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1. Introduction

The idea of using estimates in geometric topology appeared in the early developments of the

field. The work that used controlled methods to approach classical problems in geometric topology

was done by E. H. Connell and J. Hollingsworth ([30]). In this paper, the authors introduce

estimates in computing algebraic obstructions. Later, controlled topology was developed by T.

Chapman, S. Ferry and F. Quinn and it became an important tool in the topological classification

of topological manifolds. The basic idea in controlled topology is to put an estimate on geometric

obstructions. Typical theorems in controlled topology state that if the obstructions are small

enough, in an appropriate sense, then they vanish. Another feature of controlled topology is that it

captures the homological properties of the obstruction theory. That makes controlled obstructions

easier to compute. Essentially, the controlled components reflect the smooth and cellular nature of

the obstruction and their complements, the non-controlled components reflect purely topological

phenomena. Beyond classification and rigidity theorems controlled topology was applied in the

study of group actions on manifolds, equivariant and stratified phenomena.

In the first sections, we present the basic definitions and properties of lower algebraic K-theory.

We connect the algebraic definitions with the geometric ones and we present the basic topological

applications. The obstructions that appear in topology split into two pieces, the non-controlled

and the controlled piece. We continue with the basic constructions of controlled K-theory and

its applications. At the same time, we present the non-controlled part of K-theory, namely the

Nil-groups. Usually the Nil-groups encode splitting obstructions that correspond to obstructions

of reducing the problem to a problem in controlled topology.

There are two applications that will be discussed. The first is the controlled approach to the

classical Fundamental Theorem of Algebraic K-theory. The theorem states that

Wh(X×S1) ∼= Wh(X)⊕K̃0(X)⊕Ñil(X)⊕Ñil(X).

Thus, the theorem calculates theK-theory ofX×S1 in terms of theK-theory ofX. Using controlled

topology, the theorem can be expressed as follows:

Wh(X×S1) ∼= Wh(X×S1, p)c⊕Ñil(X)⊕Ñil(X)
1
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where the p : X×S1 → S1 is the projection map. The group Wh(X×S1, p)c is the controlled

Whitehead group and it has the following homological property:

Wh(X×S1, p)c
∼= Wh(X)⊕K̃0(X)

the proof presented here uses geometric methods that were based on the controlled topology of

Hilbert cube manifolds ([62]).

The Fundamental Theorem of K-theory calculates the K-theory of spaces that admit a natural

map to S1. Waldhausen’s Splitting Theorem calculates the K-theory of spaces that admit a natural

map to the unit interval. We interpret Waldhausen’s result using controlled topology. Again, the

K-theory of such spaces splits into two summands, the one that its the controlled K-theory over

the interval and the other that is Waldhausen’s Nil-groups.

The second result that is presented here is a controlled approach to Farrell–Jones Isomorphism

Conjecture. The conjecture states that certain obstruction groups are isomorphic to homology

groups. In other words, the obstruction groups have some homological properties. That means

they can be calculated using induction techniques, which in this case are encoded using spectral

sequences. More precisely, the conjecture in K-theory predicts that the K-theory of any group can

be calculated from the knowledge of the K-theory of its virtually cyclic subgroups (finite subgroups

and finite group extensions by the infinite cyclic group) and their lattice structure induced by

inclusion and conjugation. The homological part of the Isomorphism Conjecture can be interpreted

as a controlled K-group. We show that in the case that the space admits a natural map to the circle

or the interval, then the controlled part of the K-theory can be described always as a homology

theory with the appropriate control. As an application, we give an alternate proof of the fact that

the free groups satisfy the K-theory Isomorphism Conjecture. It should be noted that the existing

proofs of the Isomorphism Conjecture use controlled techniques. From the classical proof in [43] to

more recent results like in [12], first a theorem in controlled topology is proved and then it is used

to prove special cases of the Isomorphism Conjecture.

The author would like to thank Bruce Hughes, Daniel Juan Pineda, and Jean François Lafont

for their useful comments. Also, the author would like to extend his gratitude to the referee

whose comments made the paper more coherent. Furthermore, the author would like to thank the

Mathematics Department at the University of the Aegean for their hospitality during the completion

of the paper.

2. Very Short Introduction to Algebraic K-Theory

Let R be a ring. To avoid degenerate situations, we assume that R is a ring with identity and

that finitely generated free modules have well-defined rank i.e.,

Rn ∼= Rm ⇐⇒ n = m.
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Remark 2.1. Classical examples of such rings are commutative rings. The proof is very short and

elegant: Let R be a commutative ring and M a maximal ideal in R. Then R/M is a field. Assume

that Rn ∼= Rm, as R-modules, which implies MRn ∼= MRm. Then:

(R/M)n = (R/MR)n ∼= Rn/MRn ∼= Rm/MRm ∼= (R/MR)m = (R/M)m.

But (R/M)n and (R/M)m are vector spaces over the field R/M . Since they are isomorphic, they

must have the same dimension. Thus n = m.

For a group G and a ring R, RG denotes the group ring of G with coefficients in R:

RG =

{
n∑

i=1

rigi : ri ∈ R, gi ∈ G, for i = 1, 2, . . . , n

}
.

For example,

(1) LetG = Z
n be the free abelian group generated by ti, i = 1, . . . n. ThenRG = R[t±1

1 , . . . t±1
n ],

the ring of Laurent polynomials on n variables with coefficients in R. In particular, if

G = C∞, the infinite cyclic group generated by t,

RC∞ = R[t, t−1] =

{
n∑

i=−m

rit
i : ri ∈ R, m, n ∈ N

}
.

(2) If G = Cn, the cyclic group of order n, generated by t then RCn is a quotient of the

polynomial ring on one variable:

RCn
∼= R[t]/(tn − 1).

(3) Let G = Fn be the free group generated by xi, i = 1, . . . n, then RFn is the Laurent ring on

n non-commuting variables with coefficients in R:

RFn = R{x±1
1 , . . . x±1

n }.

(4) Let G = H⋊αZ be the semi-direct product of H be Z with α the action of the generator

of Z on H. Then RG ∼= RHα[t, t−1], the twisted Laurent polynomial ring of RH. More

precisely, for r, s ∈ RH,

(rtn)(stm) = rα−n(s)tn+m.

Remark 2.2. If R has well-defined rank for finitely generated free modules, so does RG, for any

group G. The proof is the same as in Remark 2.1 where the maximal ideal M is replaced by the

augmentation ideal I:

I = Ker(ε : RG→ R)

where ε is the augmentation homomorphism.
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2.1. K0, K1 and Nil-groups of rings. By a module over a ring R we will mean a left module.

Everything works the same when right modules are chosen instead. The basic definitions are

included in [6] and [78].

Definition 2.3. The group K0(R) is defined as FR/NR where:

• FR is the free abelian group generated by the isomorphism classes of finitely generated

projective R-modules.

• NR is the subgroup of FR generated by elements of the form [P0⊕P1]− [P0]− [P1].

Examples. Some very basic examples:

(1) If F is a field, then K0(F ) ∼= Z, and the isomorphism is given by the dimension.

(2) For G = Z
n, K0(ZG) ∼= Z (Bass–Heller–Swan, [7]).

(3) If G = Fn, K0(ZFn) ∼= Z (Gersten, [51]).

(4) If R is the ring of integers in a number field, then K0(R) is isomorphic to the class group

of R ([78]).

(5) Let X be a compact Hausdorff topological space and C(X) be the ring of continuous

functions from X to R. Then K0(C(X)) ∼= K0(X) where K0(X) is Atiyah’s geometric

K-group of real vectors bundles over X (Swan, [86], [78]).

For the definition of K1(R), let GL(n,R) be the group of invertible n×n-matrices with entries in

R. Let E(n,R) be the subgroup generated by elementary matrices i.e., matrices that are formed

from the identity by adding the multiple of a row (or column) to another row (or column). More

precisely, E(n,R) is generated by matrices ei,j(r), with 1 ≤ i, j ≤ n, i 6= j, r ∈ R, of the form:

ei,j(r) =




1 0 . . . . . . . . . . . . . . . 0

0 1 . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . 1 . . . r . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . . . . . . . . . . . . . 1




where r is the (i, j)-position. There are monomorphisms:

GL(n,R)→ GL(n+ 1, R), E(n,R)→ E(n+ 1, R)

induced by the map

A 7→

(
A 0

0 1

)
.
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Taking direct limits:

GL(R) = lim
−→

GL(n,R) =
∞⋃

n=1

GL(n,R), E(R) = lim
−→

E(n,R) =
∞⋃

n=1

E(n,R).

Lemma 2.4 (Whitehead’s Lemma). [GL(R), GL(R)] = E(R).

Proof. The following holds in GL(2n,R) for each invertible n×n-matrix u:
(
u 0

0 u−1

)
=

(
1 0

u−1 1

)(
1 1− u

0 1

)(
1 0

−1 1

)(
1 1− u−1

0 1

)

So that the matrix on the left hand side of the equation is elementary. For the commutators, we

see that

[g, h] =

(
g 0

0 g−1

)(
h 0

0 h−1

)(
(hg)−1 0

0 hg

)

which implies that the commutators belong to E(R). �

Definition 2.5. For a ring R define K1(R) = GL(R)/E(R).

Remark 2.6.

(1) Whitehead’s Lemma implies that K1(R) is abelian.

(2) K1(R) can be thought as the obstruction for solving a system of linear equations with

coefficients in R using Gauss operations of the third type (adding a multiple of an equation

to another equation).

Examples

(1) If F is a field, then the determinant map induces and isomorphism K1(F ) ∼= F \ {0}.

(2) In general, if R is a commutative ring then the determinant induces a homomorphism:

det : K1(R)→ U(R),

where U(R) are the units of R. The map det is a split surjection (Proposition 2.2.1 [78]).

We write SK1(R) = ker(det). When R = Z, the determinant map induces an isomorphism

K1(Z) ∼= Z/2Z.

(3) If R is the ring of integers in a number field, SK1(R) vanishes and K1(R) is the group of

units of R ([78]).

(4) For a compact Hausdorff topological space X and C(X) be the ring of continuous functions

from X to R, Then K1(C(X)) ∼= K1(X) Atiyah’s geometric K-group of real vectors bundles

over X ([78]). Actually, the Serre–Swan’s Theorem states that the category of real vector

bundles over X is equivalent to the category of finitely generated projective modules over

C(X).
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Let α : R → R be a ring automorphism. Let M be an R-module. A map f : M → M is called

α-linear if:

• f(m+ n) = f(m) + f(n), for all m, n in M .

• f(rm) = α(r)f(m), for all r ∈ R, m ∈M .

Consider pairs (P, ν) where P is a finitely generated projective R-module and ν is an α-linear

nilpotent endomorphism of P . We call such pairs nil pairs. A morphism of nil pairs

f : (P, ν)→ (Q,µ)

is an R-linear homomorphism f : P → Q making the diagram commutative:

P
f

−−−−→ Q

ν

y
yµ

P
f

−−−−→ Q

Exact sequences of nil pairs are given by:

0→ (P0, ν0)
f
−→ (P, ν)

g
−→ (P1, ν1)→ 0 (E)

where the following diagram of exact sequences commutes:

0 −−−−→ P0
f

−−−−→ P
g

−−−−→ P1 −−−−→ 0

ν0

y ν

y ν1

y

0 −−−−→ P0
f

−−−−→ P
g

−−−−→ P1 −−−−→ 0

Notice that, in general, the exact sequence (E) does not split i.e., (P, ν) is not the direct sum of

(P0, ν0) and (P1, ν1). Actually, if we identify P ∼= P0⊕P1 then:

ν =

(
ν0 χ

0 ν1

)
: P0⊕P1 → P0⊕P1,

where χ : P1 → P0 is any α-linear homomorphism.

Definition 2.7. The group Nil(R,α) is defined as FNR/NNR where

• FNR is the free abelian group generated by the isomorphism classes of nil objects (P, ν).

• NNR is the subgroup generated by:

– Elements of the form

[P, ν]− [P0, ν0]− [P1, ν1]

for each exact sequence (E).

– Elements [F, 0] where F is a finitely generated free R-module.

The reduced Nil-group Ñil(R,α) is defined to be the subgroup of Nil(R,α) generated by elements

of the form [F, ν] where F is a finitely generated free R-module. We write Ñil(R) for Ñil(R, idR).
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Remark 2.8.

(1) Suppose that α has finite order. Then if Ñil(R,α) 6= 0 it is infinitely generated (Farrell for

α = 1 ([39]), Ramos ([76]) and Grunewald ([54], [55]) for the general case). The question

of finiteness or not of Nil-groups is open when α has infinite order.

(2) Remember that a ring R is called regular coherent if every finitely presented R-module M

admits a resolution by finitely generated projective modules. The ring is called regular

Noetherian is if in addition any finitely generated R-module is finitely presented. If R is a

regular coherent ring then Ñil(R,α) vanishes (Bass ([6], [7]) and Waldhausen ([90])).

(3) Group rings of finitely generated free groups are regular coherent. Group rings of finitely

generated free abelian groups are regular Noetherian. Even though twisted polynomial

rings of Noetherian rings are Noetherian, the same is not true for coherent rings ([52]).

The remarks leave open two conjectures.

Conjecture 1. Let R be any ring and α : R → R a ring automorphism of infinite order. Then

Ñil(R,α) is either zero or infinitely generated.

Conjecture 2. Let R be a ring of finite cohomological dimension (i.e., there is a number n so

that every module has a resolution of finite length at most n). Then Ñil(R,α) = 0 for each ring

automorphism α.

For the second conjecture, recent developments are presented in [14] and [15].

Remark 2.9. The following question has been asked by Tom Farrell: Given a ring R and a ring

automorphism α of R, is there a ring S so that Ñil(R,α) ∼= Ñil(S)? For partial results the reader

should check [5]. Related to the above question is the following: Let R be a ring so that Ñil(R) = 0.

Is it true that Ñil(R,α) = 0 for any ring automorphism α of R?

Remark 2.10. There is a common pattern in the definition of the K-groups given above. The

K0-groups should be considered as the Grothedieck groups of matrices that are projections, the

K1-groups of invertible matrices and the Nil-groups of nilpotent matrices.

2.2. Algebraic K-theory in Topology. We present some of the basic applications of algebraic

K-theory to topology. For the topological applications we need certain quotients of the algebraic

K-groups.

Definition 2.11. Let R be a ring with 1. Let Z → R be the ring homomorphism induced by

mapping 1 to the identity. Define the reduced K0-group

K̃0(R) = Coker(K0(Z)→ K0(R)).

Actually,

K̃0(R) = K0(R)/〈[R]〉

where 〈[R]〉 is the infinite cyclic subgroup generated by the free R-module [R] of rank 1.
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Remark 2.12.

(1) An element [P ] in K̃0(R) is zero iff P is finitely generated stably free module i.e., there is a

finitely generated free module F such that P⊕F is free.

(2) For any module P there is Q such that P⊕Q which is free. Then there is an isomorphism

P⊕(Q⊕P⊕Q⊕ . . . ) ∼= P⊕Q⊕P⊕Q⊕ . . . =⇒ P⊕F ∼= F,

where F is a countably generated free module. Thus if the finite generation condition is

omitted in (1), every projective module is stably free (Eilenberg swindle).

Definition 2.13. A space Y is called finitely dominated space iff there is a finite complex K and

maps

Y
d
−→ K

u
−→ Y,

such that u◦d ≃ idY .

Remark 2.14. Let Y be a finitely dominated space as above. Then the map

e : K
u
−→ Y

d
−→ K,

satisfies

e2 = dudu = d(ud)u ≃ d(idY )u = du = e.

Thus e is an idempotent up to homotopy (for the general theory of homotopy idempotents see [37],

[57]).

Let Y be a finitely dominated connected with π1(Y ) = π space and Ỹ its universal cover.

By adding a finite number of cells we arrange that the finite complex K that dominates Y has

π1(K) = π ([91]). Then C∗(Ỹ ) is a Zπ-chain complex which is dominated by a finite complex of

free modules namely C∗(K̃). That means there are chain maps

C∗(Ỹ )
u
−→ C∗(K̃)

d
−→ C∗(Ỹ )

and a chain homotopy d◦u ≃ idC∗(Ỹ ). Then C∗(Ỹ ) is chain homotopy equivalent to a chain complex

P∗ of finitely generated projective modules (Wall ([91], [92])):

P∗ : . . . 0→ Pn → Pn−1 → . . . P1 → P0.

Thus a finitely dominated space determines an element

σ(Y ) =
n∑

i=0

(−1)i[Pi] ∈ K̃0(Zπ).

Theorem 2.15 (Wall’s Finiteness Obstruction). A finitely dominated space Y determines an ele-

ment in σ(Y ) ∈ K̃0(Zπ) which vanishes iff Y is homotopy equivalent to a finite complex.
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Remark 2.16. Using Wall’s finiteness obstruction, we can interpret finitely dominated spaces as

projective modules, up to homotopy, (they determine homotopy idempotents an in Remark 2.14)

and the finite complexes as free modules.

A more geometric application of the finiteness obstruction comes from Siebenmann’s Thesis

([79]). The question that this work addresses is when an end in a manifold can be completed i.e., it

can be realized as the interior of a compact manifold with boundary. More precisely, the compact

manifold with boundary M̄ is a completion of a manifold M if M = M̄ − ∂M̄ .

Definition 2.17. An end ε in a topological space X is called tame if:

(1) The end ε is stable: There is a sequence of connected open neighborhoods of ε such that

there is a cofinal subsequence of the fundamental groups

G1
f1
←− G2

f2
←− . . . Gn

fn
←− . . .

which induces a sequence of isomorphism:

Im(f1)
∼=
←− Im(f2)

∼=
←− . . .

∼=
←− Im(fn)

∼=
←− . . .

(2) There are arbitrarily small neighborhoods of ε that are finitely dominated.

For a complete exposition of the algebraic theory of ends a reference is Hughes–Ranicki ([63]).

Theorem 2.18 (Siebenmann’s Thesis). Let Mn be a manifold with n ≥ 6 and ε a tame end of

M . Then ε can be completed iff an obstruction σ(ε) ∈ K̃0(Zπ1(ε)) vanishes, where π1(ε) is the

fundamental group of the end.

Now we present some geometric applications of K1. Again, for geometric applications we need a

quotient of the algebraic K1.

Definition 2.19. Let G be a group. The Whitehead group of G is defined as

Wh(G) = K1(ZG)/{±g : g ∈ G}.

Here ±g ∈ GL(1,ZG), for all g ∈ G.

The geometric applications of Wh(G) are derived from the fact that a strong deformation re-

traction:

f : K → L

of connected finite CW-complexes determines an element in Wh(π1(L)) as follows ([29], [77]): Let

π = π1(L). Choose a CW-decomposition of K and L so that L is a subcomplex of K. Then the

relative chain complex C∗ = C∗(K̃, L̃) is a Zπ-chain complex, where K̃ (resp. L̃) is the universal

cover of K (resp. L). Liftings of the cells to the universal covers determines a Zπ-basis for C∗.

The ambiguity of the choice of liftings is given by elements ±g, g ∈ π (the group element for the

particular choice of the lift and the sign for the choice of the orientation of the cell). That is why



10 STRATOS PRASSIDIS

we consider the quotient of K1(Zπ). Then C∗ is a based, finite, contractile chain complex. Thus

there is an isomorphism ([77]):

δ + ∂ : Ceven → Codd

where ∂ is the boundary map, δ is the chain contraction and Ceven (resp. Codd) is the direct sum

of the even (resp. odd) part of C∗. Using the bases determined by the cells, δ + ∂ determines an

invertible matrix with entries in Zπ. We define the torsion of f to be that matrix: τ(f) = [δ+∂] ∈

Wh(π). In general, if f : K → L is a homotopy equivalence then τ(f) = f∗(τ(M(f),K)), where

M(f) is the mapping cylinder of f .

Definition 2.20. Let L be a space. An elementary expansion K of L corresponds to the attaching

of a ball to L along a face of the ball. More precisely, K is formed as the push-out

Sn−1 q
−−−−→ L

y
y

Dn Q
−−−−→ K

In this case, we say that L is formed by an elementary collapse ofK. A simple homotopy equivalence

f : K → L is a homotopy equivalence that can be described as a finite sequence of elementary

expansions and collapses.

Remark 2.21. Simple homotopy equivalences were introduced by J. H. C. Whitehead ([93], [94]).

His goal was to study homotopy equivalences combinatorially.

Theorem 2.22. A homotopy equivalence f : K → L between finite CW-complexes is simple iff

τ(f) = 0 ∈Wh(π1(L)).

The importance of the Whitehead torsion comes with its applications to the topology of mani-

folds.

Definition 2.23. A cobordism (W ;M,M ′) is a manifold W such that ∂W = M
∐
M ′. An h-

cobordism is a cobordism such that the inclusion maps

M →֒W, M ′ →֒W

are homotopy equivalences.

The following works in all categories of manifolds (Diff, PL or Top).

Theorem 2.24 (s-Cobordism Theorem). Let dim(M) ≥ 5. Then there is a bijection:

{h− cobordisms over M} −→Wh(π1(M)), (W ;M,M ′) 7→ τ(W,M).

In particular τ(W,M) = 0 ∈Wh(π1(M)) iff W ∼= M×[0, 1] which implies that M ∼= M ′.

Remark 2.25.
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(1) The equivalences in the s-cobordism theorem are equivalences in the given category (diffeo-

morphisms, PL-homeomorphisms, homeomorphisms respectively).

(2) The h-cobordism theorem (which is the s-cobordism theorem when M is simply connected)

was the main ingredient in the proof of the Poincaré Conjecture for n ≥ 5 by Smale ([81]).

For the calculations of the reducedK0 and the Whitehead group, there is the following conjecture.

Conjecture 3. Let G be a torsion free group. Then

K̃0(ZG) = Wh(G) = 0.

Algebraically, Conjecture 3 is related to the following conjecture.

Conjecture 4. Let G be a torsion free group. Then

(ZG)× = ±G

i.e., the units of ZG are exactly the elements of G and their negatives. Also, ZG contains no

non-trivial nilpotent elements.

Remark 2.26. Notice that if x ∈ ZG is nilpotent then 1− x is a unit.

The geometric definition of Nil-groups is given in [62] and [72]. Let X be a finite CW-complex.

A nil-pair over X, (Y, f) consists of a finite CW-complex Y containing X and f : Y → Y such that:

(1) fX = idX .

(2) There is s > 0 such that fs ≃ r relX, where r is a retraction to X (homotopy nilpotent

condition).

In [72] it was shown that, if (1) holds, the second condition is equivalent to

(2*) The inclusion map X×S1 →֒ T (f) is a homotopy equivalence.

Define (Y, f) ∼ (Y ′f ′) if there is a homotopy equivalence f : Y → Y ′, relX such that Ff ≃ f ′

relX. Let F(X) be the free group on the equivalence classes of nil-pairs over X. Let N (X) be the

subgroup generated by:

(1) For two nil-pairs (Yi, fi), i = 1, 2,

[Y1∪XY2, f1∪f2]− [Y1, f1]− [Y2, f2]

(2) The nil-pairs [Y, r], with r : Y → X a retraction.

Then Ñil(X) = F(X)/N (X).

The isomorphism between the algebraic and geometric Nil-groups is given:

Ñil(X)→ Ñil(π1(X)), (Y, f) 7→ (C∗(Ȳ , X̃), f∗)

where X̃ is the universal cover of X, Ȳ is the pull-back of the universal cover of X under the

retraction r : Y → X, C∗(Ȳ , X̃) is a finite Zπ1(X)-complex of free modules. Notice that f∗ is
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a chain homotopy nilpotent map. For the precise way that a pair (C∗(Ȳ , X̃), f∗) determines an

element of Ñil(Zπ1(X)) see [77].

Nil-groups appear as obstructions to splitting problems. We will present a brief summary of the

applications after introducing the Fundamental Theorem of Algebraic K-theory.

2.3. The Fundamental Theorem of Algebraic K-theory. For a ring R, the Fundamental

Theorem of Algebraic K-theory computes the K-theory of R[t, t−1] in terms of the K-theory of R.

Theorem 2.27 (Fundamental Theorem of Algebraic K-theory). For a ring R

K1(R[t, t−1]) ∼= K1(R)⊕K0(R)⊕Ñil(R)⊕Ñil(R).

For the geometrically significant groups,

Wh(G×Z) ∼= Wh(G)⊕K̃0(ZG)⊕Ñil(ZG)⊕Ñil(ZG).

Remark 2.28.

(1) There is an analogue of the Fundamental Theorem for higher K-theory ([65], [82]).

(2) For twisted Laurent rings the Fundamental Theorem of Algebraic K-theory has the form

([42]):

K1(R)
1−α∗−−−→ K1(R)→ K1(Rα[t, t−1])/

(
Ñil(R,α)⊕Ñil(R,α−1)

)
→ K0(R)

1−α∗−−−→ K0(R)

(3) The Fundamental Theorem of Algebraic K-theory measures the failure of K-theory to be

a homology theory. In particular, the Nil-terms are exactly the measure of that failure.

Let X be a finite CW-complex (or a compact ANR ([25])) with π1(X) = G. Then there is a

transfer map

trn : Wh(G×Z)→Wh(G×Z)

defined geometrically as follows: Let τ = (f : Y → X) be represented by an strong deformation

retraction. Form the pull-back diagram

Ȳ
f̄

−−−−→ X×S1

y
yidX×n

Y
f

−−−−→ X×S1

where n is the map that sends an element of S1 (considered as the unit circle in the complex

plane) to its n-th power. Define trn(τ) = τ(f̄). The summands of the splitting in the fundamental

theorem behave as follows ([72], [77]):

(1) If x ∈Wh(G), then trn(x) = nx.

(2) If x ∈ K̃0(ZG), trn(x) = x. Thus the elements of K̃0(ZG) are exactly the elements of

Wh(G) that are transfer invariant.

(3) If x ∈ Ñil(ZG)⊕Ñil(ZG), then there is an s > 0 such that trn(x) = 0 for all n > s.
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The Fundamental Theorem can be used for extending the definition of Ki-groups with i < 0.

More precisely, inductively, Ki(R) is defined to be the subgroup of the transfer invariant elements

of Ki+1(R) for i ≤ 1. The Fundamental Theorem of Algebraic K-theory extends to the negative

K-groups. The formal details for the delooping of the algebraic K-theory spectrum are given in

[71].

2.4. Waldhausen’s Splitting Theorem. Let Ai, i = 0, 1 be two rings containing R as a subring.

Assume that Ai = R⊕Bi as R-bimodules. Let Λ be the push out in the category of R-algebras:

R −−−−→ A1y
y

A2 −−−−→ Λ

As an R-bimodule Λ splits as:

Λ = R⊕B1⊕B2⊕B1⊗B2⊕B2⊗B1⊕ . . .

where ⊗ means ⊗R. The multiplication is given by concatenation and using the ring structure of

Ai.

Theorem 2.29 (Waldhausen ([90])). With the above notation, there is an exact sequence:

· · · → K1(R)→ K1(A1)⊕K1(A2)→ K1(Λ)/N1 → K0(R)→ . . .

where N1 = Ñil0(R;B0, B1) is Waldhausen’s Nil-group.

Remark 2.30. For more general splitting theorems, see [83] and [84].

We will give the definition of Waldhausen’s Nil-groups. For the triple (R;B0, B1) with R a ring

and Bi, i = 0, 1, two R-bimodules, consider quadruples (P,Q, p, q) where P and Q are finitely

generated projective R-modules and

p : P → Q⊗B0, q : Q→ P⊗B1

(here ⊗ means ⊗R) are two R-maps such that the compositions

P
p
−→ Q⊗B0

q⊗id
−−−→ P⊗B1⊗B0 . . .

Q
q
−→ P⊗B1

p⊗id
−−−→ P⊗B0⊗B1 . . .

are eventually 0. Exact sequences have the obvious meaning. As before, define Nil0(R;B0, B1) to

be the free abelian group generated by isomorphism classes of quadruples as above modulo the

additive relation resulting from the exact sequences. Notice that there are homomorphisms:

K0(R)×K0(R)→ Nil0(R;B0, B1), (P,Q) 7→ (P,Q, 0, 0)

Nil0(R;B0, B1)→ K0(R)×K0(R), (P,Q, p, q) 7→ (P,Q)
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which make K0(R)×K0(R) a summand of Nil0(R;B0, B1). Define

Ñil0(R;B0, B1) = Nil0(R;B0, B1)/K0(R)×K0(R).

Remark 2.31.

(1) The quadruples defined above form an exact category N il(R;B0, B1). In general, define

Ñili(R;B0, B1) = Ki(N il(R;B0, B1))/Ki(R)×Ki(R).

The splitting theorem states that Ñili−1(R;B0, B1) is a summand of Ki(Λ). Thus there is

a dimension shift. Waldhausen’s splitting theorem holds for all i ∈ Z.

(2) For more information on the structure of lower Waldhausen Nil-groups see [66], [67].

3. Controlled Topology

Let B be a metric space and p : X → B be a continuous map and ε > 0. A homotopy

F : Y×[0, 1]→ X

is called a p−1(ε) homotopy if

sup{diam(pF ({y}×[0, 1])) : y ∈ Y } < ε.

That means that the paths determined by the homotopy have diameter less that ε when projected

to B. In this case we write F0 ≃p−1(ε) F1.

Remark 3.1. More generally, the assumption that B is metric space is not needed. For a general

topological space B and an open coven U of B, the homotopy F is called p−1(U)-homotopy if, for

each y ∈ Y , there is Uy ∈ U such that

pF ({y}×[0, 1]) ⊂ Uy.

Definition 3.2. Let p : X → B be as above and ε > 0. A map f : Y → X is called a p−1(ε)-

homotopy equivalence if there is g : X → Y such that

g◦f ≃(pf)−1(ε) idY , f◦g ≃p−1(ε) idX .

A continuous map f : Y → X is called a controlled homotopy equivalence (with control in B) if

for each δ > 0, f is a p−1(δ)-homotopy equivalence.

Definition 3.3. A proper map f : Y → X is called cell-like (CE-map) if for each x ∈ X and each

neighborhood U of f−1(x), the inclusion map f−1(x) →֒ U is null-homotopic.

Remark 3.4.

(1) If f−1(x) is an ANR for each x ∈ X, then a proper map f is a CE-map iff f−1(x) is

contractible for all x ∈ X. In particular, a proper cellular map f between CW-complexes

is a CE-map iff f−1(x) is contractible for all x ∈ X.
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(2) Cell-like maps are the homotopy analogues of homeomorphisms. In a homeomorphism we

require that the inverse image of a point is a point. In a CE-map we require that the inverse

image of a point has the homotopy type of a point.

(3) If f : Y → X is a CE-map between locally compact ANR’s then f is a controlled homotopy

equivalence with control in X.

(4) The basic properties of CE-maps are presented in [68].

Controlled homotopy equivalences and CE-maps are closely related to the controlled theory of

fibrations.

Definition 3.5. Let p : X → B be map to a metric space B and ε > 0. A map q : E → X is

called a p−1(ε)-fibration if the lifting problem

Z×{0}

i

��

f
// E

q

��
Z×[0, 1]

F
//

F̂

;;
w

w
w

w
w

w
w

w
w

X

has a solution F̂ such that:

• The top triangle commutes: F̂◦i = f .

• The bottom diagram p−1(ε)-commutes: d(pqF̂ (z, t), pF (z, t)) < ε, for all (z, t) ∈ Z×[0, 1].

The map q is called an approximate fibration if it is a δ-fibration for each δ.

The properties of approximate fibrations are proved in [32] and [33]. The following result follows

from the definitions ([68]).

Theorem 3.6. A map f : Y → X between locally compact ANR’s is a CE-map iff it is a homotopy

equivalence and an approximate fibration.

The following constructions are from [20]. Let X be a compact ANR and p : X → B be a control

map to metric space B and ε > 0. Two p−1(ε)-strong deformation retractions

fi : Yi → X, i = 1, 2,

with Yi compact ANR’s, are called equivalent, denoted f1 ∼ f2, if there is a compact ANR Z such

that the diagram:

Z
α

−−−−→ Y1

β

y
yf1

Y2
f2
−−−−→ X

commutes up to p−1(ε)-homotopy relX. The above relation generates an equivalence relation on

the set of p−1(ε)-strong deformation retractions to X.
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The ε-controlled Whitehead group of X, Wh(X, p)ε is defined as the group with elements equiv-

alence classes of p−1(ε)-sdr’s whose inverses in the classical Whitehead group are p−1(ε)-sdr’s. The

group operation is given by push-outs:

(f1 : Y1 → X) + (f2 : Y2 → X) = (f1∪f2 : Y1∪XY2 → X).

The controlled Whitehead group is defined as the inverse limit

Wh(X, p)c = lim
←−

Wh(X, p)ε.

Theorem 3.7 ([19]). Let p : X → B be an approximate fibration with X a compact ANR and B

a locally compact ANR. Then a strong deformation retraction f : Y → B represents an element in

Wh(X, p)c iff p ◦ f is an approximate fibration.

Remark 3.8.

(1) There is a more algebraic approach to controlled topology given in [74] and [75]. That

approach is useful for complete calculations of the controlled groups.

(2) There are analogues of the h-cobordism theorem and the finite domination theorem in the

controlled setting ([19], [74], [75]).

The controlled groups capture the homological properties of K-theory. In special cases, the

homological properties of the controlled groups imply the vanishing of certain obstructions.

Theorem 3.9 (The sucking principle or squeezing ([22], [24], [59])). Let X be a compact ANR.

For each ε > 0, there is δ > 0 such that every ε-fibration, with control in X, p : E → X, with E a

compact ANR, is δ-homotopic to an approximate fibration.

Theorem 3.10 (The thin h-cobordism theorem ([19], [74], [75]). Let Mn be a compact manifold

with n ≥ 5. Then for each ε > 0 there is δ > 0 such that every ε-h-cobordism (W ;M,M ′) (i.e.,

such that the strong deformations retractions W → M and W → M ′ are ε-homotopy equivalences

with control in M) is a δ-product (i.e., there is a homeomorphism h : W →M×[0, 1] such that p◦h

is δ-close to the retraction of W to M , here p : M×[0, 1]→M is the projection map).

Theorem 3.11 (The α-approximation theorem ([22], [28], [48])). Let Mn be a compact manifold

with n ≥ 5. Then for each ε > 0 there is δ > 0 such that every ε-homotopy equivalence f : Nn →

Mn, with control in Mn, and Nn a compact manifold is δ-homotopic to a homeomorphism.

There are versions of the approximation theorems where the control map is not the identity ([41],

[75]). In these cases, the map is required to be at least a stratified fibration and that the problem

can be solved in the fibers.
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3.1. The Fundamental Theorem of Algebraic K-theory Revisited. Using controlled topol-

ogy, the Fundamental Theorem can be written as follows ([62]):

Theorem 3.12. For a compact ANR X, there is a splitting:

Wh(X×S1) ∼= Wh(X×S1, p)c⊕Ñil(X)⊕Ñil(X),

where p : X×S1 → S1 is the projection map. Furthermore ([64]),

Wh(X×S1, p)c
∼= Wh(X)⊕K̃0(X).

We outline the geometric proof of the Fundamental Theorem of algebraic K-theory. We will use

Hilbert cube manifolds ([26]). Remember that the Hilbert cube is defined as

Q =

∞∏

n=1

[
−

1

n
,
1

n

]
,

with the induced metric. Hilbert cube manifolds are separable metric spaces that have the local

structure of Q. Some basic facts on Q-manifolds ([26]):

(1) If X is a locally compact ANR, then X×Q is a Q-manifold.

(2) Any map f : X → Y with X a locally compact ANR and Y a locally compact Q-manifold,

can be approximated by an embedding.

(3) Any homotopy h : X×I → Y , with X and Y as above, can be approximated by an isotopy.

(4) The α-approximation theorem holds for locally compact Q-manifolds ([24], [21], [47]).

The main reason that Q-manifolds were introduced to geometric topology is the following theo-

rem:

Theorem 3.13 ([23], [27]). A homotopy equivalence f : X → Y between compact ANR’s is simple

(i.e., [f ] = 0 ∈Wh(X)) iff f×idQ is homotopic to a homeomorphism.

This theorem gives a positive answer to Whitehead’s Homeomorphism Conjecture.

Theorem 3.14 (The topological invariance of the Whitehead torsion). Let f : K → L be a

homeomorphism between compact polyhedra. Then [f ] = 0 ∈Wh(L).

Also, in [26] there the following triangulation result for Q-manifolds.

Theorem 3.15 (Triangulation of Q-manifolds). Let M be a locally compact Q-manifold. Then

there is a locally compact polyhedron K such that M is homeomorphic to L×Q.

Combining the above theorem with the basic facts on Q-manifolds we get a positive answer to

Borsuk’s question.

Theorem 3.16 ([23], [95]). Let X be a compact ANR. Then for each ε > 0 there is a finite

CW-complex Kε that it is ε-homotopy equivalent to X with control in X.
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Notice that in general given X and ε > 0 a construction of a finite CW-complex that ε-dominates

X is not hard. The complex is constructed using nerves of open covers of X.

Now we can go back to the proof of the Fundamental Theorem of K-theory. The proof presented

is based on the work in [62] and [72]. We can assume that X is a compact Q-manifold and an

element of Wh(X×S1) is represented by a strong deformation retraction f : Y → X×S1 with Y a

compact Q-manifold. Form the pull-back:

Ȳ
f̄

−−−−→ X×R
y

y

Y
f

−−−−→ X×S1

Denote by ζ the covering translation on Ȳ that corresponds to +1 action on the reals. For a subset

A ⊂ R we write YA = f̄−1(X×A).

Let K± be compact sub-ANR’s that dominate Y±, relY0, where Y− = Ȳ(−∞,0], Y+ = Ȳ[0,∞). The

existence of such complexes follows from the fact that f̄ is a bounded (over R) strong deformation

retraction ([20], [49]). Write

Y±
d±
−−→ K±

u±
−−→ Y±

for the dominations. Write K = K−∪Y0K+, and get the maps

Ȳ
d
−→ K

u
−→ Ȳ ,

induced from the maps of the dominations. Each of the spaces K±, K,, Y and Y± contains a copy

of X times an interval containing 0. Let L±, L, Z and Z± be the spaces formed from the ones

above by squeezing X×interval to a single copy of X. Then the domination maps induce maps,

denoted the same, on the new spaces. Set

• z : L
u
−→ Z

ζ−1

−−→ Z
d
−→ L..

• f+ : L+
u
−→ Z+

ζ
−→ Z+

d
−→ L+..

• f− : L−
u
−→ Z−

ζ−1

−−→ Z−
d
−→ L−..

3.1.1. Relaxation. We start by recalling the construction of the relaxation of f ([22], [24], [59], [62],

[63], [80]). This construction is the map

Wh(X×S1)→Wh(X×S1, p)c

that splits the forget control map.

Let q : X×R → R be the projection. Remember that the strong deformation retraction f̄ is

bounded over R i.e., it is a q−1(k)-homotopy equivalence, for some k > 0. The number k depends

on how many times the image of f wraps around S1. Let

φd : X×R→ X×R, φd(x, r) = (x, r/d).
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be the homeomorphism that shrinks distances in the R-direction. Then the composition φd◦f̄ is

a q−1(k/d)-strong deformation retraction over R. By choosing large enough d and the Squeezing

Theorem, we can assume that f̄ is a controlled (over R) strong deformation retraction. Thus, the

composition

Ȳ
f̄
−→ X×R→ R

is an approximate fibration (Theorem 3.7).

Now we need the approximate isotopy lifting property for approximate fibrations. Remember

that an isotopy of X is a homeomorphism g : B×[0, 1] → B×[0, 1] which preserves the second

coordinate. If p : E → B is an approximate fibration, the approximate isotopy lifting property for

p means that, given an isotopy g of the base space and a ε > 0 there is an isotopy G of E making

the diagram ε-commutative:

E×[0, 1]
G

−−−−→ E×[0, 1]

p×id[0,1]

y
yp×id[0,1]

B×[0, 1]
g

−−−−→ B×[0, 1]

More precisely,

d(p×id[0,1](G(e, s)), g(p(e), t)) < ε, for all (e, t) ∈ E×[0, 1].

If both X and E are finite dimensional or Q-manifolds, then approximate fibrations have the

approximate isotopy lifting property ([60], [61], [64], [63]).

In our setting, let g : R×[0, 1] → R×[0, 1] be the PL isotopy (i.e., a homeomorphism that

preserves the second coordinate) such that

(1) g is supported on [−1, 3]×[0, 1], that is g is that identity outside the given set, and

(2) for each s ∈ [0, 1], gs takes [−1,−0.5] linearly onto [−1, s − 0.5], takes [−0.5, 1.5] linearly

onto [s− 0.5, s+ 1.5] and takes [1.5, 3] linearly onto [s+ 1.5, 3].

In particular, g1|[−0.5, 1.5] has the form t 7→ t + 1. By choosing a small ε > 0 and applying the

approximate isotopy lifting property, we get an isotopy:

h : Ȳ×[0, 1]→ Ȳ×[0, 1],

with compact support, from the identity such that

h1(Y(−∞,0)) ⊃ Y(−∞,1].

Define Ŷ = ζh1(Y(−∞,0]) \ Y(−∞,0)/∼, where a point x ∈ Y0 is identified with ζh1(x) ∈ ζh1(Y0).

There is a strong deformation retraction:

f̂ : Ŷ → X×S1
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Then f̂ ∈ Wh(X×S1, p)c. The reason is that in the infinite cyclic cover induced by f̂ the funda-

mental domain is ‘larger’ and that makes f̂ more controlled over S1. The fact that it is controlled

follows from the Sucking Principle.

3.1.2. Maps to Nil-groups. We describe the Nil-groups as summands of the Whitehead group:

(1) j± : Ñil(X)→Wh(X×S1). The two injections are given by taking mapping tori:

(a) j+(Y, g) = [T ′(g), X×S1], where T ′(g) = Y×[0, 1]/(g(y), 1) ∼ (y, 0).

(b) j−(Y, f) = [T (g), X×S1], where T (g) = Y×[0, 1]/(g(y), 0) ∼ (y, 1).

(2) The projections are constructed by looking at the translation map on Ȳ and Z. More

precisely,

p± : Wh(X×S1)→ Ñil(X), p±(f) = [L±, f±].

Since K retracts to X, L also retracts to X and the pair (T (z), X×S1) = 0 ∈ Wh(X×S1). In

the mapping torus T (z) (Figure 1):

(1) There is an obvious embedding of Y if we follow the restriction of the mapping torus to Y0.

(2) A variation of the previous argument is used to construct an embedding of Ŷ , disjoint from

Y into the part of T (z) in L+.

(3) The restriction, N−, of the mapping torus to L− represents the image of f under the

composition:

Wh(X×S1)
p−
−−→ Ñil(X)

j−
−→Wh(X×S1).

More precise, there is a strong deformation retraction f− : N− → X×S1 such that j−◦p−([f ]) =

[f−].

(4) Let N+ be the region in T (z) between Y and Ȳ , considered “backwards” i.e., with the

reverse orientation of that given by the mapping torus. Then N+ represents the image of

the element [f ] under the map.

Wh(X×S1)
p+
−→ Ñil(X)

j+
−→Wh(X×S1).

(5) The rest of the region of T (z), W has the property that it is homeomorphic to the mapping

torus of a retraction and thus, there is a strong deformation retraction r : W → X×S1

which has zero torsion in Wh(X×S1)

Combining the above observations and the sum theorem for the Whitehead torsion we get that, in

Wh(X×S1):

0 = (T (z), X×S1) = [f−]− [f ] + [f+]− [f̄ ] + [r]

and thus

[f ] = j−◦p−([f ]) + j+◦p+([f ])− [f̄ ].

The last equation provides the splitting of [f ] into the various components. Figure 1 gives a

presentation of the spaces used in the proof. It should be considered as the geometric analogue of

Ranicki’s pentagon ([77], p. 95, p. 99).
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Y0

N−

L−

W

T (z)

L+

N+

Y

Ŷ

Figure 1. The mapping Torus of the Translation

3.2. Waldhausen’s Splitting Theorem Revisited. There is a controlled interpretation of Wald-

hausen’s Theorem. Let H be a subgroup of G0∩G1 and Γ = G0 ∗H G1. Set

M = M(ι0)∪BHM(ι1)
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where ιi : BH → BGi be the inclusion map of classifying spaces. Van Kampen’s Theorem implies

that π1(M) = Γ.

Theorem 3.17 (Waldhausen’s Theorem). There is a splitting

Wh(M) = Wh(M,p)c⊕Ñil(ZH; Z[G0\H],Z[G1\H]),

where p : M → [−1, 1] is the natural projection map to the second coordinate of the mapping

cylinders. Furthermore, there is an exact sequence

Wh(H)→Wh(G0)⊕Wh(G1)→Wh(M,p)→ K̃0(ZH)→ K̃0(ZG0)⊕K̃0(ZG1)→ . . .

For this interpretation of Waldhausen’s Theorem, see [70].

Question. Is there a geometric map that describes the splitting of the forget control map? More

precisely, is there a geometric relaxation map:

Wh(M)→Wh(M,p)c

as in the case over the circle?

Remark 3.18. There is the analogue of the “infinite cyclic” cover of M is this case. The natural

action on the infinite cyclic cover is of D∞, the infinite dihedral group. The answer to the question

seems to involve a version of Z/2Z-equivariant relaxation construction

3.3. Geometric Applications of Nil-groups. Nil-groups appear as obstructions to splitting

theorems. Farrell’s fibering theorem is such a result.

Theorem 3.19 (Farrell ([38], Siebenmann [80])). Let Mn, n ≥ 6, be a closed connected manifold

and p : M → S1 a map such that:

(1) p∗ : π1(M)→ π1(S
1) is an epimorphism with kernel G. Thus π1(M) = G⋊αZ.

(2) The infinite cyclic cover of M induced by p is finitely dominated.

Then

(1) There is an obstruction n(f) ∈ Ñil(ZG,α) which vanishes iff f is homotopic to an approx-

imate fibration.

(2) If (1) is satisfied, then there is an obstruction τ(f) ∈ Wh(M,p)c which vanishes iff f is

homotopic to a fiber bundle.

Remark 3.20.

(1) Farrell’s obstructions are encoded as a total obstruction geometrically in [80] and alge-

braically in [77]. Essentially, the obstruction is described as follows: Let M̄ be the infinite

cyclic cover of M and ζ a generating cover translation. Then, the total obstructions is

defined as:

Φ(f) = τ(T (ζ)→M) ∈Wh(G⋊αZ).

Because T (ζ) is not a finite complex, for the exact meaning of the torsion see [77].
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(2) Originally, Farrell’s theorem was not stated using controlled topology. To describe the

classical setting, using transversality, first homotope p so that the fundamental domain of

the infinite cyclic cover is a cobordism W . The first obstruction was

n(f) = n(f) + k(f) ∈ Ñil(ZG,α)⊕K̃0(ZG)

that vanishes iff W is an h-cobordism. Once n(f) vanishes, the second obstruction

τ(f) = τ(W ) ∈Wh(G)α∗
= Wh(G)/{x− α∗(x) : x ∈Wh(G)}

is the torsion of the h-cobordism W . Then τ(f) vanishes iff p is homotopic to a fiber bundle.

(3) Notice that Wh(M,p)c fits into an exact sequence ([70]):

Wh(G)
1−α∗−−−→Wh(G)→Wh(M,p)c → K̃0(ZG)

1−α∗−−−→ K̃0(ZG)

(4) The controlled version of Part (1) of the Theorem is stated implicitly in different papers

([22], [62], [63]).

A more general splitting theorem is given in [40]. Let Mn, n ≥ 6, be a closed connected manifold

with π1(M) = G⋊αZ ([42] for the algebraic version). Let f : M →M ′ be a homotopy equivalence.

Also, let N ′ be a codimension 1 submanifold of M ′ such that π1(N
′) = G. The map f is called

splittable along N ′ if f is homotopic to a map g which is a homotopy equivalence of pairs:

g : (M,N)→ (M ′, N ′),

where N is a codimansion 1 submanifold of M .

Theorem 3.21 ([40]). Under the above notation, f is splittable along N ′ iff

n(f) = p(τ(f)) ∈ Ñil(ZG,α)⊕K̃0(ZG)

vanishes.

For the Waldhausen’s splitting, let Mn, n ≥ 6, be a closed connected manifold and N ⊂ M

a codimension 1 connected submanifold with trivial normal bundle such that M \ N has two

components. Thus π1(M) = G0 ∗H G1 where π1(N) = H. Assume that H is square root closed in

Gi (i.e., if g2 ∈ H then g ∈ H). Let f : Wn → Mn be a homotopy equivalence. Then f is called

splittable along N if f is homotopic to g so that there is a codimension 1 submanifold V = g−1(N)

so that the restrictions g is a homotopy equivalence of pairs

g : (W,V )→ (M,N).

Theorem 3.22 ([17]). In the above setting f is splittable along N if the component

n(f) = p(τ(f)) ∈ Ñil(ZH,Z[G0 \H],Z[G1 \H])⊕ker(K̃0(ZH)→ K̃0(ZG1)⊕ K̃0(ZG2))

vanishes.
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Remark 3.23.

(1) The condition that H is square root closed in both groups is needed for the vanishing of

the UNil-groups, the surgery theory Nil-groups ([16]).

(2) In [17], a splitting theorem is given when M \N is a single component i.e., when π1(M) is

an HNN-extension of H.

3.4. Remarks on Nil-groups. From the above discussion, it follows that the various Nil-groups

are the obstructions for K-theory to be a homology theory. They measure the failure of K-theory

to satisfy excision. The component of K-theory that satisfies homological properties, like excision,

is given by the controlled component. In other words, algebraically, the controlled K-groups can be

defined as the part of K-theory that satisfies excision. We will make two more remarks emphasizing

these properties of the Nil-groups.

3.4.1. Categorical Double Mapping Cylinders. First, we specialize to amalgamated free products.

K-theory can be defined for symmetric monoidal categories in general. Then K∗(R) = K∗(F
Iso
R )

where FIso
R is the category of finitely generated free (left)R-modules with morphismsR-isomorphisms.

Let
R −−−−→ A0y

y

A1 −−−−→ Λ

be a push out diagram of rings. Let P be the double mapping cylinder (the homotopy push-out)

in the category of symmetric monoidal categories

FIso
R −−−−→ FIso

A0y
y

FIso
A1
−−−−→ P

defined in [88], Construction 5.1. The above diagram induces a homotopy cartesian diagram of

spectra ([88]):
K.(R) −−−−→ K.(A0)y

y

K.(A1) −−−−→ K.(P)

Thus the K-theory of P is the ‘controlled K-theory with control over the interval’ (Section 3.2).

Also, the universal properties of the double mapping cylinder imply that there is a natural functor

F : P → FIso
Λ .

Waldhausen’s Splitting Theorem implies that:

Ñili−1(R;B0, B1) ∼= Coker(F∗ : Ki(P)→ Ki(Λ)).
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where Ai = R⊕Bi as R-bimodules, for i = 0, 1.

3.4.2. Continuous Control K-theory. There is a connection between Nil-groups and continuously

controlled K-groups. The definitions and the main calculations for the controlled K-groups are

given in [1].

There are two cases to be consider. First we assume that p : X×S1 → S1 is the projection map

and X is a finite CW-complex (or a compact ANR). Let M(p) denote the mapping cylinder of p.

Then there is an exact sequence ([2]):

Wh(X×S1, p)c →Wh(X×S1)→Wh(M(p), S1)cc → K̃0(X×S
1, p)c → K̃0(X×S

1)

where Wh(M(p), S1)cc is the continuously controlled Whitehead group. Thus, if we combine this

with this exact sequence with the Fundamental Theorem of Algebraic K theory, we get ([70]):

Wh(M(p), S1)cc
∼= Ñil(X)⊕Ñil(X).

Let Γ = G1∗G0G2 be an amalgamated free product. Consider the induced maps φi : BG0 → BGi,

i = 1, 2. Let X be the double mapping cylinder:

X = M(φ1)∪BG0M(φ1).

Then π(X) = Γ and X comes with a natural map ρ : X → I to the unit interval. Then, as before

we have an exact sequence:

Wh(X, ρ)c →Wh(X)→Wh(M(ρ), I)cc → K̃0(X, ρ)c → K̃0(X)

Using Waldhausen’s splitting theorem we get ([70]):

Wh(M(ρ), I)cc
∼= Ñil(ZG0,Z[G1\G0],Z[G1\G0]).

Remark 3.24. In [2], the continuously controlled groups are defined for holink triples. Our inter-

pretation is equivalent to that one in the above cases and it is taken from [1].

4. Controlled Topology and the Isomorphism Conjecture

In this section, we describe the controlled aspects of the Farrell–Jones Isomorphism Conjecture

([43]). Most of the material is contained in [34]. Let Γ be a discrete group and CΓ a class of

subgroups of Γ (i.e. a collection of subgroups of Γ closed under taking conjugates and subgroups).

The classifying space of the class CΓ, ECΓ is the Γ-complex whose isotropy groups are in CΓ and

its non-empty fixed point sets are contractible. A model for this space, reminiscent of the bar

construction ([43]), is given as follows: It is the realization of a semi-simplicial complex with n-

simplex given by a sequence

σ = γ0Γ0(γ1Γ1, γ2Γ2, . . . , γnΓn)
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with Γi∈C such that γ−1
i Γi−1γi ⊂ Γi for i = 1, . . . , n. The face operator is given by

∂iσ =





γ0γ1Γ1(γ2Γ1, . . . , γnΓn), i = 0,

γ0Γ0(γ1Γ1, . . . , γi−1Γi−1, γiγi+1Γi+1, γi+1Γi+1, . . . , γnΓn), 0 < i < n,

γ0Γ0(γ1Γ1, . . . , γn−1Γn−1), i = n.

The group Γ acts on ECΓ by

γσ = (γγ0)Γ0(γ1Γ1, γ2Γ2, . . . , γnΓn), for γ∈Γ.

We write BCΓ for the orbit space ECΓ/Γ. To ensure that BCΓ is a simplicial complex, we subdivide

ECΓ twice, i.e. BCΓ = (ECΓ)′′/Γ.

The construction of the classifying space is functorial with respect to group homomorphisms.

Let CΓ be a class of subgroups of Γ. For if ρ : Γ→ G be a group homomorphism then ρ induces a

ρ-equivariant map

ρ̄ : ECΓ → ECG, γ0Γ0(γ1Γ1, γ2Γ2, . . . , γnΓn) 7→ ρ(γ0)ρ(Γ0)(ρ(γ1)ρ(Γ1), ρ(γ2)ρ(Γ2), . . . , ρ(γn)ρ(Γn))

where CG is a class of subgroups of G that contains the images, under ρ, of the elements of CΓ. The

map ρ̄ induces a map ρ′ to the quotient spaces.

For each simplicial complex K, we write cat(K) for the category of simplices of K, viewed as a

partially ordered set. Thus, objects are the simplices of K and there is a single morphism from σ

to τ whenever σ ≤ τ .

Definition 4.1 ([3]). Let p : E → B be a map with B = |K|, the geometric realization of a

simplicial complex. The map is said to have a homotopy colimit structure if there is a functor

F : cat(K)op → Top

such that:

• E = hocolimcat(K)op(F ).

• p = hocolimcat(K)op(ν), where ν is the natural transformation from F to the constant point

functor.

Remark 4.2. For a simplicial complex K and a functor F : cat(K)op → Top, the homotopy colimit

is defined as:

hocolimcat(K)op(F ) =
∐

σ∈cat(K)op

F (σ)×|σ|/∼

where for simplices τ ≥ σ, x ∈ F (τ), t ∈ |σ|,

(x, t) ∼ (F (τ ≥ σ)(x), t).

Notice that (x, t) ∈ F (τ)×|σ| ⊂ F (τ)×|τ | and F (τ ≥ σ) : F (τ)→ F (σ).



INTRODUCTION TO CONTROLLED TOPOLOGY AND ITS APPLICATIONS 27

Notation. Let p : E → B be a map, B = |K| and cat(K)op the category of the simplicial complex

K. In our setting, there is the barycentre functor

bar(p) : cat(K)op → Top, σ 7→ p−1(σ̂)

where σ̂ is the barycentre of σ. More precisely, for maps that we will use, for each τ ≥ σ, there is

a continuous map p−1(τ̂)→ p−1(σ̂).

Remark 4.3. We give basic examples of maps that admit a homotopy colimit structure. The proofs

follow from direct calculations (also [87]).

(1) Let Γ be a discrete group, EΓ a free contractible Γ-complex and ECΓ the classifying complex

for the family of subgroups of Γ. Let

pΓ : EΓ×ΓECΓ → ECΓ/Γ = BCΓ

be the projection map to the second coordinate. Then pΓ has a homotopy colimit structure

with respect to the barycenter functor bar(pΓ). Notice that, in this case, p−1
Γ (σ̂) is a space

of type BΓσ, where Γσ is the isotropy group of σ, an element in the class CΓ.

(2) Let ρ : Γ→ G be a group epimorphism. Then the map

q : EΓ×ΓECΓ
pΓ−→ BCΓ

ρ′

−→ BCG

has a homotopy colimit structure with respect to the functor bar(q), where CG = ρ(CΓ), the

class of subgroups of G consisting of the images of elements of CΓ.

Let F : C → D and X : C → Top be two functors. Then Segal’s Pushdown Construction (see for

example [58]) defines a functor F∗X : D → Top such that

hocolimCX ≃ hocolimDF∗X.

We will explicitly describe the construction to the case of Part(2) in Remark 4.3. In this case, we

start with a map:

q : EΓ×ΓECΓ
pΓ−→ BCΓ

ρ′

−→ BCG

The map ρ′ induces a functor

P : cat(BCΓ)op → cat(BCG)op

We will describe the functor

P∗bar(p) : cat(BCG)op → Top.

For each simplex σ of BCG, let P↓σ be the over category. In this case, the objects of P↓σ are

simplices τ of BCΓ such that ρ′(τ) contains σ as a face. Set

pσ = p| : p−1(|P↓σ|)→ |P↓σ|.

Then P∗bar(p)(σ) = hocolimP↓σbar(pσ). Summarizing:
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Proposition 4.4. There is a homotopy equivalence:

hocolimcat(BCΓ)op(bar(pΓ)) ≃ hocolimcat(BCG)op(P∗bar(pΓ)).

Remark 4.5. Segal’s pushdown construction it is the categorical analogue of the ‘change of control’

map. Essentially, for a map p : X → Y it shows how control over X can be computed by computing

the control over Y with ‘coefficients’ the contribution of the fibers of p.

The class of subgroups of Γ of interest in the Isomorphism Conjecture is the class of virtually

cyclic subgroups, denoted GΓ. They split into two categories:

• Finite subgroups of Γ.

• Virtually infinite cyclic subgroups of Γ i.e., subgroups which contain an infinite cyclic sub-

group of finite index.

The subgroups of the second type are two-ended subgroups of Γ ([36]) and they split into two

types:

• Groups H that admit an epimorphism to Z with finite kernel i.e.

H ∼= K⋊Z,

with K finite.

• Groups H that admit an epimorphism to the infinite dihedral subgroup D∞ with finite

kernel, i.e.

H ∼= A ∗B C, [B : 1] <∞, [A : B] = [C : B] = 2.

Let Spectra denote the category of spectra with morphisms strict maps i.e., maps between spectra

that commute with the bonding maps. Let

S : Top→ Spectra

is a homotopy invariant functor i.e., a functor that maps homotopy equivalent spaces to homotopy

equivalent spectra. Let Γ be a discrete group As before, let GΓ be the class of virtually cyclic (finite

or infinite) subgroups of Γ. Let EGΓ be the classifying Γ-complex for the class GΓ and

pΓ : EΓ×ΓEGΓ → EGΓ/Γ = BGΓ

be the projection map. Let cat(BGΓ)op be the category corresponding to the partially ordered set

of simplices of BGΓ. Let r : Y → BΓ be a bundle. Form the pull-back:

Ȳ −−−−→ Y

ρ

y
yr

EΓ×ΓEGΓ −−−−→ BΓ

pΓ

y
y

BGΓ −−−−→ ∗
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Notice that

hocolimcat(BGΓ)opbar(pΓ◦ρ) ∼= Ȳ ≃ Y

Let ∗ denote the category with a single object and a single morphism. Let

FΓ : ∗ → Top, FΓ(∗) = Y

The S-Bundle Isomorphism Conjecture. With the notation above, the functor from cat(BGΓ)op to

∗, induces a homotopy equivalence of spectra:

hocolimcat(BGΓ)opS◦bar(pΓ◦ρ)→ hocolimcat(∗)S◦bar(FΓ) ∼= S(Y ).

Remark 4.6.

(1) In the classical setting the homotopy colimit was written as homology:

hocolimcat(BGΓ)opS◦bar(pΓ◦ρ) = H.(BGΓ,S(pΓ◦ρ)).

The right hand side is Quinn homology. We will use both notations.

(2) Homotopy colimits were used in the formulation of the assembly map in [35] and [56].

Actually in [56], all the known constructions of the assembly are compared.

(3) The original fiber isomorphism conjecture was stated under the assumption that r is a

fibration ([43]). In that more general setting, Quinn homology is used in the formulation.

(4) If a torsion free group satisfies the K-IC then it satisfies the Vanishing Conjectures for

the Whitehead group. or a complete account of the connections between the Isomorphism

Conjectures, Conjectures 3 and 4 and other conjectures in algebra is given in [11].

4.1. Spaces over the Circle. Let Γ = G⋊αZ. Here α is the automorphism of G induced by the

action of the generator of Z. The automorphism α is well-defined up to inner automorphisms. By

choosing a suitable right G-space for EG, there is an α-equivariant homeomorphism

ψ : EG→ EG

i.e., ψ(xg) = ψ(x)α(g). By taking quotients, we see that there is a homeomorphism

φ : BG→ BG

that induces the map α in the fundamental group, again up to inner automorphisms. Choose as a

model for BΓ the mapping torus of φ:

BΓ = BG×[0, 1]/∼, (φ(x), 0) ∼ (x, 1).

Then a model for EΓ is the infinite mapping telescope of ψ:

EΓ = EG×[0, 1]×Z/∼, (x, 1, n) ∼ (ψ(x), 0, n+ 1).
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The right action of Γ on EΓ is given by:

(x, t, n)(g,m) = (xαn(g), t, n+m).

The map

Φ : BG×[0, 1]→ BΓ, Φ(x, t) = [x, t]

has the property that:

Φ(x, 0) = [x, 0], Φ(x, 1) = [x, 1] = [φ(x), 0]

i.e., it defines a homotopy between the identity map and the map φ on BG inside BΓ. Also,

the natural projection map to the second coordinate ρ : BΓ → S1 is a bundle. Consider the

commutative diagram
EΓ×ΓEGΓ −−−−→ EΓ×ΓEGΓ

qΓ

y
ypΓ

S1×BGΓ −−−−→ BGΓ

where qΓ is the composite EΓ → BΓ
ρ
−→ S1 is the first coordinate and the projection EGΓ → BGΓ

in the second. In the applications the spectrum S has an infinite loop space structure. Let CF be

the homotopy cofiber:

S(BG)
1−φ∗
−−−→ S(BG) → CF

The projection map:

BG×[0, 1]→ T (φ) = BΓ

induces a homotopy between two maps from BG to BΓ. The first map is

BG→ BΓ, x 7→ (x, 0).

The other map is

BG→ BΓ, x 7→ (x, 1) = (φ(x), 0).

Thus the maps idBG and φ are homotopic in BΓ. That mean the map 1 − φ∗ is null homotopic.

Therefore, there is an induced map:

f : CF → S(BΓ).

This is the map that ‘forgets the control’ over S1. We will give a homological description of CF .

We will study the homotopy colimit structure of the quotient map qΓ. Equip S1 with the structure

of a simplicial complex with three 0-simplices vi, i = 0, 1, 3 and three 1-simplices ei = {vi, vi+1},

where i is taken mod 3. The projection map induces a functor:

ρ : cat(S1×BGΓ)op → cat(S1)op.

Using Segal’s Pushdown Construction we get a homotopy equivalence:

hocolimcat(S1×BGΓ)op(S◦bar(qΓ)) ≃ hocolimcat(S1)op(P∗ρ).

We will describe explicitly the functor P∗ρ on cat(S1)op:
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For each simplex t of S1, let

S◦bar(qΓ)(t,−) : cat(BGΓ)op → Spectra, [σ]Γ 7→ S◦bar(qΓ)(t, [σ]Γ)

and thus

P∗ρ(t) = hocolimcat(BGΓ)op(S◦bar(qΓ)(t,−)).

Now if we fix t, the functor bar(qΓ) associates to [σ]Γ, the space

q−1
Γ (t̂×σ̂) = (EG×{t̂}×Z)×ΓΓσ̂ ∼= (EG×{t̂}×Z)×Γσ σ̂.

The inclusion map G→ Γ induces a commutative diagram:

EG×GEGΓ
ū

−−−−→ (EG×{t̂}×Z)×ΓEGΓ

pG

y
yqΓ

EGΓ/G = BGG
u

−−−−→ t̂×BGΓ = t̂×EGΓ/Γ

where u is just the quotient map. Notice that EGΓ is also a model for the space of type EGG. Then

u induces a functor:

U : cat(BGG)op → cat(BGΓ)op.

Start with the restriction:

pG| : (pG)−1(|U↓[σ]Γ|)→ |U↓[σ]Γ|.

Define a functor

h : cat(BGΓ)op → Spectra, h([σ]Γ) = hocolimcat(|U↓[σ]Γ|)op(S◦bar(pG|)).

Claim. h([σ]Γ ≃ S◦bar(qΓ)(t, [σ]Γ) and the homotopy equivalence is natural in [σ]Γ.

Proof. For the over category, we have:

U↓[σ]Γ = {[γτ ]G : τ ≥ σ, γ ∈ Γ} = {[(1,m)τ ]G : τ ≥ σ,m ∈ Z},

where [−]G denotes the G-orbit of the simplex. To describe a splitting of p−1
G (|U↓[σ]Γ|) we need to

start with an equivalence relation on Z. Every simplex σ of EGΓ defines an equivalence relation on

Z,

m1∼σm2 ⇐⇒ Γσ∩(1,m1)G(1,−m2) 6= ∅, for each m1,m2 ∈ Z.

Also, for each t ∈ S1, m ∈ Z, we define a map

im : (EG×{t}×{m})×Γσ∩Gσ̂ → (EG×{t}×Z)×ΓΓσ̂, [(x, t,m), σ̂] 7→ [(x, t,m), σ̂]
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(here EG×{t}×Z ⊂ EΓ). Notice that the image of im depends on the choice of t ∈ S1. Direct

calculations show that:

|U↓[σ]Γ| =
∐

[mk]

|Idcat(BGG)op↓[(1,mk)σ]G|

p−1
G (|U↓[σ]Γ|) =

∐

[mk]

p−1
G (|Idcat(BGG)op↓[(1,mk)σ]G|) =

∐

[mk]

EG×GG(|Idcat(EGΓ)op↓(1,mk)σ|)

∼=
∐

[mk]

EG×Γσ∩G|Idcat(EGΓ)op↓(1,mk)σ|

where mk runs over a complete set of representatives of ∼σ. Thus

h([σ]Γ) = hocolimcat(|U↓[σ]Γ|)op(S◦bar(pG|)) ≃
∨

[mk]

hocolimcat(|IdBGG
↓[(1,mk)σ]G|)op(S◦bar(pG|))

But [(1,mk)σ]G is a terminal object in the category IdBGG
↓[(1,mk)σ]G. Therefore,

h([σΓ) ≃
∨

[mk]

S(p−1
G ([(1,mk)σ̂]G))

Continuing the calculations,

h([σ]Γ ≃ S


∐

[mk]

p−1
G ([(1,mk)σ̂]G)


 = S


∐

[mk]

EG×GG(1,mk)σ̂


 ≃ S


∐

[mk]

Im(ik)




≃ S((EG×{t̂}×Z)×ΓΓσ̂) = S◦bar(qΓ)(t, [σ]Γ)

The naturality follows from the construction.

Now Segal’s Theorem applied to U implies:

hocolimcat(BGG)op(S◦bar(pG)) ≃ hocolimcat(BGΓ)op(h) ≃ P∗ρ(t).

Thus, if we assume that G satisfies the S-IC, for each t ∈ cat(S1)op,

S(BG) ≃ hocolimcat(BGG)op(S◦bar(pG)) ≃ P∗ρ(t)

Since

hocolimcat(S1×BGΓ)op(S◦bar(qΓ)) ≃ hocolimcat(S1)op(P∗ρ) ≃ hocolimcat(S1)op(BG),

the homological properties of homotopy colimits imply that (Section 3 in [70]) there is a long exact

sequence

· · · → πi(S(BG))
1−φ∗
−−−→ πi(S(BG))→ Hi(S

1×BGΓ,S(qΓ))→ πi−1(S(BG))→ . . .

Therefore we get that CF ≃ H.(S1×BGΓ,S(qΓ)) Thus H.(S1×BGΓ,S(qΓ)) represents the controlled

(over S1) S-theory.
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The commutative diagram

EΓ×ΓEGΓ −−−−→ EΓ×ΓEGΓ −−−−→ BΓ

qΓ

y
ypΓ

y

S1×BGΓ −−−−→ BGΓ −−−−→ ∗

induces a map of spectra f : H.(S1×BGΓ,S(qΓ)) → S(BΓ). This map is the ‘forget control’ map.

The inclusion induced map S(BG) → S(BΓ) factors through the spectrum H.(S1×BGΓ,S(qΓ))

because of the commutative diagram

BG ←−−−− EG×GEGΓ −−−−→ EΓ×ΓEGΓ −−−−→ EΓ×ΓEGΓ −−−−→ BΓ
y pG

y qΓ

y
ypΓ

y

∗ ←−−−− BGG −−−−→ S1×BGΓ −−−−→ BGΓ −−−−→ ∗

Notice that the map in the second square is not natural because it depends on the choice of an

element of S1 but the composition induced by the third square is not affected by that choice. Thus

the following diagram commutes, up to homotopy:

S(BG) −−−−→ H.(S1×BGΓ,S(qΓ))

id

y
yf

S(BG) −−−−→ S(BΓ)

For the Bundle version, start with a commutative diagram:

¯̄Y −−−−→ ¯̄Y −−−−→ Ȳ −−−−→ Y

¯̄ρ

y ¯̄ρ

y ρ̄

y
yρ

EG×GEGΓ −−−−→ EG×GEGΓ −−−−→ EΓ×ΓEGΓ −−−−→ BΓ

qG

y pG

y pΓ

y
y

S1×BGG −−−−→ BGG −−−−→ BGΓ −−−−→ ∗

where ρ is a bundle and the top diagrams are pull-back diagrams. As before, we have the following.

Theorem 4.7. Assume that the Bundle S-IC holds for G. Then there is an exact sequence:

· · · → πi(S( ¯̄Y ))
1−φ∗
−−−→ πi(S( ¯̄Y ))→ Hi(S

1×BGΓ,S(ρ̄◦qΓ))→ πi−1(S( ¯̄Y ))→ . . .

where φ : ¯̄Y → ¯̄Y is the homeomorphism induced by α.

Remark 4.8. The groups H∗(S
1×BGΓ,S(ρ̄◦qΓ)) are the analogues of the controlled groups over S1.

Theorem 4.7 states the homological properties of the controlled groups.
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We specialize to the case S = KR, the K-theory spectrum with coefficients in a ring R. Then

there is a commutative diagram of exact sequences for each i:

Hi(S
1×BGΓ,KR(qΓ))

))RRRRRRRRRRRRR

f

��

Ki(RG)
1−φ∗

// Ki(RG)

((RRRRRRRRRRRRR

66mmmmmmmmmmmmm

Ki−1(RG)
1−φ∗

// Ki−1(RG)

Ki(RΓ)

55llllllllllllll

If the Nil-groups of RG vanish, (for example, if RG is regular coherent ring), the bottom sequence

is exact for the Bass–Heller–Swan formula ([89], [90]). Thus, in this case,

f : Hi(S
1×BGΓ,KR(qΓ))→ Ki(RΓ)

is an isomorphism for all i ∈ Z. From the definition of f we have that it factors as:

f : Hi(S
1×BGΓ,KR(qΓ))

p
−→ Hi(BGΓ,KR(pΓ))

A
−→ Ki(RΓ)

where p is induced by the projection to the second coordinate and A is the assembly map that

appears in the Isomorphism Conjecture.

Theorem 4.9. Assume that the Nil-groups of RG vanish. Then

A : Hi(BGΓ,KR(pΓ))→ Ki(RΓ)

is an epimorphism.

4.2. Controlled Groups over the Interval. Let Γ = G1 ∗G0 G2, where G0 is a subgroup of

G1∩G2. Let BGi, i = 0, 1, 2, be classifying spaces for the corresponding groups with BG0 a

subcomplex of BG1∩BG2. Choose BΓ to be the double mapping cylinder of the inclusion maps.

Then there is a natural map ρ : BΓ → I, where I is the unit interval. Let EΓ be the universal

cover of BΓ. Let

EΓ×ΓEGΓ
qΓ−→ I×BGΓ

be maps induced by the natural projection. As before, we have the commutative diagram

EΓ×ΓEGΓ −−−−→ EΓ×ΓEGΓ

qΓ

y
ypΓ

I×BGΓ −−−−→ BGΓ

We will show that H.(I×BGΓ,S(qΓ)) satisfies a Mayer–Vietoris type property.

We work as in Section 4.1. Equip I with the structure of a simplicial complex with one 1-simplex

I, and two 0-simplices 0, 1. The projection map induces a functor:

ρ : cat(I×BGΓ)op → cat(I)op
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We will use Segal’s Pushdown Construction. We start by giving a description of the functor P∗ρ

on cat(I)op. For each simplex t of I, define a functor:

S◦bar(qΓ)(t,−) : cat(BGΓ)op → Spectra, [σ]Γ 7→ S◦bar(qΓ)(t, [σ]Γ)

Then the functor P∗ρ is defined as:

P∗ρ : cat(I)op → Spectra, P∗ρ(t) = hocolimcat(BGΓ)op(S◦bar(qΓ)).

So if we fix t, the functor bar(qΓ) associates to [σ]Γ, the space

q−1
Γ (t̂×σ̂) = (EGi)Γ×ΓΓσ̂ ∼= (EGi)Γ×Γσ σ̂,

after subdividing, where i = 0 if t is an interior point and Gi = Gt+1 when t ∈ ∂I. Actually, the

inverse image for t ∈ Int(I), is

q−1
Γ (t̂×σ̂) = (EGi×{t})Γ×ΓΓσ̂

The inclusion map Gi → Γ induces a commutative diagram:

EGi×Gi
EGΓ

ū
−−−−→ EGiΓ×ΓEGΓ

pGi

y
yqΓ

EGΓ/Gi = BGGi

u
−−−−→ t̂×BGΓ = t̂×EGΓ/Γ

where u is just the quotient map. As in the last section, u induces a functor

U : cat(BGGi
)op → cat(BGΓ)op.

We consider the restriction

pGi
| : (pGi

)−1(|U↓[σ]Γ|)→ |U↓[σ]Γ|

and define a functor

h : cat(BGΓ)op → Spectra, , h([σ]Γ) = hocolimcat(|U↓[σ]Γ|)op(S◦bar(pGi
|)).

As in the last section, we get that there is a natural homotopy equivalence:

h([σΓ]) ≃ S◦bar(qΓ)(t, [σΓ]).

We will indicate the modifications we need to get the result. Choose coset representatives:

∆i = {γi,j : γi,j ∈ Ai}, i = 0, 1, 2.

In other words,

Γ =
∐

j∈Ai

Giγi,j , i = 0, 1, 2.

With the above notation:

• Every simplex [σ]Γ of EGΓ defines an equivalence relation on ∆i,

γi,j∼σγ
′
i,j ⇐⇒ Γσ∩γi,jGi(γ

′
i,j)
−1 6= ∅.
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• Let t ∈ I. Set i = 0 if t ∈ Int(I) and i = t if t ∈ ∂I. For each γi,j ∈ ∆i, a map

ιγi,j
: EGi×Γσ∩Gi

gi,j σ̂ → EGiΓ×ΓΓσ̂, [x, γi,j σ̂] 7→ [x, γi,j σ̂]

here EGiΓ ⊂ EΓ. Notice that the image of ιγi,j
depends on the choice of t ∈ I.

• There is a homeomorphism:

χi : EGi×Gi
Giγi,j σ̂ → EΓ×ΓEGΓ

onto Im(ιγi,j
).

Then

|U↓[σΓ]| =
∐

[

γi,j ]|Idcat(BGGi
)op↓[γi,jσ]Gi

|

(pGi
)−1(|U↓[σΓ]|) =

∐

[

γi,j ]EGi×Γσ∩Gi
|Idcat(BGΓ)op↓γi,jσ|.

Segal’s Theorem implies that

hocolimcat(BGGi
)op(S◦bar(pGi

)) ≃ hocolimcat(BGΓ)op(h) ≃ P∗ρ(t).

Thus, if the S-IC holds for Gi, i = 0, 1, 2, there is a natural homotopy equivalence:

P∗ρ(t) = hocolimcat(BGΓ)op(S◦bar(qΓ)(t,−)) ≃

{
S(BG0), if t ∈ Int(I)

S(BGt+1), if t ∈ ∂I.

Again, using the homological properties of homotopy colimits, we can show that the following is a

homotopy cartesian diagram:

S(BG0) −−−−→ S(BG1)y
y

S(BG1) −−−−→ H.(I×BGΓ,S(qΓ))

In analogy with the circle, for the case S = KR we have that:

Theorem 4.10. Let R be a ring such that the Waldhausen Nil-groups of RG0 vanish. Then

(1) the forgetful map

f : H.(I×BGΓ : KR(qΓ))→ KR(BΓ)

is a homotopy equivalence. This map is induced by the universal properties of the homotopy

cartesian square.

(2) the assembly map

A : H.(BGΓ,KR(pΓ))→ KR(BΓ)

induces an epimorphism on homotopy.
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5. Applications

We will apply the results to prove that KR-IC is true for certain types of groups. Most of the

results in this section were obtained, with different methods, in [10]. Before we start we state the

Novikov Conjecture for a discrete group Γ. Let CΓ be the classifying space for the class of finite

subgroups of Γ. Again, there is a commutative diagram:

EΓ×ΓECΓ −−−−→ BΓ

p

y
y

BCΓ −−−−→ ∗

A group Γ satisfies the integral S-Novikov Conjecture if the assembly map

AC : H.(BCΓ,S(p))→ S(BΓ)

induces a split injection on the homotopy groups. It is an open question if all the torsion free groups

satisfy the integral KR-Novikov Conjecture. It was proved that groups of finite cohomological

dimension that also have finite asymptotic dimension satisfy the integral KR-Novikov Conjecture

([8]), generalizing the calculations in [18].

Remark 5.1. The geometric methods used in proving the Novikov Conjecture depend on controlling

how ‘large’ compact subsets of EΓ become as they are translated to infinity through the Γ-action.

The assumption on the asymptotic dimension guarantees such control.

Let R be a regular Noetherian ring. Let G be a torsion free group that satisfies the integral

KR-Novikov Conjecture. The commutative diagram

EG×GECG −−−−→ EG×GEGG −−−−→ BG

p

y
ypG

y

BCG −−−−→ BGG −−−−→ ∗

provides a splitting of the assembly map AC = A◦AC,G :

H.(BCG,KR(p))

AC,G

��

AC
// KR(BG)

H.(BGG,KR(pG))

A

66nnnnnnnnnnnn

The relative assembly map is the map induced by the first commutative square. For every virtually

cyclic group S of G, let CS be the class of finite subgroups of S. Theorem A.10 in [43] states that

AC,G is an equivalence if the assembly map ACS is an equivalence for all virtually cyclic subgroups S

of G (a similar calculation appears in [31]). Since G is torsion free, the only finite subgroup of G is

the trivial group and the only virtually cyclic subgroups are infinite cyclic subgroups. Thus ACS is

the assembly map in the integral KR-Novikov conjecture for S ∼= Z. Since R is regular Noetherian,
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this map is an equivalence ([43], Remark A.11). Therefore, if AC induces a monomorphism on

homotopy groups, so does A. Combining with the results in Theorems 4.9 and 4.10, we get the

following:

Theorem 5.2. Let G be a torsion free group and R a regular Noetherian ring. Assume that G

satisfies the KR-IC, and that RG is a regular Noetherian ring. Let Γ be a torsion free group defined

by:

(i) Γ = G⋊Z, or

(ii) Γ = G1 ∗G G2, such that Gi, i = 1, 2, satisfy the KR-IC,

such that Γ satisfies the integral KR-Novikov conjecture. Then Γ satisfies the KR-IC.

Remark 5.3. We assume that the groups involved satisfy the KR-IC as in the Theorem 5.2. More

generally, it is enough if we assume that R is regular Noetherian ring, and the twisted Nil-groups

of RG vanish in (i) and the Waldhausen Nil-groups of the triple (RG,R[G1\G], R[G2\G]) vanish

in (ii).

Now we give applications of the Theorem.

Corollary 5.4. Let G be a torsion free group and R a regular Noetherian ring. Assume that:

(1) G satisfies the KR-IC,

(2) G has finite asymptotic dimension,

(3) RG is a regular coherent ring.

Let Γ be a torsion free group defined by:

(i) Γ = G⋊Z, or

(ii) Γ = G1 ∗G G2, such that Gi, i = 1, 2, satisfy the KR-IC and they have finite cohomological

and asymptotic dimensions.

Then Γ satisfies the KR-IC.

Proof. The assumptions on the groups imply that Γ has finite asymptotic dimension ([13]). Also,

Γ has finite cohomological dimension and thus it admits a finite dimensional BΓ. By [8], Γ satisfies

the integral KR-Novikov conjecture. The result follows from Theorem 5.2. �

Corollary 5.5. Let F be a finitely generated free group and R a regular Noetherian ring. Then

(1) F satisfies the KR-IC.

(2) F⋊Z satisfies the KR-IC

Proof. The first statement follows by induction on the number k of generators of F : If k = 2, then

F = Z ∗ Z and the result follows from 5.4. For k > 2, F = Fk−1 ∗ Z, where Fk−1 is the free group

on (k − 1) generators. All the assumptions of Corollary 5.4 are satisfied and thus F satisfies the

KR-IC.
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For the second statement, we use again Corollary 5.4. Part (1) implies that assumption (1) is

satisfied. Also, the free group has finite asymptotic dimension and thus assumption (2) is satisfied.

Assumption (3) follows because R is regular Noetherian ring. �

Remark 5.6. In [4] and [46], there was a special assumption for groups of type F⋊Z to satisfy the

fibered pseudoisotopy IC. Essentially the assumption was that the action of Z on F has certain

geometric properties. Corollary 5.5 is more general because such an assumption is not needed but

it only gives the KR-IC and not the fibered version. A general fibered version could not follow

along the same lines because the assumptions in Corollary 5.4 guarantee that all the Nil-groups

that appear vanish.
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