — N" Ko(Ag) ® N" Ko(A1) = N" Ko(S)
— N'K_1(R) —> ---.
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3.1. Waldhausen nils

We mentioned the Mayer Vietoris sequence associatekl theory when we have a
Cartesian square of rings. The dual situation would be that of having a co-Cartesian square
of rings (or a pushout). This time the relation Ah-theory is more intricate and leads to
Waldhausen nil groups, these were extensively studied in [20] and in some sense they
measure the failure of the expected sequence to be exact. Here is the setup, the following
material may be consulted in detail in [12,5].

Let 7 be the following category: the objects are tripRs= (R; Bg, B1), whereR is
a ring andBg, B1 are R-bimodules. A morphismi¢, fo, f1): (R; Bo, B1) — (S, Cop, C1)
where¢ : R — S is a ring homomorphism angi : B; g S — C; (i =0, 1) are(R — S)-
bimodule homomorphisms. The Waldhausen nil grodﬁlgv,v, are functors front to the
category of Abelian groups, their definition is as follows: given an obifeict t, we define
the categorWil (R) whose objects are quadruple’, Q; p, ¢) whereP andQ are finitely
generated projective riglR-modules and

p:P— 0Q Bo, q9:0—>P®B1
are R-homomorphisms such that the following compositions vanish after finitely many
steps
1
PLo®B™S PoBi®BI— -,
1
0% P2B"™2 00 By®BL— ---.

Morphisms are homomorphisms on the modules compatible with the corresponding maps.
Moreover, exact sequences are defined in the obvious way and observe that there is a
forgetful functor

F:Nil(R) = Pgr x Pg,
where Pg denotes the category of finitely generated projecitvenodules. The Wald-
hausen nil groups are defined as

Kl (R) = Ker(K: (Nil(R)) 2 K; (P x Pr)). forieZ

Our next task is to identify the Waldhausen nils with the redugetheory of an
augmented ring, this is one of the maiesults in [4, Proposition 2.6 when= 1] and
[12, Remarks after Theorem 3.7 for< 1]. We describe the augmented ring, given an
R-bimodule M, let Tr(M) denote the tensor algebra #f. Now, given a tripleR =
(R; Bo, B1) we define the following matrix ring

Tr(B1 ®r Bo) B1 ®g Tr(Bo ®r Bl))
Bo ®gr Tr(B1 ®r Bo) Tr(Bo ®r B1)

where multiplication is given by matrix multiplication and on each entry by concatenation.
There is a natural augmentation map

R O
8:Rp—><0 R)'

Rp=p<R>:(
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Recall that theVK groups ofR,, are by definition the kernels of the induced dyn the

correspondingk theories. The relation betweevik (R,) and NTIW(R) is given by the
following proposition

Proposition 7 [4,12, loc. cit.].There are natural isomorphisms

NKi(R) =NilY (R), fori<1.
We now recall some vanishing results for Waldhausen nils

Proposition 8 [20]. Let R be a regular ring, then for any tripl& = (R, Bg, B1), it follows
that

NilY(R)=0 foralliez.

The above may be improved, a rilRyis quasi-regularif it has a two sided nilpotent
ideal J such thatrR/J is regular.

Proposition 9[5, Corollary 3.13]Let R be a quasi-regular regular ring, then for any triple
R = (R, Bo, B1), it follows that

Nl (R)y=0 fori<—1.
Here is how triples arise from co-Cartesian square of rings. Let

co-CS1.

R——=Agp

|

Aj——S§

be a co-Cartesian (a pushout) square in the category of rings. We call thnassible
square if the morphisms coming out Bfare pure inclusions, i.e., they are inclusions and
induceR-bimodule splittings

Ai=R&B;, fori=0,1.
These splittings define the triple
R = (R; Bo, B1).

Furthermore by [20], associated to a co-@aian square as above, there is a long exact
sequence (for all € Z)

= Ki(Ao) ® Ki(A1) — Ki(S) > Kica(R) @ Nl J(R) — - --.

We concentrate in a special kind of triplé@stroduced in [5], and defined as follows: let
R be our ground ring and let: R — R be a ring isomorphism, we denote By the free
R-bimodule where the lefR multiplication is the usual ok and the right multiplication
isrs=ra(s).
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Definition 10. An admissible triple is one of the forlR = (R, R*, R?) for some
automorphisma andg of R.

One of he main efforts of [5] is to analyze the Waldhausen nils of admissible triples. We
recall one of the main result®ocerning admisbie triples.

Proposition 11[5, 3.2,3.8,3.13]There are natural isomorphisms
NilY (R: R, RP) = Kil)Y (R: R, R) = Nil¥ (R: R, RP*).
We now specialize in triples arising from amalgams. Cet Go % G1 be an amalgam
of finite groups where
|Go:H|=2=1|G1: H|.

This is an infinite virtually cyclic group of type 2. The group rimy" fits into a co-
Cartesian square

co-CS2.

RH——Ag

.

A1——RTI

where Ag = RGo, A1 = RG1 and Bg = R[Go — H], B1 = R[G1 — H]. Observe that

eachB; is a free leftRH module but the rightR H-module structure iswisted by an

automorphism ok H, induced by an automorphism &f. This gives the admissible triple
R=(RH; RH®, RH?). )

Next, from an admissible diagram as co-CS 1, we get the following admissible diagram
by taking polynomial extensions:

co-CS3.

R[t] —— Aol1]

L

A1lr]——=Sl1]

and from this we get the tripl®[¢] = (R[t]; Bolt], B1[t]). Now, there is an obvious
inclusion from co-CS 2 into co-CS 3 whose induced cokernels define the Bass nils of
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all rings in the squares, this gives a natural transformation of long exact sequences, and for
i<l

- Ki(Ao) @ Ki(A1) Ki(S) Ki—a(R) @ Ni)Y (R) — -

|

- Ki(Aolr]) @ Ki(A1[t]) —— Ki(S[t]) —=K; _1(R[t]) ® NTIJ/Yl(R[t]) — ..
By taking cokernels of all vertical maps we have a long exact sequence. We may summatrize
the above discussion in the following:
Proposition 12. Let I" be an infinite virtually cyclic group of the form

I' =Go x Gy,

H

where|Go: H|=2=|G1: H|. Then, there is a long exact sequenceiferl, r >0

---N"K;(RGp) ® N"K;(RG1) — N"K;(RI')

— N"Ki_1(RH)® N'RilY,(R) — - -, ©)

whereR is as in(2), and N" () are the Bass nils.

This is a Bass—Connolly—Da Silva—Milnor type sequence associated to a pushout.

4. Twisted nils

LetI" = H x T, whereH is a finite group of order andT denotes the infinite cyclic
group. Lete denote the automorphism &f that defines the semidirect product structure
of I'. Then the group ringRI" is isomorphic to the twisted Laurent polynomial ring
RH,[T] see, for example [7]. By Proposition 5 there isRyorder A which isa-invariant
and fits in the following Cartesian square

Csl.
R[H x T]———— A,[T]

|

(RG/nA)o[T]——(A/nA)o[T]

Now by Proposition 1.4 of [9], all the terms in the above square are quasi-regular, except
R[H x T]. To simplify the writing, let us renamB, = (RG/nA)y andCy, = (A/nA)g,
from the Mayer Vietoris sequence in nil groups associated to the above Cartesian square
we have fori <1 andr > 0:

- N"K;(RT') - N"K;(By[T]) ® N"K;(Aa[T])
— N"K;(Col[T]) > N"Ki_1(RT") — ---.
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But by quasi-regularity,
N'K;($)=0, forr>1i<0

whensS is B,[T], Aq[T] or C,[T], hence it follows that
N'K;(R[)=0 forr>1,i<-1

5. N7

LetI" =Gg :; G1 be our infinite cyclic group of the second type, whgsg: H| =2 =
|G1: H|, andH is a finite group.
By Proposition 7 we may identifp’dvilg/fl(R) with the N K; groups of a suitable matrix

ring R, . Let A be a regulaw-invariantR-order, contained itk H given by Proposition 5.
This induces triples, that by Propositiofh ve may assume of the following form

A= (A, A% A)

R/nA = (RH/nA,(RH/nA)*, RH/nA)

A/nA=(A/nA,(A/nA)*, A/nA),
which in turn gives corresponding matrix rings,, (RH/nA),, and(A/nA), which fit
into a Cartesian square [5, Proposition 3.14]

Cs2.

RH,— - A,

(RH/nA), —=(A/nA),

Observe that the rings,, (RH/nA),, and(A/nA), are quasi-regular, heneek; () =
0 for i < 0 and for any of these rings. The Mayer—Vietoris associated to the Cartesian
squareCS 2 gives fori < —1 exact sequences

0— NK;(RH,)— 0.

ThusKil?Y, (R) = NK;(RH,) vanishes for < —1, and consequentiiil,” (R) vanishes
fori < —2.
Now, fori > 1, from the exact sequence

NK_i(RGo) ® NK_i(RG1) > NK_;(RI")
— NK_i_1(RH)® NNl _;(R) > -,
the fact thatH, G, andG1 are finite, and from [3, Propa®n 4.4] it follows that
N'K;{(R['Y=0 fori<-1, r>1.
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