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Abstract. Some forty years ago Per Enflo introduced the nonlinear notions

of roundness and generalized roundness for general metric spaces in order
to study (a) uniform homeomorphisms between (quasi-) Banach spaces, and

(b) Hilbert’s Fifth Problem in the context of non locally compact topological

groups (see [23], [24], [25], and [26]). Since then the concepts of roundness and
generalized roundess have proven to be particularly useful and durable across

a number of important mathematical fields such as coarse geometry, discrete

geometry, functional analysis and topology. The purpose of this article is to
take a retrospective look at some notable applications of versions of nonlinear

roundness across such fields, to draw some hitherto unpublished connections

between such results, and to highlight some very intriguing open problems.

1. Nonlinear Roundness — Introduction and Background

Nonlinear notions of roundness and generalized roundness (see Definition 1.1)
were introduced by Enflo in the late 1960s in a series of concise but elegant papers
[23], [24], [25] and [26]. The purpose of Enflo’s programme of study in these papers
was to investigate Hilbert’s fifth problem in the context of non locally compact
topological groups and to address the nonlinear classification of topological vector
spaces up to uniform homeomorphism. Therein, Enflo used both roundness and
generalized roundness in order to expose decisive estimates on the distortion of
certain nonlinear maps between metric spaces. Later, within the context of Banach
spaces, it became clear that roundness could be viewed as a natural precursor of
Rademacher type. On the other hand, kernels of negative type and generalized
roundness are known to be very tightly related. Issues of distortion and type
now figure prominently in several modern fields of mathematical research and (as
a result) ideas surrounding roundness and generalized roundness continue to find
new and sometimes unexpected areas of applicability. Our purpose in this article
is to present and unify some of the recent developments along these lines, and to
present a number of open problems and avenues for further research.

The following definitions are central to the entire paper and are therefore col-
lected together here for easy reference throughout the subsequent sections.

Definition 1.1. Let p ≥ 0 and let (X, d) be a metric space. Then:
(a) (X, d) has roundness p if and only if for all quadruples x00, x01, x11, x10 ∈ X,

we have:

d(x00, x11)p + d(x01, x10)p ≤ d(x00, x01)p + d(x01, x11)p +
d(x11, x10)p + d(x10, x00)p.
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(b) (X, d) has generalized roundness p if and only if for all natural numbers
n ∈ N, and all choices of points a1, . . . , an, b1, . . . , bn ∈ X, we have:∑

1≤k<l≤n

{
d(ak, al)p + d(bk, bl)p

}
≤

∑
1≤j,i≤n

d(aj , bi)p.(1)

(c) (X, d) has p-negative type if and only if for all natural numbers n ≥ 2, all
finite subsets {x1, . . . , xn} ⊆ X, and all choices of real numbers η1, . . . , ηn
with η1 + · · ·+ ηn = 0, we have:

∑
1≤i,j≤n

d(xi, xj)pηiηj ≤ 0.

(d) (X, d) has strict p-negative type if and only if it has p-negative type and
the inequality in (c) is strict whenever the scalar n-tuple (η1, . . . , ηn) 6= ~0.

Remark 1.2. In making Definition 1.1 (b) it is important to point out that rep-
etitions among the a’s and b’s are allowed. Indeed, allowing such repetitions is
essential to the general theory. We may, however, when making Definition 1.1 (b),
assume that aj 6= bi for all i, j (1 ≤ i, j ≤ n). This is due to an elementary
cancellation of like terms phenomenon that was first observed by Andrew Tonge
(unpublished).

Clearly, roundness is just what one obtains by restricting Definition 1.1 (b) to
the particular natural number n = 2. It is easy to see that every metric space
has roundness one and generalized roundness zero. A midpoint convex (that is,
metrically convex) metric space cannot have roundness p for any p > 2. Hilbert
spaces have roundness 2 and generalized roundness 2 due to easy adaptations of the
parallelogram law. The complete bipartite graphs Kn,n can be metrized to provide
examples of finite metric spaces whose maximal generalized roundness decreases to
zero as n tends to infinity.1 This is noted in the introduction to Enflo [24] and
illustrates that roundness and generalized roundness are distinct notions.

In some situations it is natural to consider the supremum of all p for which a
given metric space has (generalized) roundness p.

Definition 1.3. Let (X, d) be a metric space. Then:
(a) pX = sup{p : (X, d) has roundness p} is called the maximal roundness of

the metric space (X, d), and
(b) qX = sup{p : (X, d) has generalized roundness p} is called the maximal

generalized roundness of the metric space (X, d).

The terminology “maximal” in Definition 1.3 is easily justified. A simple argu-
ment shows that the set of all p for which a given metric space (X, d) has roundness p
is a closed subset of [0,∞). The same goes for generalized roundness. Hence (X, d)
has roundness pX and generalized roundness qX . In other words, metric spaces
always attain their supremal (generalized) roundness. Typically, given a metric

1Indeed, simply represent Kn,n as distinct vertices a1, . . . , an, b1, . . . , bn and define a metric

on Kn,n via d(ai, aj) = 2 = d(bi, bj) for all 1 ≤ i < j ≤ n, and d(ai, bj) = 1 for all 1 ≤ i, j ≤ n.

Then (Kn,n, d) does not have generalized roundness p for any p > − log2

`
1 − 1

n

´
. On the other

hand—and at the other extreme—if we define all edges in Kn,n to have length 1 (in other words, if
we consider the ordinary graph metric on Kn,n), then we obtain a metric space that has maximal

roundness ∞. (This is, of course, true for any set endowed with the discrete metric.)



NON LINEAR ROUNDNESS IN ANALYSIS, DISCRETE GEOMETRY AND TOPOLOGY 3

space (X, d), computing pX and qX , or even computing meaningful lower bounds
on pX and qX , is a difficult nonlinear problem. A major point of this paper is that
(maximal) roundness and (maximal) generalized roundness can provide examples of
coarse, uniform and isometric invariants when cast in the appropriate light. Some
more preliminaries are in order before we can begin to expose such applications of
nonlinear roundness2.

It is the case that Definition 1.1 (a) can be rephrased in terms of nonlinear
two-dimensional cubes and that, moreover, higher dimensional analogues of the
roundness inequalities necessarily hold by induction. This turns out to be a crucial
feature of roundness and the basic ideas are as follows.

Definition 1.4. Let n be a natural number. By an n-cube in a metric space (X, d)
we simply mean the encoded range N = {xε} of a function f : {0, 1}n → X : ε 7→ xε
whose domain is the standard n-dimensional cube of all n-vectors ε = (ε1, . . . , εn)
with coordinates chosen from the set {0, 1}.

An unordered pair of vertices (xε, xδ) in an n-cubeN is called a diagonal if εi 6= δi
for all i ∈ {1, 2, . . . , n}, and an edge if εi 6= δi for precisely one i ∈ {1, 2, . . . , n}.

Notation. Given an n-cube N = {xε} in a metric space (X, d), the set of all diago-
nals in N will be denoted D(N), and the set of all edges in N will be denoted E(N).
Clearly |D(N)| = 2n−1, and |E(N)| = n · 2n−1. Moreover, for any unordered pair
of vertices f = (xε, xδ) in N we will use l(f) as a shorthand for the metric length
d(xε, xδ). This allows for an efficient method of writing down roundness related
inequalities. For example, we can restate the condition in Definition 1.1 (a) as a
statement about all 2-cubes N = {xij} in X:∑

d∈D(N)

l(d)p ≤
∑

e∈E(N)

l(e)p.

Enflo [23] showed that roundness has the following extremely useful inductive
property.

Theorem 1.5 (Enflo [23]). If N is an n-cube in a metric space (X, d) that has
roundness p, then we have: ∑

d∈D(N)

l(d)p ≤
∑

e∈E(N)

l(e)p.

In particular; if dmin denotes a diagonal of minimal d-length in N and emax denotes
an edge of maximal d-length in N , then we must have l(dmin) ≤ n

1
p · l(emax).

The inequalities of Theorem 1.5 are particularly decisive in nonlinear settings if
it is the case that p > 1. Indeed, Enflo [23] computed that Lp(µ)—where 1 ≤ p ≤ 2
and µ is a positive Borel measure on some sigma algebra (Ω,Σ)—has maximal
roundness p, and then went on to obtain the following two results as consequences
of Theorem 1.5.

Theorem 1.6 (Enflo [23]). Let 1 ≤ p ≤ 2 and let (X, d) be a metric space with
roundness q > p. If T : Lp(µ) → (X, d) is a uniform homeomorphism, then T−1

cannot satisfy a Lipschitz condition of order α at large distances for any α < q
p .

And so, Lp1(µ1) and Lp2(µ2) are not uniformly homeomorphic if 1 ≤ p1 < p2 ≤ 2.

2We use this term as an umbrella for number of nonlinear versions of “type”; including round-
ness, generalized roundness, scaled Enflo type, Markov type, and so on
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The proof of Theorem 1.6 determines (as an auxillary application) that any
embedding of the Hamming Cube

(
{0, 1}n, d`1

)
into Hilbert space must incur a

distortion of at least
√
n. This was likely the first result to show an unbounded

distortion for embeddings into Hilbert space. See, for example, Matousek [47]
(Theorem 15.4.1).

Theorem 1.7 (Enflo [25]). A non normable quasi-Banach space cannot be uni-
formly homeomorphic to any Banach space that has roundness greater than one.
And so, Lp1(µ1) is not uniformly homeomorphic to Lp2(µ2) if 0 < p1 < 1 < p2 <∞.

In Sections 4 and 5 of this paper we will indicate some generalizations of The-
orems 1.6 and 1.7 which are obtained by replacing the notion of roundness with
something more relaxed; namely, metric (or, BMW) type.

Prior to a preliminary discussion of generalized roundness and negative type we
recall the following notion from the uniform theory of Banach spaces.

Definition 1.8. A metric space (X, d) is called a universal uniform embedding space
if for each separable metric space (Y, ρ) there exists some subset Z = Z(X) ⊆ X
such that (Y, ρ) is uniformly homeomorphic to (Z, d).

Enflo [24] introduced generalized roundness as a means to address Smirnov’s
Question: Is every separable metric space uniformly homoemorphic to a subset
of L2[0, 1]? This is a delicate question because every separable metric space is
isometric to a subset of C[0, 1] and all separable Banach spaces are mutually home-
omorphic by a remarkable theorem of Kadec [38]. Hence every separable metric
space is homeomorphic to a subset of L2[0, 1]. Enflo [24] gave a negative answer to
Smirnov’s Question by showing that Hilbert spaces have generalized roundness two
whereas no universal uniform embedding space can have positive generalized round-
ness. More recently, the ideas and constructions in Enflo [24] have had significant
applications in the study of coarse geometry, particularly in relation to Gromov’s
[29] concept of coarse embeddings. We shall return to this important point and
discuss it more scrupulously in Section 3.

The p-negative type inequalities of Definition 1.1 (c) arose in the 1920s and
1930s in connection with the study of isometric embeddings of metric spaces. In
particular, Schoenberg [62], [63] was the first to use notions of positive and negative
definite kernels to intensively study such embeddings. For example, Schoenberg
[62] obtained that a metric space (X, d) admits an isometric embedding into a
Hilbert space if and only if it has 2-negative type. Much later, Bretagnolle et al
[13] obtained the following celebrated characterization of those real (quasi) normed
linear spaces which are linearly isometric to a subspace of some Lp(µ)-space, 0 <
p ≤ 2.

Theorem 1.9 (Bretagnolle, Dacunha-Castelle and Krivine [13]). Let 0 < p ≤ 2.
Let (X, ‖ · ‖) be a real quasi-normed space. Then: X is linearly isometric to a
subspace of some Lp(µ)-space if and only if X has p-negative type.

There are versions of Theorem 1.9 that deal with the less tractable (commutative)
case p > 2. We refer the reader to Koldobsky and König [42] for a discussion of
results along these lines. There are also noncommutative versions of Theorem 1.9.
For example, Junge [36], and (subsequently) Junge and Parcet [37], have obtained
fundamental results on operator space embeddings of (noncommutative) Lq-spaces
into Lp-spaces, 1 ≤ p < q ≤ 2.
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Interestingly, while one might hope for a purely metric version of Theorem 1.9 in
the case p < 2, Lee and Naor [44] have given examples to show this is not possible.
For 1 ≤ p < 2, Lee and Naor construct metric spaces that have p-negative type
but which do no embed isometrically, or even bi-Lipschitzly, into any Lp(µ)-space.
Their work was motivated in part by (a desire to find a simpler example than) Khot
and Vishnoi’s [41] celebrated counter-example to the Goeman’s-Linial conjecture:
Every metric space of 1-negative type embeds with O(1) distortion into L1. The
results of this paragraph are thus tightly related to the Sparsest Cut problem with
general demands, a famous open problem in the study of approximation algorithms.

Lennard et al [45] have shown that generalized roundness p and p-negative type
are equivalent notions in the category of metric spaces.

Theorem 1.10 (Lennard, Tonge and Weston [45]). Let p ≥ 0. For a metric space
(X, d), the following are equivalent:

(a) (X, d) has p-negative type.
(b) (X, d) has generalized roundness p.

Proof. The argument that (a) implies (b) is quite short and illuminating so we
shall give it here. Suppose that (X, d) has p-negative type. Let n ∈ N be given.
Consider points a1, . . . , an, b1, . . . , bn ∈ X. For each k, 1 ≤ k ≤ n, set x2k−1 = ak
and x2k = bk. And for each j, 1 ≤ j ≤ 2n, set ηj = (−1)j . As

∑2n
j=1 ηj = 0 it

follows from our hypothesis on (X, d) that we have:∑
1≤i,j≤2n

d(xi, xj)pηiηj ≤ 0.(2)

Summing over (i, j) both odd, (i, j) both even, i even and j odd, and i odd and j
even, we see from (2) that:

0 ≥
∑

1≤i,j≤n

{
d(ai, aj)p + d(bi, bj)p − 2d(ai, bj)p

}
(3)

=
∑

1≤i,j≤2n

d(xi, xj)pηiηj .

Hence (X, d) has generalized roundness p. Moreover, notice that if the inequality in
(2) is strict, then the corresponding generalized roundness p inequality (3) must be
strict too. (This illustrates that strict p-negative type implies “strict” generalized
roundness p. The converse is also true. See Theorem 6.8 in Section 6.)

The argument that (b) implies (a) relies on the introduction of weighted versions
of the generalized roundness inequalities. See Theorem 6.5 and Remark 6.6 in
Section 6 for more details. �

Via Theorem 1.10 Lennard et al [45] were able to codify a few basic properties
of generalized roundness that had not previously come to light. In particular, in
the category of metric spaces, generalized roundness holds on intervals: If a metric
space has generalized roundness p1, then it has generalized roundness p2 for all
p2 ∈ [0, p1]. They also gave the first examples of finite dimensional Banach spaces
that fail to have positive generalized roundness: For p > 2 and n ≥ 3, `(n)

p does
not have positive generalized roundness. A number of recent applications of the
equivalence of negative type and generalized roundness will be discussed in the
subsequent sections.
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The rest of the paper is structured as follows. Section 2 investigates results on
geometric and topological properties that are detected by the roundness of gen-
eral metric spaces. For example, geodesic spaces of maximal roundness 2 are con-
tractible, and a compact Riemannian manifold with roundness greater than one
must be simply connected (Lafont and Prassidis [43]). Section 3 delineates con-
nections between generalized roundness and the Novikov Conjecture via kernels of
negative type. Section 4 is more classical functional analysis where competing no-
tions of nonlinear type, and particularly scaled versions of roundness, are discussed
at length. In this section we refrain from saying very much about the notion of
metric cotype due to Mendel and Naor [49]. This belies the fact that metric co-
type is an extremely important development in modern functional analysis. (It just
does not quite fit with the flow of our discussion since it is not a generalization of
roundness per se, but rather a dual notion.) In Section 5 we take a look at uniform
Banach groups and a technique for “linearizing” certain uniform homeomorphisms.
Finally, in Section 6, we address strict negative type and discuss how it can be used
as a device to improve lower bounds on the maximal p-negative type of certain
finite metric spaces (such as trees). Throughout the paper we highlight a number
of open problems and new directions for future research which we consider to be
particularly germane.

2. Roundness Properties of Metric Spaces and Groups

It is a simple application to show that the circle (with the arc length) has triv-
ial roundness. That is, it has maximal roundness 1. This implies that maximal
roundness for complicated (non-simply connected) geodesic metric spaces must be
trivial.

Theorem 2.1 (Lafont and Prassidis [43]).
(1) Let (X, d) be a compact geodesic space with globally minimizing geodesic.

Then the maximal roundness of (X, d) is 1.
(2) Let (X, d) be a geodesic metric space so that, for each p ∈ X there is a

simply connected, geodesically convex neighborhood Np containing p. That
is, if γ is a geodesic joining two points in Np whose length equals to the
distance between the two points, then γ is contained in Np. Then (X, d)
has maximal roundness 1.

(3) Let M be a compact non-simply connected manifold. Then M has maximal
roundness 1.

Questions. There are two questions left open from Theorem 2.1.
(1) Let M a compact manifold that contains a globally minimizing closed ge-

odesic. Does M have maximal roundness 1?
(2) What can be said about the maximal roundness of non-compact Riemann-

ian manifolds?
Metric spaces with maximal roundness 2 are clearly quite special. Because of

Theorem 2.1, we look at simply connected spaces.

Theorem 2.2 (Lafont and Prassidis [43]). Let X be a simply connected geodesic
metric space of roundness 2. Then X is contractible.

We recall the definition of a CAT(0)-space (Bridson and Haeflinger [14]). Let
(X, d) be a geodesic metric space. A geodesic triangle4ABC is a collection of three
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geodesic segments joining the points A, B and C. A comparison triangle 4A′B′C ′
is a triangle in the Euclidean plane with the same edge lengths as 4ABC. Let V
and U be two points in 4ABC and V ′, U ′ the corresponding points in 4A′B′C ′.
The metric space (X, d) is CAT(0) if d(V,U) ≤ ‖V ′ −U ′‖ for all geodesic triangles
4ABC and all V,U ∈ 4ABC. In other words, if the distance between all such V
and U in X is smaller than the Euclidean distance between U ′ and V ′.

In the theory of geodesic metric spaces, a similar result as in 2.2 is satisfied for
CAT(0)-spaces (Bridson and Haeflinger [14]). That suggests that there might be a
connection between CAT(0)-spaces and geodesic metric spaces of roundness 2.

Theorem 2.3. Let X be a geodesic metric space.
(1) If X is a CAT(0)-space then X has roundness 2.
(2) If X is a simply connected metric space of roundness 2, then X is CAT(0).

Remark 2.4.
(1) Part (1) was shown in Lafont and Prassidis ([43]) using comparison prop-

erties of quadrilaterals in CAT(0)-spaces.
(2) Part (2) was shown in Berg and Nikolaev [10]. See also Berg and Nikolaev

[9] for additional background and results along these lines.

Any presentation P of a group G defines a Cayley graph for G, Cay(G,P ). The
vertices of Cay(G,P ) are the elements of G. A pair (g, h) of vertices is joined by
an edge if g−1h is a generator or the inverse of a generator. Notice that the com-
binatorial properties of the Cayley graph of the group depend on the presentation
and thus they are not invariants of the group. But the properties of the Cayley
graph “at infinity”, in “large distances” are algebraic invariants. (See, for example,
Bridson and Haeflinger [14], de la Harpe [18], and Gromov [29].) We consider the
vertices of Cay(G,P ) as a discrete metric space with the ordinary graph metric. In
general, the maximal roundness of the Cayley graph of the group depends on the
presentation of the group because roundness is not a quasi-isometric invariant.

Recall that a (not necessarily continuous) map f : (X, dX)→ (Y, dY ) is called a
quasi-isometry if there are constants K > 0, C > 0 such that, for all x, y ∈ X,

1
K
dX(x, y)− C ≤ dY (f(x), f(y)) ≤ KdX(x, y) + C.

Definition 2.5. Let G be a finitely generated group. The roundness spectrum,
ρ(G), of G is the set of maximal roundness of the Cayley graphs of the group.
More precisely,

ρ(G) = {pC : C = Cay(G,P ), P a presentation of G}.

We record some basic results on the roundness of Cayley graphs.

Remark 2.6.
(1) If G is finite, then ∞ ∈ ρ(G). That is because the complete graph is a

Cayley graph of G.
(2) If G is a finitely generated infinite group then ρ(G) ⊂ [1, 2].
(3) The roundness of an R-tree is 2 (Lafont and Prassidis [43], Naor and

Schechtman [53]). Thus 2 ∈ ρ(F ), where F is a finitely generated free
group.

(4) For n ≥ 2, ρ(Zn) = {1} (Lafont and Prassidis [43]).
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(5) Let G be a finitely generated group that contains two elements x and y that
do not have order 2, x 6= y±1, x3 6= y±1, and y3 6= x±1. Then 1 ∈ ρ(G).

(6) Let G be a finitely generated group and 1 /∈ ρ(G). Then G is a torsion
element with each element of torsion 2, 3, 5 or 7 (Lafont and Prassidis
[43]).

(7) It is not known whether or not the roundness spectrum of a group is a
closed subset of [1,∞), in general.

Word Hyperbolic groups generalize the metric properties of the free group. That
suggests the following question.

Question. Let G be a word hyperbolic group. Is the roundness spectrum ρ(G) a
dense subset of the interval [1, 2]?

3. Generalized Roundness and the Novikov Conjecture

The connection between generalized roundness and negative type is given in
Theorem 1.10.

We recall the following concept that was introduced by Gromov [29].

Definition 3.1. Let X and Y be metric spaces. A map f : X → Y is a coarse
embedding if there are non-decreasing functions ρ± : [0,∞)→ [0,∞) such that:

ρ−(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ+(dX(x, y)) for all x, y ∈ X,
and with limt→∞ ρ−(t) = 0. Notice that f is not necessarily continuous.

Gromov [29] asked whether every separable metric space admits a coarse em-
bedding into Hilbert space. This question is (in other words) a coarse analog of
Smirnov’s Question on uniform embeddings. Dranishnikov et al [22] constructed
a counterexample to Gromov’s Question by modifying the beautiful ideas of Enflo
[24] on uniform embeddings and generalized roundness.

Based on these ideas and results it is natural to make the following definition in
analogy to Definition 1.8.

Definition 3.2. A metric space (X, d) is called a universal coarse embedding space
if for each separable metric space (Y, ρ) there exists a coarse embedding of (Y, ρ)
into (X, d).

It (moreover) seems reasonable to pose the following question (to which one
might expect a negative answer).

Question. Do there exist universal coarse embedding spaces that have positive
generalized roundness?

More generally, is a natural program of study to seek parallels between the
theories of uniform and coarse embeddings and, indeed, this has already been done
quite extensively. See for example, Nowak [54].

Definition 3.3. Let (X, d) be a metric space on which a group Γ acts by isometries.
The Γ-equivariant Hilbert space compression of X, RΓ(X), is the supremum of
all β, 0 < β < 1, for which there is a Γ-equivariant coarse embedding f into
a Hilbert space on which Γ acts by affine isometries so that ρ+(f) is affine and
ρ−(f) = rβ , for large enough r. More precisely, f is a coarse embedding that
satisfies f(γx) = γf(x), for all γ ∈ Γ, x ∈ X.
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Remark 3.4.
(1) Jaudon, in [35], proved a quantitative version of Theorem 1.10. More pre-

cisely, it is noted that

RΓ(X) ≥ qX

2
.

(2) The maximum generalized roundness of the graph corresponding to the
standard presentation of the finitely generated free group and free abelian
group is computed to be equal to 1 by Jaudon in [35].

The geometric interest in the generalized roundness of a metric space comes
from its connections to the coarse Baum–Connes Conjecture. (See Yu [70] for
background.) Recall that a discrete metric space (X, d) has bounded geometry if
for each r > 0, there is a uniform bound N(r) for the cardinality of the balls of
radius r.

Coarse Baum–Connes Conjecture. For a discrete metric space X of bounded
geometry, the coarse assembly map µ : KX∗(X)→ K∗(C∗(X)) is an isomorphism.
Here KX∗(X) denotes the coarse K-homology of X.

If a group, with the word metric, satisfies the coarse Baumm-Connes Conjecture,
then it satisfies the Novikov Conjecture, which has a lot of applications to geometric
rigidity of topological manifolds.

The following is the basic geometric property of groups with a Cayley graph of
positive generalized roundness

Theorem 3.5 (Lafont and Prassidis [43]). Let Γ be a finitely generated group and X
a metric space of positive generalized roundness. Assume that one of the following
holds:

(1) There is a Cayley graph of Γ that isometrically embeds into X, or
(2) Γ acts properly discontinuously, cocompactly and with finite stabilizers by

isometries on X.
Then Γ satisfies the coarse Baum–Connes Conjecture and thus the strong Novikov
Conjecture.

Proof. Theorem 1.10 implies that dp is a negative definite kernel on X. Thus
(see Guentner, Higson and Weinberger [30], and Guentner and Kaminker [31]) X
coarsely embeds into a Hilbert space. Thus the conditions of Theorem 3.5 imply
that Γ coarsely embeds into a Hilbert space. Then, using Yu [70], we deduce that Γ
satisfies the coarse Baum–Connes Conjecture and thus the Novikov Conjecture. �

Remark 3.6.
(1) Assume that Γ has a Cayley graph that admits an isometric embedding

into Lp(µ) with 1 ≤ p ≤ 2, Then Γ satisfies the coarse Baum–Connes
Conjecture and thus the Novikov Conjecture. The result follows because
the generalized roundness of Lp(µ) is equal to p, for 1 ≤ p ≤ 2 (Lennard et
al [45], see also Nowak [54]).

(2) Let Γ be a finitely generated infinite Kazhdan group. Then every negative
definite kernel on Γ is bounded (de la Harpe and Valette [18], Delorme [19]).
Then, Theorem 1.10 implies that every Cayley graph of Γ has generalized
roundness 0.
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(3) Let Γ be a uniform lattice in Sp(n, 1) or F4(−20). Then Γ is a Kazhdan
group ([18]) and thus every Cayley graph of Γ has generalized roundness
0. It is not hard to see that Γ does not satisfy the conditions of Theorem
3.5. But Γ acts isometrically on a quartenionic hyperbolic space or on
the Cayley hyperbolic plane, and thus Γ is δ-hyperbolic. But δ-hyperbolic
groups embed into a Hilbert space and thus Γ satisfies the coarse Baum–
Connes Conjecture and thus the Novikov Conjecture.

Remark 3.6 leaves open the following questions.

Question. Is every CAT(0)-space quasi-isometric to a metric space of positive
generalized roundness?

Remark 3.7.
(1) A positive answer to this question will imply that every CAT(0)-group

satisfies the Novikov Conjecture.
(2) In Jaudon [35], it is shown that the generalized roundness of the 0-skeleton

of a CAT(0)-cubical complex, with the combinatorial metric induced by the
1-skeleton, is at least one.

Question. Let X and Y be discrete metric spaces such that:
(1) The distances are bounded away from 0.
(2) X and Y have bounded geometry.
(3) X and Y are bi-Lipschitz equivalent.

Then is it true that the generalized roundness of X is positive iff the generalized
roundness of Y is?

Remark 3.8.
(1) The classical examples of metric spaces X and Y that satisfy the assump-

tions in the question are Cayley graphs of the same group.
(2) A positive answer to the question will imply that positive generalized round-

ness is an invariant of the group.
(3) The conditions stated are needed because the maximal generalized round-

ness of Lp(µ)-spaces (of dimension at least three) is zero for p > 2. This
result was obtained in Lenard et al [45].

Question. Characterize all the groups that admit Cayley graphs of positive gen-
eralized roundness.

The groups that appear in the above question will satisfy the coarse Baum–
Connes Conjecture. Such a characterization will give us a rich class of groups that
satisfy the Novikov Conjecture. It will be interesting to compare this class with the
class of groups studied by Kasparov and Yu [40]. The authors believe that there
will be more groups in this class. The interesting project will be the study of the
metric properties of such groups. More precisely, to what kind of Banach spaces
can they be coarsely embedded.

4. Rademacher Type, Metric Type and Scaled Versions of Roundness

Since being isolated in the 1970s the notions of Rademacher type and cotype
have become central to any proper understanding of the local theory of Banach
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spaces. Recall that a Banach space
(
X, ‖ · ‖

)
has Rademacher type p > 0 if there

exists a constant K > 0 such that for any n ∈ N and any x1, . . . , xn ∈ X we have

1
2n
∑
ε

∥∥∥∥ n∑
i=1

εixi

∥∥∥∥p ≤ Kp ·
n∑
i=1

‖xi‖p(4)

where the summing on the left is taken over all ε = (ε1, . . . , εn) ∈ {−1,+1}n.
Cotype is defined analogously but with the above inequalities reversed. These are
linear Banach space notions insofar as the definitions involve both addition and
scalar multiplication of vectors. Already by the mid 1970s there were serious calls
for metric (or, nonlinear) versions of fundamental local properties of Banach spaces
such as type and cotype. In part, these calls were driven by Ribe’s [58] discovery
that uniformly homeomorphic Banach spaces must have the same local structure.
More precisely, Ribe proved that if X and Y are uniformly homeomorphic Banach
spaces, then X is finitely representable in Y , and vice versa. An unpublished result
of Enflo3 shows that converse of Ribe’s theorem does not hold in general. Enflo
considered L1[0, 1] and `1. These Banach spaces have the same local structure but
they are not uniformly homeomorphic.

Initial candidates for metric versions of type were introduced by Enflo [27] and
Bourgain et al [12], respectively. Both notions are predicated in terms of nonlinear
n-cubes (see Definition 1.4) and are defined as follows.

Definition 4.1. Let (X, d) be an (infinite) metric space. Let p ≥ 1.
(a) (X, d) has Enflo type p if there is a constant E > 0 such that for every

n ∈ N and every n-cube N = {xε} in X we have:( ∑
d∈D(N)

l(d)p
) 1
p

≤ E ·

( ∑
e∈E(N)

l(e)p
) 1
p

.(5)

(b) (X, d) has BMW type (or, metric type) p if there is a constant B > 0 such
that for every n ∈ N and every n-cube N = {xε} in X we have:( ∑

d∈D(N)

l(d)2

) 1
2

≤ B · n
1
p−

1
2 ·

( ∑
e∈E(N)

l(e)2

) 1
2

.(6)

A Banach space (X, ‖ · ‖) that has Enflo type p must have Rademacher type p.
Indeed, given x1, . . . , xn ∈ X, one simply considers the n-cube N = {xε} ⊂ X,
where xε = ε1x1 + · · ·+ εnxn for each ε = (ε1, . . . , εn) ∈ {−1,+1}n, to obtain that
(5) implies (4). Similarly, BMW type p implies Rademacher type p for Banach
spaces. The following natural question was posed by Enflo [27] and remains open
in full generality.

Question. If a Banach space has Rademacher type p must it have Enflo type p?
Pisier [56] showed that if a Banach space has Rademacher type p, then it has

Enflo type q for all q < p. The corresponding result where Enflo type q is replaced
by BMW type q was obtained by Bourgain et al [12] prior to Pisier’s work. Hence
the supremum of the Rademacher types of a Banach space cannot exceed — and
therefore must equal — the supremum of its Enflo (or, BMW) types. Naor and

3See Case (i) in the proof of Theorem 10.13 in Benyamini and Lindenstrauss [8] for Enflo’s
original argument.
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Schechtman [53] have recently shown that Rademacher type p is equivalent to Enflo
type p for UMD Banach spaces. (We recall briefly that UMD spaces are Banach
spaces in which martingale differences are unconditional. See, for example, Naor
and Schechtman [53] or Burkholder [15] for more precise information on UMD
spaces.) Pisier [56] also showed that if a metric space has Enflo type p, then it has
BMW type q for all q < p. Whether or not the converse of this statement holds for
metric spaces appears to be an open problem.

The next result gives a natural extension of Theorem 1.6 to the realm of BMW
type. We include the proof since it gives a nice illustration of working with n-cubes
and nonlinear roundness (in this case, BMW type).

Theorem 4.2 (Lennard et al [46]). Suppose (X, ‖ · ‖) is an infinite-dimensional
Banach space that contains the finite dimensional spaces `np uniformly in n ∈ N.
Let (Y, ρ) be a metric space with BMW type q > p, and let T : (X, ‖ · ‖)→ (Y, ρ) be
an onto uniform homeomorphism. Then T−1 cannot satisfy a Lipschitz condition
of order α for large distances for any α ∈ (0, qp ).

Proof. Since the map T is uniformly continuous on X it must be Lipschitz of order
one for large distances by the Corson-Klee Lemma. It follows that the quantity

K = sup{ ρ(Tx, Ty) |x, y ∈ X and ‖x− y‖ ≤ 1 }
is finite. By hypothesis, there exists M ∈ (0, 1) and, for each n ∈ N, a sequence
(e(n)
j )nj=1 in X such that

M

 n∑
j=1

|αj |p
 1

p

≤

∥∥∥∥∥∥
n∑
j=1

αje
(n)
j

∥∥∥∥∥∥ ≤
 n∑
j=1

|αj |p
 1

p

for all scalar sequences (αj)nj=1.

Fix a natural number n. Let x(n)
ξ =

∑n
j=1 ξje

(n)
j , for all ξ ∈ {0, 1}n. The

family Cn = (x(n)
ξ )ξ∈{0,1}n is an n-cube in X, with l(e) ∈ [M, 1] for all e ∈ E(Cn),

and l(d) ∈ [Mn
1
p , n

1
p ] for all d ∈ D(Cn). The image of Cn under T , namely

Rn = (Tx(n)
ξ )ξ∈{0,1}n , is an n-cube in (Y, ρ).

Since (Y, ρ) has metric type q it follows that ∑
d∈D(Rn)

l(d)2

 1
2

≤ Bn
1
q−

1
2

 ∑
e∈E(Rn)

l(e)2

 1
2

for some B ∈ (0,∞).
Now suppose that T−1 satisfies a Lipschitz condition of order α for large dis-

tances. Then, for all δ > 0, there exists a constant Γ = Γ(δ) ∈ (0,∞) such that
‖T−1u−T−1v‖X ≤ Γ(δ)ρ(u, v)α whenever ρ(u, v) ≥ δ (u, v ∈ Y ). But because T−1

is uniformly continuous and l(d) ≥Mn
1
p for all d ∈ D(Cn), it follows that

γ = inf
n∈N

min
d∈D(Rn)

l(d)

is a positive number. Let Γ = Γ(γ) and again fix n ∈ N. Then ∑
d∈D(Cn)

(Γ−1l(d))
2
α

 1
2

≤ Bn
1
q−

1
2 (n2n−1K2)

1
2
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and so
2
n−1

2 (Γ−1M)
1
α n

1
pα ≤ Bn

1
q 2

n−1
2 K.

Since n ∈ N is arbitrary, we conclude that q
p ≤ α. �

Despite the close connections between Rademacher type, Enflo type and BMW
type in the category of Banach spaces, a purely metric formulation of Rademacher
type was only obtained very recently. Mendel and Naor [50], motivated by their
work on metric cotype [49], introduced a scaled version of Enflo type p which is
equivalent to Rademacher type p for Banach spaces. The precise definition of scaled
Enflo type is as follows.

Definition 4.3. Let Eε denote the expectation with respect to uniformly chosen
vectors ε = (ε1, . . . , εn) ∈ {−1,+1}n. Let (X, dX) be a metric space and let p > 0.
We say that (X, dX) has scaled Enflo type p with constant M if for every integer
n there exists an even integer m such that for every function f : Znm → X, we have

Eε
∫

Znm

dX

(
f
(
x+

m

2
ε
)
, f(x)

)p
dµ(x) ≤ Mpmp

n∑
j=1

∫
Znm

dX(f(x+ ej), f(x))pdµ(x),

where µ is the uniform probability measure on Znm and {ej}nj=1 is the standard
basis of Rn.

Mendel and Naor [50] point out a number of relationships between Enflo type
and scaled Enflo type including the following. If a metric space has Enflo type p,
then it must have scaled Enflo type p. It is not known at this time if the converse of
this statement holds for general metric spaces. However, for Banach spaces, scaled
Enflo type p implies Enflo type q for all q < p. Moreover, scaled Enflo type p and
Enflo type p coincide for UMD Banach spaces.

Another version of nonlinear type that has proven to be very important in under-
standing the nonlinear geometry of metric spaces is Ball’s [6] notion of Markov type.
Recall that a Markov chain (Zt)∞t=0 with transition probabilities aij = Pr(Zt+1 =
j|Zt = i) on the state space [n] = {1, 2, . . . , n} is stationary if πi = Pr(Zt = i) does
not depend on t and reversible if πiaij = πjaji for every i, j ∈ {1, 2, . . . , n}.

Definition 4.4. Let p ≥ 1 and let (X, d) be a metric space. We say that (X, d)
has Markov type p if there exists a constant M > 0 such that for every stationary
reversible Markov chain (Zt)∞t=0 on the state space [n], every mapping f : [n]→ X
and every time t ∈ N, we have:

E
(
d(f(Zt), f(Z0))p

)
≤ Mp · t · E

(
d(f(Z1), f(Z0))p

)
.

Ball [6] introduced Markov type in a deep study of the extension problem for
Lipschitz maps and obtained the following celebrated result: any Lipschitz map
from a subset of a metric space (X, d) having Markov type 2 into a Banach space
(Y, ‖ · ‖) with modulus of convexity of power type 2 can be extended to a Lipschitz
map on the entire space (X, d).

At first, only Hilbert space and metric spaces that bi-Lipschitzly embed into
Hilbert space were known to have Markov type 2. However, Naor et al [52] have
since shown that Banach spaces with modulus of smoothness of power type 2 (exam-
ples include the Lp(µ)-spaces for p > 2), metric trees, hyperbolic groups and simply
connected Riemannian manifolds of pinched negative curvature all have Markov
type 2. Further, Ohta [55] has established that Alexandrov spaces of non-negative
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curvature have Markov type 2. It also follows from negative type considerations
and Theorem 1.9 that Lp(µ)-spaces have Markov type p for p ∈ [1, 2].

Naor and Schechtman [53] have shown that for general metric spaces, Markov
type p implies Enflo type p. However, very little seems to be known about the
interplay between Markov type and Rademcher type for Banach spaces. The fol-
lowing question therefore seems natural.

Question. For which metric spaces does Enflo type p (or, alternatively, BMW
type p) imply Markov type p?

The notions of roundness and Markov type have also been shown to have ram-
ifications in the analysis of the Hilbert space compression (exponent) of finitely
generated discrete groups. This notion was introduced by Guentner and Kaminker
[32] as a quasi-isometric invariant for groups and may be defined in the following
way.

Definition 4.5. Let G be a finitely generated discrete group. Let S ⊆ G be
a fixed finite and symmetric (S = S−1) set of generators for G. Let d denote
the left-invariant word metric induced by S on G. The Hilbert space compression
(exponent) of G is defined to be the supremum over all α ≥ 0 for which there exists
a 1-Lipschitz mapping f : G→ L2 together with constants c1, c2 > 0 such that:

‖f(x)− f(y)‖2 ≥ c1d(x, y)α − c2
for all x, y ∈ G.

Guentner and Kaminker [32] established that groups with Hilbert space com-
pression strictly greater than 1

2 necessarily have Yu’s [70] Property A. They also
determined that free groups have Hilbert space compression 1.

The first example of a group with Hilbert space compression strictly between
0 and 1 was given by Arzhantseva et al [4] who showed that the Hilbert space
compression of F. Thompson’s group F equals 1

2 .4 In proving this result the authors
used Theorem 1.5 in the case p = 2 (in other words, that Hilbert space has roundness
2) in a critical way. Arzhantseva et al [4] also obtained that the Hilbert space
compression of the restricted wreath product Z o Z lies in the interval [ 1

2 ,
3
4 ]. The

lower bound of 1
2 on the Hilbert space compression of Z o Z was later improved

to 2
3 by Tessera [65]. Finally, Austin et al [5] have shown that the Hilbert space

compression of Z o Z is exactly 2
3 as an application of Markov type.

5. Uniform Banach Groups

The notion of a uniform Banach group generalizes the additive group structure
of a Banach space. It is a group structure on a Banach space that satisfies some
compatibility conditions with the norm. Uniform Banach groups were introduced
and studied extensively by Enflo in [25] and [26].

Definition 5.1. Let X be a Banach space. Suppose that the map X ×X → X :
(x, y) 7→ x · y ‘is a group operation on X that is uniformly continuous as a function
of two variables with identity 0 = 0X , the zero vector of X. Then the resulting

4Recall that R. Thompson’s group F is the group of all piecewise linear orientation preserving
self-homeomorphisms of the unit interval with finitely many dyadic singularities and all slopes

integer powers of 2.
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group structure G = (X, ·) is said to be a uniform Banach group modelled on X.
(We often write xy instead of x · y.)

Uniform homeomorphisms generate examples of uniform Banach groups in the
following way: suppose that X is a Banach space, Y is a topological vector space,
and φ : X → Y is a uniform homeomorphism with φ(0) = 0. Then the product
x · y = φ−1(φ(x) + φ(y)) defines a commutative uniform Banach group structure
G = (X, ·) that is modelled on X. We refer to G as being the uniform Banach
group induced by φ.

Question. Do there exist noncommutative uniform Banach groups?

Remark 5.2. Natural examples of noncommutative groups which are modelled on
some Banach space (in this case Cn × R regarded as a real Banach space) are the
classical Heisenberg groups H2n+1, n ∈ N. Indeed, given n ∈ N, the 2n+ 1 dimen-
sional Heisenberg group H2n+1 consists of the noncommutative group operation

(z, s) · (w, t) =
(
z + w, t+ s+ 2

n∑
j=1

=(zjwj)
)

defined on Cn×R (where, as one would expect, z = (zj)nj=1 and w = (wj)nj=1 are in
Cn, and so on). Clearly the identity element of the Heisenberg group H2n+1 is the
zero vector. However, despite having many nice properties, the group operation on
H2n+1 is not uniformly continuous as a function of two variables. This is simply
because it involves the multiplication of arbitrary complex numbers, and hence
cannot be uniformly continuous (unless restricted to a bounded subset of Cn ×R).
Hence the Heisenberg groups H2n+1 are not examples of noncommutative uniform
Banach groups.

Through an analysis of the interplay between non-trivial roundness and com-
mutative uniform Banach groups, Enflo [26] obtained Theorem 1.7 which we dis-
cussed briefly in the introduction to this paper. In particular, Enflo [26] noted
that Lp1 [0, 1] is not uniformly homeomorphic to Lp2 [0, 1] if 0 < p1 < 1 < p2 < ∞.
Lurking beneath the surface of Enflo’s arguments was a linearization procedure for
certain uniform homeomorphisms. This procedure was isolated (and generalized
to include a consideration of non-trivial metric type) in papers by Prassidis and
Weston [57], and Weston [69]. As linearization procedures are relatively uncommon
in the uniform theory of Banach spaces, we include a fairly complete description of
this technique and indicate an outstanding open question which does not yield to
this approach.

Suppose henceforth that G = (X, ·) is a commutative uniform Banach group
modelled on (X, ‖ · ‖). We can introduce a G-invariant metric d on X as follows:

d(x, y) = sup
w∈X

‖wx− wy‖ ; x, y ∈ X.

Obviously d(x, y) ≥ ‖x − y‖ for all x, y ∈ X. As is easy to show, this G-invariant
metric d is uniformly equivalent to the ‖ · ‖-distance. In other words, the identity
map (X, ‖ ·‖)→ (X, d) : x 7→ x is a uniform homeomorphism. As d is a G-invariant
metric on X, we get a triangle inequality of the form d(xy, 0) ≤ d(x, 0) + d(y, 0)
for all x, y ∈ X. Associated with the G-invariant metric d is a chain or intrinsic
metric dI defined in the following way. Let x, y ∈ X be given. Any finite sequence
x = x0, x1, . . . , xn = y (n ∈ N) of points in X such that d(xi, xi+1) ≤ 1 for all
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i, 0 ≤ i ≤ n − 1, is called a one-chain between x and y. The intrinsic or chain
distance between x and y is given by:

dI(x, y) = inf
C

n−1∑
i=0

d(xi, xi+1),

where the infimum is taken over all one-chains x = x0, x1, . . . , xn = y between x
and y. For all x, y ∈ X it is clear that ‖x−y‖ ≤ d(x, y) ≤ dI(x, y) and — moreover
— that dI(x, y) = d(x, y) if (additionally) d(x, y) ≤ 1. It follows that the chain
metric dI is also uniformly equivalent to the ‖ · ‖-distance.

Every Banach space has (metric) type 1. In the statement of Theorem 5.3 (below)
the essential hypothesis is on the Banach space X. Namely, that it has non-trivial
(metric) type p > 1. The assumption that Y is a Banach space can be weakened
considerably. This is done in Theorem 5.4. The technique being described in this
section is seen to have two important aspects; (i) Y is not restricted to be a normed
(or, even quasi-normed) space, and consequently (ii) the Corson-Klee Lemma is not
being used (since it does not apply to such spaces in general).

Theorem 5.3. Let (X, ‖ · ‖) be a Banach space with metric type p > 1. If (X, ‖ · ‖)
is uniformly homeomorphic to a Banach space (Y, ||| · |||), then the vector space
operations and norm on X can be re-modelled (in a uniformly equivalent way)
to produce a new Banach space (X,N(·)) that has metric type p, and which is
(moreover) linearly isomorphic to (Y, ||| · |||). In particular, Y is seen to have
metric type p.

Proof: Linearization of Certain Uniform Homeomorphisms Technique. We may as-
sume that the uniform homeomorphism φ : (X, ‖ ·‖)→ (Y, ||| · |||) satisfies φ(0) = 0.
Denote by G = (X, ·) the uniform Banach group modelled on (X, ‖ · ‖) that is in-
duced by φ. So, for all x, y ∈ X, xy = φ−1(φ(x) +φ(y)). Introduce the G-invariant
metrics d and dI associated with this group structure. For any x ∈ X and t ∈ R,
define xt = φ−1(tφ(x). Introduce new vector space operations on X as follows: ad-
dition is the group multiplication (x, y) 7→ xy, and scalar multiplication of x ∈ X
by t ∈ R is given by xt. For all x ∈ X, define:

N(x) = lim sup
t→∞

dI(xt, 0)
t

.

Prassidis and Weston [57] (Theorem 4.2) have shown that N(·) is a norm relative
to the new vector space operations on X, and that

‖x‖ ≤ N(x) ≤ dI(x, 0)(7)

for all x ∈ X.5 For brevity we will write (X,N(·)) to denote this new normed vector
space structure. A simple (omitted) argument shows that (X,N(·)) is complete.
Since dI is uniformly equivalent to the original ‖·‖-distance, it follows from (7) that
the identity map (X, ‖ · ‖)→ (X,N(·)) : x 7→ x is a (not necessarily linear) uniform
homeomorphism. Hence, by virtue of the new vector space operations in place on
X, we see that φ : (X,N(·))→ (Y, ||| · |||) is a linear uniform homeomorphism. Put
differently, as a map from (X,N(·)) to (Y, ||| · |||), φ is a linear isomorphism.

The argument that (X,N(·)), and hence (Y, |||·|||), has metric type p is relatively
simple. The details may be found in Weston [69]. �

5We remark that the derivation of (7) depends explicitly on the Banach space (X, ‖ · ‖) having
metric type p > 1, a condition which we have not been able to relax in this context.
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As noted above, the hypothesis on Y in the statement of Theorem 5.3 can be
greatly relaxed. In fact, the next theorem determines that Y need only be a topo-
logical vector space.

Theorem 5.4 (Prassidis and Weston [57], Weston [69]). Let Y be a topological
vector space. If Y is uniformly homeomorphic to a closed subspace of a Banach
space (X, ‖ · ‖) that has non-trivial type, then the topology of Y is given by a norm.

Proof. The properties of non-trivial type p > 1 and completeness are inherited
by the closed subspaces of (X, ‖ · ‖). So, without loss of generality, it suffices to
consider a uniform homeomorphism φ : (X, ‖ · ‖) → Y with φ(0) = 0. The same
argument as given in the proof of Theorem 5.3 constructs the remodelled Banach
space (X,N(·)) that is induced by φ. And again, as a map from the Banach space
(X,N(·)) to the topological vector space Y , φ is a linear uniform homeomorphism.
(In particular, as X is metrizable, this implies that the map φ : (X,N(·)) → Y is
bounded. See, for example, Rudin [61] (Theorem 1.32).) It follows from the Open
Mapping Theorem (see, for example, Theorem 2.11 in Rudin [61]) that Y is an
F -space. (And so the map φ−1 : Y → (X,N(·)) is also bounded by Theorem 1.32
in Rudin [61].) But an F -space that is linearly isomorphic to a Banach space is
obviously locally convex and locally bounded. Therefore Y is normable. �

It should be noted that Theorem 5.4 is due to Bessaga [11] in the case that Y
is assumed to be a locally convex topological vector space. In fact, Bessaga [11]
showed that if a locally convex topological vector space is uniformly homeomorphic
to a normed space, then it is normable. Theorem 5.4 shows that a non normable
topological vector space cannot be uniformly homeomorphic to any Banach space
that has non-trivial type. This leaves open the following important question.

Question. Can a non normable topological vector space be uniformly homeomor-
phic to a Banach space whose supremal Rademacher type is 1?

New examples of uniform non-equivalence can be deduced from Theorem 5.4.
This is because the (supremal) Rademacher type of many Banach spaces has been
computed. The following families of Banach spaces are all known to have type
greater than one: commutative Lp(µ)-spaces with p ∈ (1,∞), Schatten-von Neu-
mann classes Cp and other non-commutative Lp-spaces with p ∈ (1,∞), Lorentz
Lp,q-spaces if both p, q ∈ (1,∞), and Orlicz spaces LΦ with an appropriate condi-
tion on the Orlicz function Φ (see Corollary 5.5 below). Examples of non-normable
quasi-normed spaces include the various Lp(µ) and Hp spaces with p ∈ (0, 1), and
Orlicz spaces LΨ with an appropriate condition on the Orlicz function Ψ.

Corollary 5.5 (Prassidis and Weston [57]). Consider locally bounded Orlicz spaces
LΦ and LΨ corresponding to (possibly different) non-atomic finite measure spaces.
If there is a constant K and a p > 1 such that

Φ(λs) ≥ K · λp′ · Φ(s)

for s ≥ 0 whenever λ ≥ 1 and if lim inf
t→∞

Ψ(t)
t = 0, then LΦ is not uniformly homeo-

morphic LΨ.

Proof. LΦ has type p by a theorem of Kamińska and Turett [39]. LΨ is non-
normable since it has a trivial dual by a theorem of Rolewicz [60]. Hence these
spaces are not uniformly homeomorphic by Theorem 5.4. �
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Another such result, that stands out in relation to the uniform classification of
Lp-spaces, is the following.

Corollary 5.6 (Weston [69]). Let µ be a positive Borel measure on some sigma
algebra (Ω,Σ). If X is a Banach space that has non-trivial type, then the classical
F -space L0(µ) is not uniformly homeomorphic to any (closed) subspace of X.

In contrast to Corollary 5.6, Aharoni, Maurey and Mitjagin [1] had previously
shown that L0(µ) is however uniformly homeomorphic to a subset of Hilbert space.
More recently, Corollary 5.6 has been generalized by Albiac [3] as follows.

Theorem 5.7 (Albiac [3]). Let X be a locally bounded topological vector space. If
φ : L0[0, 1] → X is a uniformly continuous map then the range of φ is a bounded
set in X. In particular, L0[0, 1] is not uniformly homeomorphic to X.

It should be noted that Albiac’s result on L0[0, 1] was obtained without appeal to
uniform Banach groups, but rather through a direct and elegant argument specific
to L0[0, 1].

Given Banach spaces X and Y of non-trivial (metric) type, and a uniform home-
omorphism φ : X → Y (that may be assumed to satisfy φ(0) = 0), the linearization
procedure described in the proof of Theorem 5.3 is clearly reversible. We can apply
the same method to Y and φ−1 to produce a new Banach space (Y,M(·)) that is
linearly isomorphic to X and has the same metric types as Y . Hence the supremum
of the types of X (which is equal to the supremum of its metric types by Bourgain,
Milman and Wolfson [12]) equals the supremum of the types of Y . Moreover, as
type is inherited by subspaces, this same argument extends to any (closed) subspace
Z of Y that may also happen to be uniformly homeomorphic to X. In summary, we
have determined a new proof of the following classical result in the uniform theory
of Banach spaces, a result that is essentially due to Ribe [58].

Corollary 5.8 (Ribe [58]). Let p > 1. Let X,Y be Banach spaces. Suppose X
is uniformly homeomorphic to a (closed) subspace Z of Y . Then X has type p if
and only if Z has type p. Put differently, supremal type is a uniform invariant for
Banach spaces.

Several other classical results in the uniform theory of Banach spaces can be
deduced from Theorem 5.3, Theorem 5.4 and Corollary 5.8. See, for example, the
discussion in Weston [69].

6. Strict negative type and the geometry of finite metric spaces

Recall from Definition 1.1 that a metric space (X, d) has strict p-negative type
if it has p-negative type and if the non trivial p-negative type inequalities for X
are all strict. Finite metric spaces of strict 1-negative type have been studied
extensively in papers by Hjorth et al [33], [34]. Hjorth et al [34] have shown
that all finite metric trees have strict 1-negative type.6 They also show that finite

6Recall that a finite metric tree is a finite connected graph that has no cycles, endowed with an
edge weighted path metric. The study of trees as mathematical objects was initiated by Cayley [16]
who enumerated the isomers of the saturated hydrocarbons CnH2n+2. For example, an application
of Cayley’s formula shows that the number of isomers of the paraffin C13H28 is 802. More recently,
mathematical studies of finite metric trees have proliferated due to myriad applications in areas

as seemingly diverse as evolutionary biology and theoretical computer science. Some examples of
publications which highlight this point include Weber et al. [66], Ailon and Charikar [2], Semple
and Steel [64], Fakcharoenphol et al. [28], Charikar et al. [17], and Bartal [7].
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subsets of spheres (endowed with the natural inherited geodesic metric) which do
not contain more than one pair of antipodal points have strict 1-negative type.
This is actually for the same reason that the circle with arc length has maximal
roundness 1, so one can compare such a result with Theorem 2.1. In a sequel,
Hjorth et al [33] elaborate conditions on Riemannian manifolds endowed with the
Riemannian distance function which ensure strict 1-negative type.

Theorem 6.1 (Hjorth et al [33]). Let M be a Riemannian manifold equipped with
the Riemannian distance function d. If d : M ×M \ {(p, p)|p ∈ M} → R+ is C1

and if (M,d) has 1-negative type, then (M,d) necessarily has strict 1-negative type.
It follows (for example) that the hyperbolic spaces Hn

R and Hn
C have strict 1-negative

type. More generally, any Hadamard manifold has strict 1-negative type.

The next result bears a relationship to Theorem 2.1 (3).

Theorem 6.2 (Hjorth et al [33]). A compact Riemannian manifold (M,d) of neg-
ative type is simply connected.

The converse of Theorem 6.2, however, is not true in general.

Theorem 6.3 (Hjorth et al [33]). A Riemannian product manifold with a sphere
Sn (any n ≥ 1) as a factor cannot have 1-negative type.

In so far as strict 1-negative type has been relatively well studied, properties
of strict p-negative type for p 6= 1 remain obscure and there are a number of
intriguing open problems which we would like to discuss. Perhaps the only paper
with an extensive study of strict p-negative type for p 6= 1 is Doust and Weston [21].
Before addressing some of the results of this paper we will make some preliminary
comments. We begin with an expected connection to generalized roundness to whit
the following definition is helpful.

Definition 6.4. Let X be a set. Let q, t be natural numbers.
(a) A (q, t)-simplex in X is a (q+t)-vector (a1, . . . , aq, b1, . . . , bt) ∈ Xq+t whose

coordinates consist of q+ t distinct vertices a1, . . . , aq, b1, . . . , bt ∈ X. Such
a simplex will be denoted D = [aj ; bi]q,t.

(b) A load vector for a (q, t)-simplex D = [aj ; bi]q,t in X is an arbitrary vector
~ω = (m1, . . .mq, n1, . . . , nt) ∈ Rq+t+ that assigns a positive weight mj > 0
or ni > 0 to each vertex aj or bi of D, respectively.

(c) A loaded (q, t)-simplex in X consists of a (q, t)-simplex D = [aj ; bi]q,t in
X together with a load vector ~ω = (m1, . . . ,mq, n1, . . . , nt) for D. Such
a loaded simplex will be denoted D(~ω) or [aj(mj); bi(ni)]q,t as the need
arises.

(d) A normalized (q, t)-simplex in X is a loaded (q, t)-simplex D(~ω) in X whose
load vector ~ω = (m1, . . . ,mq, n1, . . . , nt) satisfies the two normalizations:

m1 + · · ·+mq = 1 = n1 + · · ·nt.
Such a vector ~ω will be called a normalized load vector for D.

The next theorem characterizes generalized roundness p—or, equivalently, p-
negative type—in terms of normalized (q, t)-simplexes.

Theorem 6.5. Let p ≥ 0. For a metric space (X, d), the following two conditions
are equivalent:
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(a) (X, d) has generalized roundness p.
(b) For all q, t ∈ N and all normalized (q, t)-simplexes D(~ω) = [aj(mj); bi(ni)]q,t

in X we have:∑
1≤j1<j2≤q

mj1mj2d(aj1 , aj2)p +
∑

1≤i1<i2≤t

ni1ni2d(bi1 , bi2)p(8)

≤
q,t∑
j,i=1

mjnid(aj , bi)p.

Remark 6.6. The weighted generalized roundness inequalities of Theorem 6.5 (b)
were first introduced by Weston [68] who used them to show that every finite metric
space (X, d) has positive generalized roundness p where, moreover, p > 0 may be
chosen so as to only depend upon |X|. It is clear in Theorem 6.5 that condition (b)
implies condition (a). To establish the converse one allows repititions among the a’s
and the b’s in order to introduce positive integer weights. (Compare with Remark
1.2.) One may then normalize the resulting inequality to obtain (8) with positive
rational weights, and then use simple continuity arguments to pass to normalized
(q, t)-simplexes. A similar style of argument was used by Lennard et al [45] to
prove that generalized roundness p implies p-negative type. (That is, condition (b)
implies condition (a) in the statement of Theorem 1.10.)

The advantage of working with Theorem 6.5 (b)—instead of generalized round-
ness p or p-negative type—is that trivial cases of equality in the inequalities (8) are
automatically excluded. Motivated by this observation this we make the following
natural definition.

Definition 6.7. Let p ≥ 0. A metric space (X, d) has strict generalized round-
ness p if and only if for all q, t ∈ N and all normalized (q, t)-simplexes D(~ω) =
[aj(mj); bi(ni)]q,t in X we have:∑

1≤j1<j2≤q

mj1mj2d(aj1 , aj2)p +
∑

1≤i1<i2≤t

ni1ni2d(bi1 , bi2)p(9)

<

q,t∑
j,i=1

mjnid(aj , bi)p.

The following equivalence was noted by Doust and Weston [21] who used it as
a device to help understand strict p-negative type for the less well travelled cases
p 6= 1.

Theorem 6.8. Let p ≥ 0. A metric space (X, d) has strict p-negative type if and
only if it has strict generalized roundness p.

Based on the above definitions and theorems we isolate two parameters γpD(~ω)
and ΓpX that are designed to vicariously quantify the “degree of strictness” of the
non trivial p-negative type inequalities. The two relevant definitions are as follows.

Definition 6.9. Let p ≥ 0. Let (X, d) be a metric space. Let q, t be natural
numbers. Let D = [aj ; bi]q,t be a (q, t)-simplex in X. Let Nq,t ⊂ Rq+t+ denote the
set of all normalized load vectors ~ω = (m1, . . . ,mq, n1, . . . , nt) for D. Then, the
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p-negative type simplex gap of D is the function γpD : Nq,t → R : ~ω 7→ γpD(~ω) where:

γpD(~ω) =
q,t∑
j,i=1

mjnid(aj , bi)p

−
∑

1≤j1<j2≤q

mj1mj2d(aj1 , aj2)p −
∑

1≤i1<i2≤t

ni1ni2d(bi1 , bi2)p,

for each ~ω = (m1, . . . ,mq, n1, . . . , nt) ∈ Nq,t. If we further define the quantities

Rp
D(~ω) =

q,t∑
j,i=1

mjnid(aj , bi)p, and

LpD(~ω) =
∑

1≤j1<j2≤q

mj1mj2d(aj1 , aj2)p +
∑

1≤i1<i2≤t

ni1ni2d(bi1 , bi2)p,

then we see that γpD(~ω) = Rp
D(~ω)−LpD(~ω) is the right hand side of the generalized

roundness p inequality (8) for the normalized (q, t)-simplex D(~ω) in X subtract
the left hand side of the same inequality. So, by Theorem 6.8, (X, d) has strict
p-negative type if and only if γpD(~ω) > 0 for each normalized (q, t)-simplex D(~ω) in
X.

Definition 6.10. Let p ≥ 0. Let (X, d) be a metric space with p-negative type.
We define the p-negative type gap of (X, d) to be the non negative quantity

ΓpX = inf
D(~ω)

γpD(~ω)

where the infimum is taken over all normalized (q, t)-simplexes D(~ω) in X.

Notice that if the p-negative type gap ΓpX > 0, then (X, d) has strict p-negative
type. Doust and Weston [21] have given an example of an infinite metric space to
show that the converse of this statement is not true in general. In other words, there
exist infinite metric spaces (X, d) with strict p-negative type and with ΓpX = 0. It
is not at all clear that this same phenomenon can occur for finite metric spaces that
have strict p-negative type. We will return to this point shortly.

As noted above, finite metric trees have strict 1-negative type. So, it makes sense
to try to compute the 1-negative type gap of any given finite metric tree. This has
been done recently. Before stating this result, a modicum of notation is necessary.
The set of all edges in a metric tree (T, d), considered as unordered pairs, will be
denoted E(T ), and the metric length d(x, y) of any given edge e = (x, y) ∈ E(T )
will be denoted |e|.

Theorem 6.11 (Doust and Weston [21]). Let (T, d) be a finite metric tree with
edge set E(T ). Then, the 1-negative type gap Γ1

T of (T, d) is given by the following
formula:

Γ1
T =

{ ∑
e∈E(T )

|e|−1

}−1

.

In particular, Γ1
T > 0.

In other words, Theorem 6.11 enhances the classical strict 1-negative type in-
equalities for finite metric trees, via the insertion of a maximal positive additive
constant Γ on the left hand side of such inequalities. This is really just a restatement
of Theorem 6.11:
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Theorem 6.12 (Doust and Weston [21]). Let (T, d) be a finite metric tree. Then
for all natural numbers n ≥ 2, all finite subsets {x1, . . . , xn} ⊆ T , and all choices
of real numbers η1, . . . , ηn with η1 + · · ·+ ηn = 0 and (η1, . . . , ηn) 6= ~0, we have

Γ +
∑

1≤i,j≤n

d(xi, xj)ηiηj ≤ 0(10)

where Γ = Γ1
T =

{ ∑
e∈E(T )

|e|−1

}−1

> 0. Moreover, Γ is the maximal such constant.

One application of the p-negative type gap ΓpX is to exploit it as a device to
improve lower bounds on the (supremal) strict negative type of certain finite metric
spaces. The idea is as follows.

Theorem 6.13 (Doust and Weston [21]). Let q ≥ 0. Let (X, d) be a finite metric
space with |X| ≥ 3. If (X, d) has a positive q-negative type gap ΓqX > 0, then there
exists ζ > 0 such that (X, d) has strict p-negative type for all p ∈ (q − ζ, q + ζ).
Moreover, ζ may be chosen so that it depends only upon ΓqX and the set of non zero
distances in (X, d).7

Theorems 6.11 and 6.13 generalize the result of Hjorth et al [34] on finite metric
trees (as discussed in the opening stanza of this section). Namely:

Theorem 6.14 (Doust and Weston [21]). Let (T, d) be a finite metric tree with
|T | ≥ 3. Then there exists an ζ > 0 such that (T, d) has strict p-negative type for
all p ∈ (1− ζ, 1 + ζ). Moreover, ζ may be chosen so that it depends only upon the
unordered distribution of the tree’s edge lengths.

By way of an illustration of this theorem; if (T, d) is a finite metric tree, with
say |T | = n, where d is the ordinary path metric on T (so that |e| = 1 for all edges
e ∈ E(T )), then the maximal (strict) p-negative type of (T, d) is at least:

1 +
ln
(
1 + 1

(n−1)3(n−2)

)
ln(n− 1)

.

This is unlikely to be the optimal such lower bound since the estimates obtained
in Doust and Weston [21] only take into account the longest and the shortest non
trivial geodesics in such trees. Intermediate distances are not seen to play a role in
their arguments surrounding Theorem 6.14.

We conclude this section by compiling a list of open problems concerning strict
p-negative type.

Questions. Assume p > 0 throughout.
(1) If a metric space (X, d) has (strict) p-negative type, must it have strict

q-negative type for some or all positive q < p?
(2) Finite subsets X of the sphere Sn, endowed with the natural inherited

geodesic metric d, which do not contain more than one pair of antipodal
points are know to have strict 1-negative type (Hjorth et al [34]). Determine
the 1-negative type gap Γ1

X of (X, d). Is it necessarily positive? One might
reasonably expect that Γ1

X ≈ 0 (may be made arbitrarily small) if X nearly
contains two pairs of antipodal points.

7In the case q = 0 one must naturally work with the interval p ∈ [0, ζ).
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(3) Is it possible for a finite metric space (X, d) to have strict p-negative type
with a trivial p-negative type gap ΓpX = 0? (As we remarked earlier in
this section this is possible for infinite metric spaces. However, the same
phenomenon might not persist for finite metric spaces.) A negative answer
to this question would imply a negative answer to our next question (on
account of Theorem 6.13), and hence positive answers to question (2) as
above.

(4) Can the maximal p-negative type of a finite metric space be strict? This
seems like an important question. If the answer is NO (for example) then
every finite metric space that has strict 1-negative type would have to have
q-negative type for some q > 1. The paper of Doust and Weston [21]
illustrates that this is the case for finite metric trees. A negative answer to
this question implies positive answers to question (2) above.
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