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MATH. SCAND. 122 (2018), 179–196

TOPOLOGICAL RIGIDITY OF QUASITORIC
MANIFOLDS

VASSILIS METAFTSIS and STRATOS PRASSIDIS∗

Abstract
Quasitoric manifolds are manifolds that admit an action of the torus that is locally the same as
the standard action of T n on Cn. It is known that the quotients of such actions are nice manifolds
with corners. We prove that a class of locally standard manifolds, that contains the quasitoric
manifolds, is equivariantly rigid, i.e., that any manifold that is T n-homotopy equivalent to a
quasitoric manifold is T n-homeomorphic to it.

1. Introduction

Toric varieties are studied extensively in algebraic geometry and combinator-
ics ([6], [13]). The main tool in their study is the polytope that is determined
by the fan of the toric variety. Actually, this polytope is the quotient of the
torus action on the toric variety. The combinatorial properties of the polytope
reflect the algebraic and geometric properties of the variety and vice versa. A
topological analogue of toric varieties was introduced by Davis-Januszkiewicz
[4] and called toric manifolds in their paper. To avoid confusion with the ter-
minology, later the term quasitoric manifolds became prominent for these
spaces. The term “toric manifold” is reserved for non-singular toric varieties.
Quasitoric manifolds are manifolds that admit a locally standard action of the
torus T n such that the quotient space is a simple polytope. More precisely,
a T n-action on a manifold M2n is locally standard if T n acts locally by the
standard coordinate-wise multiplication on Cn. As in the toric variety case, the
combinatorial properties of the polytope provide information about the topo-
logical structure of the quasitoric manifold. Furthermore, the manifolds can be
reconstructed from the polytope and an appropriate assignment of subgroups
of T n to its faces.

In the present work, we study general locally standard T n-actions on man-
ifolds. In this case, the quotient space is just a nice manifold with corners. As
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180 V. METAFTSIS AND S. PRASSIDIS

before, the combinatorial properties of the manifold with corners are reflected
to the topology of the original manifold. Also, the manifold itself can be re-
constructed by an appropriate assignment of subgroups of T n to the faces of
the manifold with corners.

Let L be a Lie group. An L-manifold X is called locally linear if for every
point x ∈ X, there is a linear Lx-slice, i.e., a slice that is equivalent to an
orthogonal Lx-representation [1, p. 171]. Now we can state the main theorem.

Main Theorem. LetM2n be a closed T n-quasitoric manifold,N2n a closed
locally linear T n-manifold and f :N2n → M2n an equivariant homotopy equi-
valence. Thenf is equivariantly homotopic to an equivariant homeomorphism.

Actually, the theorem is proved for a slightly more general class of locally
standard torus manifolds (Theorem 4.11).

The idea of the proof is the same as the one used in the Coxeter group case
([12], [17], [18]). After all, the reconstruction of the quasitoric and locally
standard torus manifolds from their quotient spaces is similar to the construc-
tion of the Coxeter manifold from the Coxeter complex of a Coxeter group.
That similarity was made precise in [4]. First we show that N2n is a locally
standard torus manifold. Let X = M2n/T n and Y = N2n/T n. Then X and Y
are nice manifolds with corners and f induces a map φ:Y → X that is a face-
preserving homotopy equivalence. As in the references for the Coxeter group
case, we show inductively that there is a face-preserving homotopy from φ

to a face-preserving homeomorphism h. The homeomorphism h lifts to a T n-
homeomorphism between N2n and M2n that is T n-homotopic to f . It should
be noticed that even though the result is in the spirit of equivariant surgery the-
ory, the method of proof uses little from surgery methods. It is based mainly
on the combinatorics of the quotient space and the nice local properties of the
quotient map, as in the Coxeter group case.

The main theorem, loosely, can be considered as a version of an equivariant
or stratified Borel Conjecture. Let π :M2n → X be the quotient map. Over
the interior

◦
σ of some face σ of X, the map π is a fiber bundle with fiber Tσ ,

where Tσ is the isotropy group of σ . So M2n admits a stratification by open
aspherical manifolds. The proof that N2n is locally standard actually shows
that f is a stratified homotopy equivalence.

There are rigidity results known for non-singular toric varieties ([9], [11]),
for quasitoric manifolds ([21], [22]) and for locally standard torus manifolds
[24]. In all the above, a comparison is done between two quasitoric manifolds
and the classification is given using cohomological and combinatorial data
associated to the spaces.

In [24], a generalization of locally standard actions is given, called local
torus actions. Our methods do not directly generalize to this case. In [23], a
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generalization of the quotient map π :M2n → X is given. It is called a locally
standard torus fibration. Again, our methods can not be applied directly to the
stratified rigidity problem for such M2n.

Finally, the torus manifolds defined in [10] generalize the quasitoric mani-
folds. Since the orbit spaces of the action, in general, do not have the combin-
atorial structure of the ones of the quasitoric manifolds, our methods do not
apply directly.

Acknowledgements. We would like to thank Mikiya Masuda for his
very useful suggestions and explanations and the anonymous referees whose
comments improved the paper considerably.

2. Preliminaries and notation

We consider S1 as the standard subgroup of C∗, namely the multiplicative
group of non-zero complex numbers. Similarly, we consider the torus T n as a
subgroup of (C∗)n. We refer to the standard representation of T n by diagonal
matrices in U(n) as the standard action of T n on Cn. The orbit space of the
action is the positive cone Rn+ = {(x1, x2, . . . , xn) : xi ≥ 0}.

Definition 2.1. Let M2n be a 2n-dimensional manifold with an action of
T n. LetMTn denote the fixed point set ofM2n under the T n action. The action
is called locally standard if:

(1) it is effective,

(2) MTn �= ∅ i.e., there is a T n-fixed point,

(3) for every x ∈ M2n there is a T n invariant neighborhood U of x, a
homeomorphism f :U → W where W is an open set in Cn invariant
under the standard action of T n, and an automorphism φ: T n → T n

such that f (ty) = φ(t)f (y) for all y ∈ U .

A 2n-dimensional manifoldM2n with a locally standard action of T n is called a
locally standard torus manifold. We will consider only closed locally standard
torus manifolds.

Remark 2.2.
(1) In [10], a generalization of locally standard torus manifolds is defined.

They are called torus manifolds and they are smooth T n-manifolds with
an effective action and with non-trivial T n-fixed point set. In general,
they do not satisfy the third part of the above definition.

(2) IfM2n is a smooth torus manifold (as in (1) above) andH odd(M2n) = 0,
then the T n action is locally standard [10].

The next definition formalizes the local properties of the quotient space of
a locally standard T n action.
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Definition 2.3. A space Xn is an n-manifold with corners if it is a Haus-
dorff, second countable space equipped with an atlas of open sets homeo-
morphic to open subsets of Rn+ such that the overlap maps are local homeo-
morphisms that preserve the natural stratification of Rn+ [3].

Let X be an n-manifold with corners. For each x ∈ X and each chart σ
of x, define c(x) to be the number of coordinates of σ(x) that are 0. The
number c(x) is independent of the choice of the chart σ and so c defines a
map c:X → N. For 0 ≤ k ≤ n, a connected component of c−1(k) is called
a preface of codimension k. The closure of a preface of codimension k is
called a codimension-k face or an (n− k)-dimensional face. The manifold X
itself is a codimension-0 face. The codimension-1 faces are called facets, the
codimension-n faces are called vertices and the codimension-(n−1) faces are
called edges. A manifold with corners X is called nice if

(1) for every 0 ≤ k ≤ n there is a codimension-k face,

(2) for each codimension-k face F , there are exactly k facets F1, . . . , Fk
such that F is a connected component of F1 ∩ · · · ∩ Fk . Moreover F
does not intersect any other facet.

A nice manifold with corners X is a homotopy polytope if all prefaces are
contractible (in particular they are connected). The k-skeleton of a manifold
with corners X is the set of all faces of dimension less than or equal to k and
it is denoted by X(k).

The following remark summarizes the connection between locally standard
torus manifolds and manifolds with corners.

Remark 2.4.
(1) Let M2n be a closed locally standard torus manifold. Then the quotient

spaceX = M2n/T n is a compact nice n-manifold with corners ([8], [10],
[11], [24]).

(2) As we mentioned already, quasitoric manifolds are locally standard torus
manifolds with the property that the quotient space is not just a manifold
with corners; it is a simple polytope.

(3) LetM2n be a locally standard torus manifold with π :M2n → X the orbit
map. Then points in M2n, with the same isotropy groups, are mapped
to the relative interior of a preface of X. Thus the action of T n is free
over the open stratum ofX and the vertices ofX, i.e., the 0-dimensional
faces, correspond to the global fixed points of the action.

Definition 2.5. Let M2n be a locally standard torus manifold with X =
M2n/T n the quotient manifold with corners and π :M2n → X the quotient
map. Then M2n is called a T n-manifold over X.



A
ut
ho
r
ep
ri
nt

TOPOLOGICAL RIGIDITY OF QUASITORIC MANIFOLDS 183

Let π :M2n → X be the projection defined above. A codimension-1 con-
nected component of a fixed point set of a circle in T n is called a characteristic
submanifold of M2n [2, p. 34]. The images of the characteristic submanifolds
are the facets of X.

3. The canonical model

In the present section we will show how to construct a locally standard torus
manifold from an n-manifold with cornersX and some linear data on the set of
facets of X. We use the construction in [10] that generalizes the construction
of quasitoric manifolds in [2] and [4]. For simplicity we set T = T n.

First, we will see some of the properties of characteristic submanifolds of
a locally standard torus manifold. We assume that M2n is a closed locally
standard torus manifold and thus the quotient X = M2n/T is a nice closed
n-manifold with corners. For each facet Xi of X, let M2(n−1)

i = π−1(Xi) be
the corresponding characteristic submanifold (i = 1, . . . , k). Let

�: {X1, . . . , Xk} → {T ′ | T ′ < T, T ′ 1-dimensional}
be the map that assigns to each Xi the isotropy group of the corresponding
characteristic manifold M2(n−1)

i . More precisely, �(Xi) has the form

TXi = {(e2πiλ1j φ, . . . , e2πiλnj φ) ∈ T n : φ ∈ R},
for some primitive vector (λ1, . . . , λn) of Zn. The main property of these data
is the following (see [2, p. 34]):

Property (*): if Xi1 ∩ · · · ∩ Xim �= ∅ then the induced map �(Xi1) ×
· · · ×�(Xim) → T is injective.

From now on, we will identify �(Xi1)× · · · ×�(Xim) with its image in T .
Let F be a k-face of X. Then F is a component of Xi1 ∩ · · · ∩ Xin−k , for

some facetsXij ofX. Let TF = TXi1 × · · · × TXin−k , which is an (n− k)-torus.
That construction defines a map between lattices, extending the map � above
[2, p. 34].

�: {F | F < X} → {T ′ | T ′ < T }, F �→ TF .

Now, we give the inverse of the above construction [2, Construction 2.2.2].
Start with a compact manifold with corners X and a map � that satisfies
Property (*) above. Such a pair (X,�) is called a characteristic pair and � a
characteristic map. For x ∈ X, we denote by F(x) the smallest face of X that
contains x in its relative interior. Define:

MX(�) = T ×X/∼, (t, x) ∼ (t ′, x ′) ⇐⇒ x = x ′ and t−1t ′ ∈ TF(x).
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The space MX(�) is a closed manifold and the torus T acts on it by acting
on the first coordinate. In fact, the space MX(�) is a locally standard torus
manifold ([2, Construction 2.2.2], [10, Lemma 4.5]).

The following result is implicit in [2, p. 34]. We give here a proof for
completeness.

Lemma 3.1. Let (X,�) be a characteristic pair with MX(�) the corres-
ponding canonical locally standard torus manifold. Let π :MX(�) → X be
the quotient map. Then for a face F of X with corresponding group TF , the
fixed point set of TF is given by:

MX(�)
TF =

⋃
G<X, TG>TF

π−1(G)

where G is a face of X.

Proof. First we will show that π−1(G) ⊂ MX(�)
TF , for each face G for

which TG > TF . Let [t, x] ∈ π−1(G). Then x ∈ G, which implies that TF(x) >
TG > TF . For t ′ ∈ TF , t ′[t, x] = [t ′t, x]. But t ′t · t−1 = t ′ ∈ TF < TF(x),
which implies [t ′t, x] = [t, x]. Thus [t, x] ∈ MX(�)

TF .
For the inverse inclusion, let [t, x] be fixed by TF . Then, for t ′ ∈ TF ,

t ′[t, x] = [t ′t, x] = [t, x] ⇒ t ′t · t−1 = t ′ ∈ TF(x) ⇒ TF < TF(x).

So [x, t] ∈ π−1(TF(x)) with TF < TF(x), completing the proof.

Corollary 3.2. LetX be a nice manifold with corners and C a connected
component MX(�)

TF . Then there is an element in C that is fixed by T .

Proof. Since π−1(F ) is connected for each face F , Lemma 3.1 implies
that C contains a space of the form π−1(F ) with F < X. Since F contains
0-faces, C contains global fixed points.

The following results compare a locally standard torus manifold with its
canonical model [24, Section 5]. In [24], Lemma 5.2 and Theorem 5.5, it is
shown that the two manifolds M2n and MX(�) are T -homeomorphic, with a
homeomorphism covering the identity onX, if and only if a class e(M2n,X) ∈
Ȟ1(X,S(X,�)), called the Euler class, vanishes. Here the cohomology theory
is Čech cohomology with coefficients the sheaf of local sections of the quotient
map q:MX(�) → X.

Lemma 3.3 ([24]). Let M2n be a locally standard torus manifold over the
nice manifold with corners X and MX(�) the canonical model associated to
the action. Then the following are equivalent:
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(1) There is a T -homeomorphism h:M2n → MX(�) covering the identity
on X.

(2) The orbit map π :M2n → X admits a section.

(3) The Euler class e(X,M2n) ∈ Ȟ1(X,S(X,�)) vanishes.

If any of the conditions above hold we say that the pair (M2n,X) splits.

Remark 3.4.
(1) Quasitoric manifolds split [4].

(2) If M2n is a smooth locally standard torus manifold and H 2(X,Z) = 0,
then (M2n,X) splits [10].

(3) The above two results are based on an explicit construction of a section
of the quotient map. The construction is based on a procedure called
“blowing-up the singular strata” that was developed in Lemma 1.4 in [4].
That procedure uses the smoothness assumption, among other things,
and it can not be applied directly to the topological case.

(4) In [24], the above result was stated for the more general class of manifolds
that admit a local torus action.

We would like to thank the referee for pointing out to us the following.

Corollary 3.5. LetM2n be a locally standard manifold overX. IfH 2(X;
Zn) = 0, then the pair (M2n,X) splits. In particular, if X is contractible then
the pair (M2n,X) splits.

Proof. The definition of the Euler class e(X,M2n) [24, Section 5] shows
that there is an one-to-one correspondence between elements of Ȟ1(X,S(X,�))

and principalT n-bundles overX. But such bundles are classified by elements of
H 2(X;Zn). Then the assumption implies that e(X,M2n) = 0 and Lemma 3.3
implies that the pair (M2n,X) splits.

Now we investigate the natural properties of the above construction.

Definition 3.6. Let φ:Y → X be a map between n-manifolds with
corners.

(1) φ is called skeletal if it preserves skeleta, i.e., φ(Y (k)) ⊂ X(k).

(2) φ is called face preserving if, for each face F of Y , φ(F ) is a face of X.

Remark 3.7.
(1) Similarly, a homotopy φt :Y → X, is called skeletal (face preserving) if

the map at each level is skeletal (face preserving).

(2) Notice that face-preserving maps or homotopies are skeletal.
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(3) Let σ : T → T be a continuous automorphism. Let f :N2n → M2n be
a σ -homotopy equivalence withN2n (respectivelyM2n) a locally stand-
ard torus manifold over Y (respectively X). Then f induces a skeletal
homotopy equivalence φ:Y → X.

Proposition 3.8. Let (X,�) and (Y,�′) be two characteristic pairs and
φ:Y → X be a skeletal homotopy equivalence with X a homotopy polytope.
Then φ is a face-preserving homotopy equivalence.

Proof. We will show that φ is face preserving. So each level of the skeletal
homotopy will be face preserving, completing the proof.

We use induction on the dimension of the faces. The inductive statement is
the following:

φ induces a bijection between the sets of k-faces of Y and X.

Since φ induces a homotopy equivalence when restricted to the 0-skeleta, the
statement is obviously true for the 0-faces, which are points. We assume that
the statement is true for φ restricted to Y (k−1). That means that φ induces a
bijection between the �-faces of Y and X, for every � = 0, . . . , k − 1. Let G′
be a k-face of Y . Set p = n − k. Then rank(TG′) = p. That is because G′
is a component of the intersection of p facets. Also φ(G′) ⊂ X(k), since φ is
skeletal.

If φ(G′) ⊂ X(k−1), then, by continuity, at least two (k − 1)-subfaces of G′
will map to the same (k−1)-face ofX, contradicting the induction hypothesis.
Thus φ(G′) �⊂ X(k−1).

Next we assume that φ(G′) intersects at least two k-faces of X. Since φ is
continuous, there are two k-faces,G1 andG2 which intersect in a (k− 1)-face
G so that φ(G′) intersects the relative interiors of all three faces G1, G2 and
G. By rearranging the order of facets if necessary, we have that

G1 = F1 ∩ · · · ∩ Fp, G2 = F2 ∩ · · · ∩ Fp+1, G = F1 ∩ · · · ∩ Fp+1.

ThenTG1 = TF1 ×· · ·×TFp , TG2 = TF2 ×· · ·×TFp+1 andTG = TF1 ×· · ·×TFp+1 .
If TG1 = TG2 then TG = TG1 , a contradiction to Property (*) because the
map TF1 × · · · × TFp+1 → T is not an injection. Thus TG1 �= TG2 . Then
TG′ ≤ TG1 ∩ TG2 and p = rank(TG′) ≤ rank(TG1∩G2) < p. That gives a
contradiction. Thus the image of G′ is a face of X. That completes the proof.

Corollary 3.9. The assumptions of Proposition 3.8 imply that Y is a
homotopy polytope.

Proof. From Proposition 3.8, φ is a face preserving homotopy equivalence.
That implies that Y is a nice manifolds with corners. Since every face of X
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is the intersection of a set of facets, the same will be true for Y . Thus every
preface of Y is a face. Since every face of X is contractible, the same will be
true for the faces of Y . Thus Y is a homotopy polytope.

Proposition 3.10. Let (X,�) and (Y,�′) be two characteristic pairs and
σ : T → T be a continuous automorphism. Let also φ:Y → X be a face-
preserving map that satisfies σ(TYi ) < Tφ(Yi ) for each facet Yi of Y . Then φ
induces a σ -equivariant map φ∗:MY(�

′) → MX(�).

Proof. Define that map φ∗ by equivariantly extending the map φ:

φ∗:MY(�
′) → MX(�), φ∗([t, y]) = [σ(t), φ(y)].

We need to show that the map is well-defined. Let [t, y] = [t ′, y] in MY(�
′).

Then t−1t ′ ∈ TF ′(y). Also, F ′(y) is a component of the intersection of facets
Yi1 ∩ · · · ∩ Yim . So, φ(y) belongs to a component of the intersection of facets
φ(Yi1)∩· · ·∩φ(Yim) = X′. Since the map φ is face-preserving, there are facets
Xi , i = 1, · · · , s, of X such that F(φ(y)) is a component of the intersection
of faces X′ ∩ X1 ∩ · · · ∩ Xs . Thus TX′ < TF(φ(y)). Since σ(TYi ) < Tφ(Yi ),
we have that TF(φ(y)) > TX′ > σ(TF ′(y)). Therefore σ(t−1t ′) ∈ TF(φ(y)) and
[σ(t), φ(y)] = [σ(t ′), φ(y)] in MX(�). From the construction, the map is
obviously σ -equivariant.

Remark 3.11. In fact, the assumptions of Proposition 3.10 imply that
σ(TYi ) = Tφ(Yi ) for each facet Yi of Y . Notice that both σ(TYi ) and Tφ(Yi )
are subgroups of T isomorphic to S1 and σ(TYi ) < Tφ(Yi ). Therefore they must
be equal.

Corollary 3.12. Let φs :Y → X be face-preserving homotopies so that
σ(TYi ) < Tφs(Yi ), for each s ∈ [0, 1] and for each facet Yi of Y . Then φ0,∗ �σ

φ1,∗.

We now investigate the reverse construction.

Proposition 3.13. Let (X,�) and (Y,�′) be two characteristic pairs
such that X and Y are homotopy polytopes. Let f :MY(�

′) → MX(�) be
a σ -equivariant homotopy equivalence for some continuous automorphism
σ : T → T . Then

(1) the map φ:Y → X induced on the quotients is a face-preserving homo-
topy equivalence,

(2) σ(TF ′) = Tφ(F ′) for each facet F ′ of Y ,

(3) there is a σ -equivariant homotopy such that f �σ φ∗.

Proof. The equivariance implies that φ is skeletal. Then Proposition 3.8
shows that the map φ is face preserving homotopy equivalence.
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For (2), let Yi be a facet of Y and TYi its isotropy group. Then, equivari-
ance again, implies that the isotropy group of φ(Yi) contains σ(TXi ). As in
Remark 3.11, we see that σ(TYi ) = Tφ(Yi ). Let F ′ be a face of Y . Then
F ′ = Y1 ∩ · · · ∩ Ym as an intersection of facets. Since φ induces a bijec-
tion on faces, φ(F ′) = φ(Y1) ∩ · · · ∩ φ(Ym), as an intersection of facets.
Then

σ(TF ′) = σ(TY1 × · · · × TYm) = σ(TY1)× · · · × σ(TYm)

= Tφ(Y1) × · · · × Tφ(Ym) = Tφ(F ′).

For (3), notice that the map f induces a map

fY :Y → MX(�), with fY (y) = f ([1, y]) = [ty, φ(y)],

for some ty ∈ T .
For each face F ′ of Y , we write F = φ(F ′) and thus TF = σ(TF ′). The

restriction of f is a homotopy equivalence on fix point sets:

f | = f TF ′ :MY(�
′)TF ′ → MX(�)

σ(TF ′ ) = MX(�)
TF

Write
fF ′ :F ′ ιF ′−−→ MY(�

′)T
′
F

f TF ′−−−→ MX(�)
TF

where ιF ′(y) = [1, y]. Explicitly, for y ∈ F ′,

fF ′(y) = f TF ′ ◦ ιF ′(y) = f TF ′ ([1, y]) = [ty, φ(y)].

Thus fF ′ = fY |F ′. Since F = φ(F ′) and y ∈ F ′, we have that φ(y) ∈ F .
Also, define

φF ′ :F ′ ιF ′−−→ MY(�
′)T

′
F

φ
T
F ′

∗−−−→ MX(�)
TF , φF ′(y) = [1, φ(y)]

Lety0 ∈ F ′ be a base point. SinceF ′ is contractible, we choose a contracting
homotopy c′s starting from the identity on F ′ and ending to the constant map
at y0. Similarly, choose a contracting homotopy cs from the identity on F
to the constant map to φ(y0). Set WF = T/TF . Since WF is connected, we
choose a path β inWF with β(0) = ty0TF and β(1) = TF . Define a homotopy
χF ′ :F ′ × I → MX(�)

TF , as follows

χF ′(y, s) =
{
f ([1, c′2s(y)]), 0 ≤ s ≤ 1

2 ,

[β̄(2s − 1), c2−2s(φ(y))], 1
2 ≤ s ≤ 1,

with β̄(2s − 1) a coset representative of β(2s − 1).
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Notice that

(1) χF ′ is well defined:
(a) Let β̄i(2s − 1) ∈ T , i = 1, 2, be two elements representing

the same coset TFβ(2s − 1). Then, there is t ∈ TF such that
β̄1(2s − 1) = t β̄2(2s − 1). But

c2−2s(φ(y)) ∈ F ⇒ F(c2−2s(φ(y))) ≤ F

⇒ TF(c2−2s (φ(y))) ≥ TF

⇒ t ∈ TF(c2−2s (φ(y))).

Therefore β̄1(2s − 1)(β̄2(2s − 1))−1 = t ∈ TF(c2−2s (φ(y))) and so

[β̄1(2s − 1), c2−2s(φ(y))] = [β̄2(2s − 1), c2−2s(φ(y))]

from the definition. Hence the homotopy does not depend on the
choice of the representative of β(2s − 1) in WF .

(b) For s = 1/2, the two branches of the function read:
(i) f ([1, c′1(y)]) = f ([1, y0]) = [ty0 , φ(y0)],

(ii) [β̄(0), c1(φ(y))] = [ty0 , φ(y0)].

(2) χF ′(y, 0) = f ([1, y]) = [ty, φ(y)] = fF ′(y).

(3) χF ′(y, 1) = [β̄(1), φ(y)] = [1, φ(y)] = φF ′(y)

For each face F ′, we will construct a homotopy hF ′ :F ′ × [0, 1] → MX(�)
TF

such that:

(1) hF ′ is a homotopy from fF ′ to φF ′ ,

(2) forG′ a subface of codimension 1 ofF ′ (denotedG′ < F ′), the restriction
of hF ′ to G′ has the form:

hF ′ |G′(y, s) =
{
hG′(y, 2s), 0 ≤ s ≤ 1

2 ,

[1, φ(y)], 1
2 ≤ s ≤ 1.

We use the notation hF ′ |G′ = h′
G ∗ φ∗ for the concatenation of homotopies as

above.
The construction is done inductively. For a 0-cell v′, Im(fv′) = {[1, φ(v′)]}.

So the homotopy on the 0-skeleton is the stationary homotopy. Let F ′ be an
1-cell. Then χF ′ induces a homotopy from fF ′ to φF ′ . The homotopy extension
property implies that there is a homotopy hF ′ between fF ′ and φF ′ , rel(∂F ′).

LetF ′ be a k-face, k > 1. We assume that the homotopy has been defined on
each subface of F ′. The second property of the homotopies hG′ , for G′ < F ′,
allows the assembly of the homotopies hG′ in order to construct a homotopy
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h∂F ′ on ∂F ′. The homotopy h∂F ′ has the property that, for each (k − 1)-
dimensional subface G′ < F ′, h∂F ′ |G′ = hG′ . Notice that, for each G′ < F ′,
we have G = φ(G′) < F , TG > TF and MX(�)

TG < MX(�)
TF . Thus, for

each (k − 1)-dimensional subface G′, there is a homotopy

G′ × I
hG′−−→ MX(�)

TG jG−−→ MX(�)
TF ,

where jG is the inclusion map. That means that the homotopy h∂F ′ induces a
homotopy (also denotedh∂F ′ )h∂F ′ : ∂F ′×I → MX(�)

TF . Using the homotopy
extension property, we extendh∂F ′ to a homotopy gF ′ :F ′×[0, 1] → MX(�)

TF

such that

(1) gF ′(y, 0) = fF ′(y),

(2) for each G′ < F ′, a face of F ′ of codimension 1, gF ′ |G′ = hG′ .

Set gF ′,1 = gF ′(−, 1). Since gF ′ is the homotopy between fF ′ and gF ′,1 andχF ′

is the homotopy betweenfF ′ andφF ′ , there is a homotopy such thatgF ′,1 � φF ′ .
Also, for y ∈ ∂F ′, y belongs to a (k − 1)-dimensional subface of F ′ and

gF ′,1(y) = gF ′(y, 1) = h∂F ′(y, 1) = [1, φ(y)] = φF ′(y).

Thus, there is a homotopy ψF ′ such that gF ′,1 � φF ′ , rel∂F ′. Define the
homotopy hF ′ = gF ′ ∗ ψF ′ , the concatenation of the two homotopies. Then

(1) hF ′(y, 0) = gF ′(y, 0) = fF ′(y),

(2) hF ′(y, 1) = ψF ′(y, 1) = φF ′(y),

(3) if y ∈ ∂F ′, then
(a) For 0 ≤ s ≤ 1/2, hF ′(y, s) = gF ′(y, 2s) = h∂F ′(y, 2s),
(b) For 1/2 ≤ s ≤ 1, hF ′(y, s) = ψF ′(y, 2s) = φF ′(y) = [1, φ(y)].

Thus, hF ′ satisfies all the conditions required. Working inductively we get a
homotopy h:Y × I → MX(�) such that

(1) h(y, 0) = fY (y) = f ([1, y]) = [ty, φ(y)],

(2) h(y, 1) = φ∗([1, y]) = [1, φ(y)],

(3) for each face F ′ of Y , Im(h|F ′) ⊂ MX(�)
TF .

DefineH :MY(�
′)× I → MX(�),H([t, y], s) = σ(t)h(y, s). ThenH is the

required homotopy between f and φ∗.

4. Rigidity

As before, we set T = T n. LetM2n be a locally standard closed torus manifold
with X = M2n/T the corresponding nice n-manifold with corners. In this
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section, we assume that X is a homotopy polytope so that all the faces of
X (and X itself) are contractible manifolds. Corollary 3.5 implies that the
pair (M2n,X) splits and thus there is a T -homeomorphism M2n ∼=T MX(�)

covering the identity onX. Here� is the characteristic map induced by the T -
action onM2n. Notice that the T action onMX(�) is effective and its isotropy
groups are subtori of T . Thus the same is true for M2n.

Definition 4.1. A locally linear T -action on a manifoldN2n is a T -action
so that every point y of N2n, with isotropy group Ty , admits a Ty-slice, that is
an orthogonal linear representation of Ty [1, p. 171].

Remark 4.2. Locally standard torus manifolds are locally linear T -mani-
folds.

Let N2n be a locally linear closed T -manifold. Let f :N2n → M2n be a
T -equivariant homotopy equivalence with T -homotopy inverse g.

Lemma 4.3. The action of T on N2n is effective.

Proof. We assume that is not the case. So there is some t ∈ T that fixesN2n

pointwise. LetG = 〈t〉. Then NG = N2n � MG since f is an equivariant ho-
motopy equivalence. ButMG is a closed proper submanifold ofM2n, because
the action on M2n is effective. Thus dim(NG) = dim(MG) < dim(M2n) =
dim(N2n), a contradiction.

Lemma 4.4. The non-trivial isotropy subgroups of N2n are subtori of T .

Proof. Let y be in N2n with isotropy group Ty that is not a subtorus of T .
Since NTy � MTy and NTy �= ∅, we have that MTy �= ∅. Since the isotropy
groups of M2n are subtori, MT ′ = MTy for some subtorus T ′ that strictly
contains Ty . But y ∈ NTy and y /∈ NT ′

. Thus NTy � NT ′ � MT ′
. Since fixed

point sets are closed submanifolds without boundary, we have that dimMTy =
dimNTy > dimNT ′ = dimMT ′

. But this is a contradiction since dimMTy =
dimMT ′

.

Corollary 4.5. The isotropy groups of N2n and M2n are the same.

Corollary 4.6. For each isotropy group T ′, each component of the fixed
point set NT ′

contains a T -fixed point.

Proof. The subgroup T ′ is equal to TF for some face F < X. Let C be
a component of NT ′ = NTF . The map f induces a homotopy equivalence
f TF :NTF → MTF . Thus, the restriction of f TF to C induces a homotopy
equivalence between C and a component C ′ of MTF . Corollary 3.2 implies
that C ′ has a T -fixed point. Therefore C also has a T -fixed point.
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Proposition 4.7. The action of T onN2n is locally standard. Furthermore,
N2n/T = Y is a homotopy polytope.

Proof. Let y ∈ N2n with isotropy group Ty . Corollary 4.5 implies that
Ty = TF for some face F < X. Let C be the component of NTF that contains
y. Corollary 4.6 implies that there is a point z ∈ C that is fixed by T . Since
the action is locally linear, there is a linear slice around each point. Since the
isotropy groups are subtori, the slices are well defined up to linear equivalence
[19]. Notice that the tubes are smoothT -manifolds. Now we complete the proof
as in [10, Theorem 4.1]. We start with a slice S at z. The slice S is a linear
effective T -representation. If y ∈ S, then S is a locally standard neighborhood
of y. In general, there is a path α that joins z to y. We use the same argument
as in the end of the proof of Theorem 4.1 in [10], moving along the path. We
start with a finite open cover of the image of α with tubes. Then, there is a
tube τ that contains z. The tangent space Tz is an effective T -representation.
Let y0 be a point on the path that lies in the intersection of τ and another
tube τ0 at x0. Then the tangent space at y0 is a Ty0 -representation, and this
is the restriction of the T -representation Tz and the Tx0 -representation Tx0 .
Continuing this way we get a sequence of points yi , i = 0, 1, . . . , k, such that
yk = y and the Tyi -representation Tyi is the restriction of the T -representation
Tz. That completes the proof of the first part.

The quotient Y is a nice n-manifold with corners and there is a skeletal
homotopy equivalence φ:Y → X. Corollary 3.9 implies that Y is a homotopy
polytope.

We denote by �′ the characteristic function determined by the T -action
on N2n. Proposition 3.8 implies that the map f induces a face-preserving
homotopy equivalence φ:Y → X. By Proposition 3.13, the map f is T -
homotopic to φ∗.

We need a version of the Poincaré Conjecture. For an n-dimensional mani-
fold with boundary (M, ∂M) the relative structure set S (M, ∂M) is the set of
equivalence classes of pairs (N, f ) with N an n-dimensional manifold with
boundary and f :N → M a homotopy equivalence such that ∂f : ∂N → ∂M

is a homeomorphism.
For the following lemma, the structure set is defined as follows:

S (M, ∂M) = {f : (Xn, ∂X) → (M, ∂M) | f a homotopy equivalence,

f |∂X homeomorphism}/ ∼
where the equivalence relation is given by homeomorphisms.
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Lemma 4.8. Let (M, ∂M)be a compact contractiblen-manifold with bound-
ary. Then the relative structure set S (M, ∂M) = ∗, n �= 3. If n = 3 and
M ⊂ S3, then (M, ∂M) ∼= (D3, S2).

Proof. For n = 1, 2 the result is obvious. For n ≥ 4, there is the surgery
exact sequence:

· · · → [(M × I, ∂M × I ), (G/Top, ∗)] → Ln+1(Z)

→ S (M, ∂M) → [(M, ∂M), (G/Top, ∗)] → Ln(Z)

(for n ≥ 5 this is the classical surgery exact sequence [20], for n = 4 the result
follows from the results of Freedmann [5], see also Kirby-Taylor [7, §7]. But
M/∂M ∼= Sn and S (Sn) = ∗ for n ≥ 4. We also have commutative diagrams

[(M × I, ∂M × I ), (G/Top, ∗)] −−−−→ Ln+1(Z)

∼=

[(M/∂M)× I,G/Top] −−−−−−−→ Ln+1(Z)

and

[(M, ∂M), (G/Top, ∗)] −−−−→ Ln(Z)

∼=

[M/∂M,G/Top] −−−−−−→ Ln(Z)

So the vanishing of the structure set of the sphere implies that, in the exact
sequence, the first map is onto and the last map is into. Thus S (M, ∂M) = ∗.

For n = 3, the results of Perelman ([14], [16], [15]) imply that there are
no fake disks and spheres in dimension 3. Thus (M, ∂M) ∼= (D3, S2) [17,
Lemma 5.2] and [18, Proof of Theorem 3.10].

Lemma 4.9. LetX and Y be homotopy polyhedra. Then any face-preserving
homotopy equivalence φ:Y → X is face-preserving homotopic to a face-
preserving homeomorphism.

Proof. We will use the method that was used in [12], [17], and [18] to show
that φ is face-preserving homotopic to a face-preserving homeomorphism.
We will construct a face-preserving homeomorphism by induction on faces.
Notice that each closed face is homeomorphic to a contractible manifold with
boundary.

We will use induction on the dimension of the faces. Since we have the
same number of zero faces in the two homotopy polytopes, the restriction of
φ to zero faces is a homeomorphism. Now, let F1 be a face of Y and ∂F1 its
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boundary. We assume that there is face-preserving homeomorphism h∂F1 face-
preserving homotopic to φ|∂F1 . Using the homotopy extension property, there
is a map φ′:F1 → F2 that is homotopic to φ|F1 and it extends the map h∂F1 .
Because all the maps and homotopies are face-preserving at the boundary, they
are face-preserving in the closed face F1. By Lemma 4.8, φ′ is homotopic to a
homeomorphism relative to the boundary. As before, all homotopies are face-
preserving. Continuing this way, we get a face-preserving homeomorphism
h:Y → X that is face-preserving homotopic to φ.

Lifting the maps and the homotopies to the canonical models, we have the
following.

Corollary 4.10. Let (Y,�′) and (X,�) be characteristic pairs, with X
and Y homotopy polyhedra. Let φ:Y → X be a face-preserving homotopy
equivalence. Then the induced map φ∗:NY (�′) → MX(�) is T -homotopic to
a T -homeomorphism.

Theorem 4.11 (Rigidity of Locally Standard Torus Manifolds). LetM2n be
a closed locally standard torus manifold over an n-manifold with corners X
and characteristic map �. We assume that X is a homotopy polytope and all
the faces ofX (andX itself ) are contractible manifolds with corners. LetN2n

be a locally linear closed T -manifold and f :N2n → M2n a T -equivariant
homotopy equivalence. Then f is T -homotopic to a T -homeomorphism.

Proof. From Proposition 4.7, the action of T on N2n is locally standard.
Then, Corollary 3.5 implies that the pairs (M2n,X) and (N2n, Y ) split.

The map f induces a face-preserving map φ:Y → X. Let

f̄ :NY (�
′) ∼=−→ N2n f−→ M2n ∼=−→ MX(�).

It is enough to show that f̄ is T -homotopic to a T -homeomorphism. Notice
that f̄ also induces the map φ on the quotients. By Proposition 3.13, f̄ �T φ∗,
and, by Corollary 4.10, φ∗ is T -homotopic to a T -homeomorphism h. Thus
f̄ �T φ∗ �T h and the last map is a T -homeomorphism.

Remark 4.12. In [24], Theorem 6.2 provides a complete classification of
locally standard torus manifolds. That classification applies to the above result.
The difference is that the homeomorphism given in [24] it is not necessarily
equivariantly homotopic to the original homotopy equivalence.

The following is an immediate consequence of Theorem 4.11.

Corollary 4.13. Let M2n be a quasitoric manifold. Let N2n a locally
linear T -manifold and f :N2n → M2n a T -homotopy equivalence. Then f is
T -homotopic to a T -homeomorphism.
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Finally, a slightly more general result holds.

Corollary 4.14. Let M2n be a locally standard torus manifold over an
n-manifold with corners X. We assume that M2n satisfies the conditions of
Theorem 4.11. Let σ : T → T be a continuous automorphism,N2n be a locally
linear T -manifold and f :N2n → M2n be a σ -equivariant homotopy equival-
ence. Then f is σ -homotopic to a σ -homeomorphism.

An important class of quasitoric manifolds are the complex projective
spaces. In most cases, products of these spaces do not have vanishing structure
sets. But they are rigid as locally standard torus manifolds.
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