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RIGIDITY OF COXETER GROUPS

STRATOS PRASSIDIS AND BARRY SPIELER

Abstract. Let W be a Coxeter group acting properly discontinuously and
cocompactly on manifolds N and M (∂M = ∅) such that the fixed point sets
of finite subgroups are contractible. Let f : (N, ∂N) → (M×Dk,M×Sk−1)
be a W -homotopy equivalence which restricts to a W -homeomorphism on the
boundary. Under an assumption on the three dimensional fixed point sets, we
show that then f is W -homotopic to a W -homeomorphism.

1. Introduction

A reflection on a connected manifold M is a locally linear involution on M whose
fixed point set separates M into two components. A group W , generated by a set
of reflections on a manifold, is called a reflection group if W acts effectively and
properly discontinuously on M . The algebraic structure of reflection groups is very
specific. The only relations in the group are induced by the intersections of the fixed
submanifolds of the generators ([13]; [30]). Groups with such algebraic structure
are called Coxeter groups because they were studied first in a paper by H. S. M.
Coxeter ([12]).

More specifically, a Coxeter system (W,S) is a group W with a presentation

W = 〈s∈S : s2 = (ss′)mss′ = 1, s 6=s′,mss′∈{2, 3, . . . ,∞}〉.

In this paper we are interested in finitely generated (and therefore finitely presented)
Coxeter groups.

In geometric topology, reflection groups appeared in the work of M. Davis ([13];
[14]), in the construction of closed aspherical topological manifolds not covered by
Euclidean spaces. Using Davis’ methods, G. Moussong constructed contractible,
complete, non-positively curved (in the sense of Gromov), topological manifolds
which are not homeomorphic to Rn ([25]).

Let W be a Coxeter group which admits a properly discontinuous, cocompact
action on a manifold M (without boundary) such that the fixed point sets of finite
subgroups are non-empty and contractible. We do not assume that the generators of
W act by reflections. The main result (Theorem 5.3) of the paper is the topological
rigidity of the W -action on M .
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2620 STRATOS PRASSIDIS AND BARRY SPIELER

Theorem (Main Theorem). Let N be a manifold with boundary on which W acts
locally linearly, properly discontinuously and with the property that the fixed point
sets of finite subgroups are non-empty and contractible. Let

f : (N, ∂N) → (M×Dk,M×Sk−1)

be a W -homotopy equivalence which restricts to a W -homeomorphism on the bound-
ary. If the three dimensional fixed point sets of N and M×Dk can be embedded in
S3, then f is W -homotopic to a W -homeomorphism.

We give an outline of the proof of the main theorem. The assumptions of the
theorem imply that W is a virtual Poincaré duality group. By the results in [16],
it splits as a product W1×W2, where W1 is a a Coxeter group acting cocompactly
by reflections on a contractible manifold and W2 is a finite Coxeter group. The
action of the group W2 is trivial on all the spaces involved. Thus we can assume
that W is a Coxeter group that acts cocompactly by reflections on a contractible
manifold M ′. Then the quotient space Q′ (which can be identified with a funda-
mental domain of the action) is a manifold with boundary ([13]). The intersections
Q′∩M ′s = ∂Q′∩M ′s (s∈S), are manifolds with (possibly empty) boundary ([13]),
called panels or mirrors. The panels of Q′ and their non-empty intersections are
contractible manifolds with (possibly empty) boundary. Comparing with M ′ en-
ables us to show that the assumptions on M×Dk and N are sufficient to force W
to act by reflections on both manifolds. Then any W -map f : N → M×Dk is W -
homotopic to a map g that restricts to a homotopy equivalence of the fundamental
domains and preserves the panels. The map g induces homotopy equivalence on
each non-empty intersection of the panels which is a compact contractible manifold.
Using induction on the dimension of the manifolds, we can assume that the map is
already a homeomorphism on the boundary. The generalized Poincaré conjecture
implies that the map is homotopic to a homeomorphism, relative the boundary.
Repeating the induction process, we construct a panel preserving homotopy from
the restriction of g to a homeomorphism. Standard constructions outlined in [13]
extend the homotopy already constructed to a W -homotopy from g (and therefore
from f) to a W -homeomorphism. The assumption on the 3-dimensional fixed point
sets is needed in the inductive process because the Poincaré conjecture is open in
dimension 3. The result of our Main Theorem has been proved by E. Rosas ([26])
for right angled reflection groups (i.e. the exponents in the Coxeter relations are
equal to either 2 or ∞).

The rigidity theorem for Coxeter groups proves the Borel-Quinn conjecture for
Coxeter groups. The Borel-Quinn conjecture generalizes the rigidity phenomena
expressed by the Borel conjecture to an equivariant setting. It has been formulated
explicitly by Connolly and Koźniewski ([10]). Let Γ be a virtually torsion free, co-
compact, discrete subgroup of the group of isometries of a complete, non-positively
curved topological manifold M̃ . Let Γ0 be a normal torsion free subgroup of finite
index, and G = Γ/Γ0 the finite quotient. Let M̃ ′ be a contractible Γ-manifold.
We assume that the actions of Γ on M̃ and M̃ ′ are properly discontinuous and
cocompact, and that the fixed point set of each finite group of Γ is a contractible
manifold, flatly embedded in a bigger fixed point set. The assumptions imply that
there is a Γ-homotopy equivalence F : M̃ ′ → M̃ . Let M = M̃/Γ0, M ′ = M̃ ′/Γ0 be
the compact G-manifolds determined by the Γ actions on M̃ , M̃ ′. Then the map
F induces a G-homotopy equivalence f : M ′ →M . We assume that the torsion of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RIGIDITY OF COXETER GROUPS 2621

f is zero in WhTop,ρG (M) (the equivariant topological Whitehead group introduced
in [28] and [29], for classifying isovariant G-h-cobordisms over M satisfying certain
gap conditions).

Conjecture (Borel-Quinn Conjecture). With the preceding notation the Γ-map F
is Γ-homotopic to a Γ-homeomorphism.

When the conjecture was stated in [10], there were three types of assumptions
imposed: assumptions on the restriction of f to the fixed point sets of dimension
less than or equal to 4, gap hypotheses, and assumptions on the finite subgroups of
Γ of even order. The assumptions were necessary because of the examples given in
[11], [36]. In the case of Coxeter groups, the gap hypotheses and the assumptions
of subgroups of even order are not needed. We do need a condition on the three
dimensional fixed point sets which is weaker than the hypotheses imposed in [10].

The condition on the torsion of f is a necessary condition. We will explain
why the condition is not needed when Γ = W is a Coxeter group acting on M by
reflections. Let W0 be a normal subgroup of finite index in W , G = W/W0, and
M0 = M/W0. In Section 5, we show that (Theorem 5.3)

WhTop,ρG (M0×T n) = 0,

where T n is the n-dimensional torus with the trivial G-action. The proof is an
adjustment of the ideas used in the proof of the main theorem.

In Section 2, we review the basic algebraic theory of Coxeter groups and the
basic theory of panel spaces associated to Coxeter systems.

In Section 3, we show that the action of a Coxeter group on a universal space has
the property that the fixed point sets are contractible if and only if all the panels
are contractible. In this section, we extend the basic technical construction in [26]
from the case of right angled reflection groups to general Coxeter groups.

In Section 4, we review the general theory of Coxeter groups when they act
by reflections on polyhedra and manifolds, and the properties of the panel spaces
determined by the action.

In Sections 5 and 6, we prove the topological rigidity theorem and the K-theory
rigidity theorems for Coxeter groups, as outlined in the preceding paragraphs.

We would like to thank N. Cardim, R. Charney, F. Connolly, M. daSilva, M.
Davis, B. Hughes, M. Mihalik and Pedro Ontaneda for their helpful suggestions
during the preparation of this paper.

2. Preliminaries on Coxeter Groups

We review the basic properties of Coxeter groups. Basic references are [3], [24],
and [5] for a more geometric approach.

A Coxeter system (W,S) is a pair where W is a group and S is a set of generators
of W , subject only to the relations

(ss′)m(s,s′), m(s, s) = 1, m(s, s′) = m(s′, s) ≥ 2 if s 6= s′.

Thus W is generated by a set of reflections, and the only relations in W are in-
duced by the angles of intersection between the hyperplanes corresponding to the
reflections. The group W is called a Coxeter group and the elements of S are called
simple reflections. The conjugates of S are called reflections of the Coxeter system
(W,S). We say that a Coxeter system (W,S) is the product of two Coxeter systems

(W,S) ∼= (W1, S1)× (W2, S2)
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2622 STRATOS PRASSIDIS AND BARRY SPIELER

if W ∼= W1×W2 and Si ⊂ S, i = 1, 2. A Coxeter system is called irreducible
if it cannot written as a non-trivial product of Coxeter systems. We will consider
finitely generated (and therefore finitely presented) Coxeter groups. For w∈W , `(w)
denotes the length of w in the Coxeter presentation of W . The main properties of
the length function in Coxeter groups are summarized in [24], Section 5.2.

Let J⊆S and WJ be the subgroup of W generated by J . Then the pair (WJ , J)
is again a Coxeter system ([3]; [24]). Subgroups of W of the form WJ (J⊆S) are
called parabolic subgroups. Finite parabolic subgroups have the following universal
property among the finite subgroups of W ([30]; [26], Lemma 2.1; [4], Proposition
1.3):

Proposition 2.1. Let H be a finite subgroup of W . Then there is a finite parabolic
subgroup WJ and an element w∈W such that H < wWJw

−1.

To a Coxeter system (W,S) we associate a partially ordered set

F(W,S) = {J⊆S : |WJ | <∞}
ordered by set inclusion. The set F(W,S) is isomorphic to the partially ordered
set of finite parabolic subgroups of W .

The study of Coxeter group actions on spaces is connected with the theory of
spaces equipped with a panel structure. We review the general theory of panel
spaces. The basic definitions and properties of panel spaces are contained in [13]
and [34].

Definition 2.1. An S-panel structure on a topological space Q is a locally finite
family of closed subspaces (Qs)s∈S , indexed by a set S. The subsets Qs are called
panels of Q. The pair (Q, (Qs)s∈S) is called an S-panel space.

For each q∈Q, we write S(q) = {s∈S : q∈Qs}. For each non-empty subset J⊆S,
set

QJ = {q∈Q : J⊆S(q)} =
⋂

s∈J
Qs, Qσ(J) =

⋃
s∈J

Qs.

We define Q∅ = Q. The formal boundary Q is defined to be the union of all the
panels:

δQ =
⋃

s∈S
Qs.

The subspaces QJ are called faces. We will consider panel structures with finitely
many panels.

We fix a Coxeter system (W,S). S-panel structures on spaces can be used for the
construction of spaces equipped with a W -action. Let (Q, (Qs)s∈S) be an S-panel
space. Define

U(W,Q) = W ×Q/∼
where (w, q)∼(w′, q′) if and only if q = q′ and w−1w′∈WS(q). The space U(W,Q),
with the quotient topology, is called the universal space of the pair (W,Q). We
write [w, q], w∈W , q∈Q, for elements in U(W,Q). There is a natural embedding

i : Q → U(W,Q), q → [e, q].

The group W acts on U(W,Q) by left multiplication in the first coordinate. The
isotropy group of the point [e, q] is WS(q), because only the generators in S(q) fix
[e, q]. Therefore the isotropy group of a general element [w, q] is wWS(q)w

−1. The
space U(W,Q) has the following universal property ([34], p. 1088).
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Proposition 2.2. For any W -space M and any map f : Q → M such that
sf(q) = f(q), for all s∈S, q∈Qs, there is a unique W -equivariant map f∗ :
U(W,Q) → M such that f∗([e, q]) = f(q).

Definition 2.2. Let (Q, (Qs)s∈S)) and (Q′, (Q′s)s∈S)) be S-panel spaces. An S-
panel map is a continuous function f : Q → Q′ that preserves panels, i.e.,
f(Qs)⊆Q′s, for all s∈S.

We will apply Proposition 2.2 to panel maps. Let f : Q → Q′ be an S-panel
map. Form the composition

f ′ : Q
f−→Q′

i′−→ U(W,Q′),

where i′ is the natural inclusion. For q∈Qs,
sf ′(q) = s[e, f(q)] = [s, f(q)] = [e, f(q)] = f ′(q).

Thus f ′ induces a W -map

U(W, f) : U(W,Q) → U(W,Q′).

Summarizing, we have

Corollary 2.3. Let f : Q → Q′ be an S-panel map. Then there is a unique
W -map U(W, f) : U(W,Q) → U(W,Q′) extending f .

The conclusion of Corollary 2.3 can be used in the formulation of the naturality
properties of the universal construction. Thus panel homeomorphisms induce W -
homeomorphisms on the classifying spaces. Also, panel homotopies, i.e., S-panel
maps F : (Q×I, (Qs×I)s∈S) → (Q′, (Q′s)s∈S), induce W -homotopies on the corre-
sponding universal spaces.

Definition 2.3. Let (Q, (Qs)s∈S)) be an S-panel space. The panel structure on Q
is called W -finite if S(q) ∈ F(W,S) for each q∈Q.

The W -action on a classifying space U(W,Q) is proper if and only if the S-panel
structure of Q is W -finite ([13], Lemma 13.4; [34], p. 1089).

Let (Q, (Qs)s∈S) be an S-panel space with a W -finite structure, and let U(W,Q)
denote the universal (W,Q)-space. We order the elements of W so that w1 = e and
wi < wj implies that `(wi) ≤ `(wj). Set

Tn(Q) =
⋃n

i=1
wiQ ⊆ U(W,Q).

Lemma 2.4. Let n > 1. Then

Tn−1(Q)∩wnQ = wnQσ(B(wn)),

where B(wn) = {s∈S : `(wns) < `(wn)}. Furthermore, B(wn)∈F(W,S) for every
n.

Proof. When U(W,Q) is a manifold, the proof is given in [13], Section 8. The same
proof applies to the general case.

For each J∈F(W,S), w∈W , we can have a natural choice for the coset represen-
tatives for wWJ .

Lemma 2.5. Let J ∈ F(W,S). Then for any w∈W there is a unique element
v∈wWJ of maximal length. Furthermore, w is the element of maximal length in
wWJ if and only if J⊆B(w).
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Proof. The element v is the product of the minimal coset representative for wWJ

and the element of maximal length in WJ . The details appear in Lemma 1.7 in
[16].

Definition 2.4. An S-panel space (Q, (Qs)s∈S) is called an S-panel complex if Q
is a CW-complex and all the faces are subcomplexes of Q.

For a Coxeter system (W,S) there is a natural choice of a polyhedron equipped
with a W -finite S-panel structure such that the faces are subpolyhedra. We write
K0(W,S) for the abstract simplicial complex with vertex set S and simplices the
non-empty elements of F(W,S). Let K(W,S) denote the cone of K0(W,S), i.e.,
K(W,S) = K0(W,S) ∪ {∅}. We define an S-panel structure on the geometric
realization |K(W,S)| of the simplicial complex. The panel corresponding to s∈S is
the geometric realization of the closed star of s in K0(W,S) ([13]).

We can now express the connection between certain homotopy properties of the
panels of Q and the classifying space U(W,Q).

Theorem 2.6. For an S-panel complex (Q, (Qs)s∈S) the following are equivalent:
1. U(W,Q) is contractible.
2. Q is contractible and QJ is acyclic for each J∈F(W,S).
3. The union of chambers Tn(Q) is contractible for all n ≥ 1.

Proof. When U(W,Q) is a manifold, the result is a special case of Theorem 10.1
and Corollary 10.3 in [13]. But the same methods can be applied to the general
case.

Vinberg in [34], showed that every Coxeter group is isomorphic to a linear Cox-
eter group, i.e., a Coxeter group that is a subgroup of a general linear group and acts
by reflections on a cone in a vector space. Using Selberg’s lemma we conclude that
Coxeter groups are virtually torsion free, i.e. they contain a torsion free subgroup
of finite index. Actually a Coxeter group (W,S) has finite virtual cohomological
dimension

vcd(W ) ≤ dim|K(W,S)|.
More precise statements can be found in [1], [18], and [22].

3. Universal Spaces of Coxeter Systems

Let (W,S) be a Coxeter system and (Q, (Qs)s∈S) a W -finite S-panel complex.
The main purpose of this section is the proof that U(W,Q) is a W -space of type
EW if and only if Q and each face of Q are contractible.

We start with a basic definition ([9], [27]).

Definition 3.1. Let W be any discrete group. A space of type EW is a W -CW-
complex such that the isotropy groups of the action are finite, and the fixed point
sets of finite subgroups are non-empty and contractible. The space EW is unique
up to W -homotopy ([9]).

We formalize the S-panel structures that we will need.

Definition 3.2. An S-panel structure on a space Q is called admissible if the panel
structure is W -finite and Q and each non-empty face are contractible. It is called
an admissible S-panel complex structure, if in addition, Q is an S-panel complex.
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Let K(W ) be the W -complex constructed in [25]. More explicitly, K(W ) is
defined as the universal space of the S-panel space C|K0(W,S)′|, the cone on
the geometric realization of the first barycentric subdivision of K0(W,S). The
panel corresponding to s is the geometric realization of the closed star of s in
K0(W,S)′. Thus C|K0(W,S)′| is an admissible complex, by construction, and
K(W ) = U(W,C|K0(W,S)′|). Also, K(W ) admits a locally flat metric of non-
positive curvature such that W acts by isometries and reflections, i.e. the fixed
point set of each generator s∈S separates K(W ) in two components.

The authors are grateful to M. Davis for bringing to their attention the following
result, which is an immediate consequence of the properties of the non-positive
curvature metric on K(W ).

Lemma 3.1. The W -complex K(W ) is a complex of type EW .

Proof. The action of W on K(W ) is proper, so the isotropy groups of the action are
finite. We have to show that fixed point sets of finite subgroups are contractible.
This is a general statement about the fixed point sets of groups of isometries of
complexes of non-positive curvature. Let H be a finite subgroup of W . Let x, y
be two points fixed by H . Then there is a unique geodesic α of minimal length
joining x and y. Since H acts by isometries, α is a geodesic in K(W )H . In [15],
Proposition 1.4, a contraction c : K(W )×I → K(W ) is defined by contracting
along the geodesics. Therefore c restricts to a contraction on K(W )H .

Lemma 3.2. Let (Q, (Qs)s∈S) be an admissible S-panel space such that (QJ , δQJ)
satisfies the homotopy extension property for each J∈F(W,S). Then U(W,Q) is
W -homotopy equivalent to K(W ). In particular, if (Q, (Qs)s∈S) is an admissible
S-complex, U(W,Q) is a complex of type EW .

Proof. By Proposition 2.5 in [26], there is an S-panel map f : Q → C|K0(W,S)′|.
Since all the faces in both complexes are contractible, f is an S-panel homotopy
equivalence. The functorial properties of the universal construction (Corollary 2.3)
imply that:

U(W, f) : U(W,Q) → K(W )

is a W -homotopy equivalence.

We will show that the converse of Lemma 3.2 is true. We start with a W -finite
S-panel complex Q such that the universal space U = U(W,S) is a space of type
EW , and show that Q is an admissible complex.

Let J∈F(W,S). We will describe UWJ , the fixed point set of WJ , as a union of
faces. We fix a total ordering of W as in Section 2.

Definition 3.3. With the above notation:
1. Let w∈W , K∈F(W,S). We say that the pair (w,K) represents a face in UWJ

if J ⊂ wWKw
−1.

2. An element v∈W is called J-maximal in the pair (w,K) if (w,K) repre-
sents a face of UWJ and v is the unique maximal element in the coset wWK

(Lemma 2.5).
We write

VJ = {(v,K) : ∃w∈W, v is the J-maximal element in (w,K)}.

Define a total ordering on the set VJ as follows: (v,K) ≺ (v′,K ′) if and only if
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1. v < v′ in the total ordering of W , and
2. if v = v′, K % K ′.

Remark 3.1. We summarize the obvious properties of the ordering.
1. The minimal element in the ordering is the pair (wJ , J), where wJ is the

unique element of maximal length in WJ .
2. Lemma 2.5 implies that v is J-maximal in (v,K) if and only if K ⊆ B(v).

Our goal is to describe the structure of UWJ written as the union of faces indexed
by VJ .

Lemma 3.3. The space UWJ can be written as union of faces vQK such that v is
J-maximal in the pair (w,K).

Proof. There are two immediate consequences of the definitions.
1. If (w,K) is a pair representing a face in UWJ , then wQK ⊆ UWJ .
2. If v is J-maximal in (w,K), then vQK = wQK .

These observations imply that each face vQK , with v the J-maximal element in
(w,K) is contained in UWJ .

For the other inclusion, let x∈UWJ . Then the isotropy group of x is a conjugate
of a parabolic subgroup, i.e., Wx = wWKw

−1 for some K∈F(W,S), w∈W . Since x
is fixed by WJ , it follows that J ⊂ wWKw

−1 and the pair (w,K) represents a face
in UWJ . Thus x∈wQK = vQK , where v is the J-maximal element in (w,K).

Imitating the construction in Section 2, we define

T J(v,K) =
⋃

(v′,K′)�(v,K)
v′QK′ .

Definition 3.4. An element (v,K) of VJ is called reducible if vQK ⊆ T J(v′,K′) for
some (v′,K ′) � (v,K). Otherwise (v,K) is called irreducible.

Remark 3.2. The pair (v,B(v)) is never irreducible, because, for any K $ B(v),
(v,K) � (v,B(v)) and vQB(v) $ vQK .

The following result is the analogue of Lemma 2.4.

Lemma 3.4. Let (v,K)∈VJ − {(wJ , J)}, and let (v′,K ′) denote the maximal ele-
ment in VJ smaller than (v,K). If (v,K) is irreducible, then

vQK ∩ T J(v′,K′) =
⋃

s∈B(v)−K
vQK∪{s}.

Proof. First notice that, for all s∈B(v), K∪{s}∈F(W,S) by part (2) of Remark 3.1.
Thus QK∪{s} 6= ∅.

We start with the inclusion⋃
s∈B(v)−K

vQK∪{s} ⊆ vQK ∩ T J(v′,K′)
For each s∈B(v) −K, vQK∪{s} ⊆ vQK . Since K∪{s} ⊆ B(v), Lemma 2.5 implies
that v is J-maximal in (v,K∪{s}). Then (v,K∪{s}) � (v,K) and vQK∪{s} ⊆
T J(K′,v′).

For the other inclusion, let vx∈vQK∩T J(K′,v′). Then there is (v′′,K ′′) � (v,K)
such that vx∈vQK∩v′′QK′′ . Then the intersection QK∩v−1v′′QK′′ is a non-empty
face. If QK∩v−1v′′QK′′ = QK , then vQK ⊆ v′′QK′′ ⊂ T J(K′,v′), contradicting the
assumption that (v,K) is irreducible. Thus x must belong to a proper subface of
QK . We distinguish two cases:
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1. v′′ < v in the ordering ofW . Let v = wn in the ordering ofW . By assumption,
x∈vQK∩Tn−1(Q). By Lemma 8.2 in [13], x∈

⋃
s∈B(v)Qs. Since x belongs to

a proper subface of QK , there must be s∈B(v)−K such that x∈QK∪{s}.
2. v = v′′, K $ K ′′. Since v is a J-maximal element in (v,K ′′), K ′′ ⊆ B(v). If
s∈K ′′ −K is a simple reflection, then

vx ∈ vQK∩vQK′′ = vQK′′ ⊆ vQK∪{s}.

Lemma 3.5. Let (Q, (Qs)s∈S) be a W -finite S-panel complex such that U(W,Q)
is a complex of type EW . Then the S-panel structure of Q is admissible.

Proof. Let U = U(W,Q) as before. By assumption U is contractible, and by
Theorem 10.1 in [13], Q is contractible and each face QJ , J∈F(W,S), is acyclic. We
will show that QJ is contractible by reverse induction on the number of elements of
J . If J is a maximal subset in F(W,S), then QJ = UWJ , which is contractible by
assumption. If J is not maximal, then we assume that QK is contractible for each
K∈F(W,S), |J | < |K|, and we will show that QJ is contractible. By Lemma 3.4,
UWJ is given as an ascending union

UWJ =
⋃

(v,K)∈VJ
T J(v,K).

Fix an element (v,K)∈VJ . Let (v′,K ′) be the maximal element smaller than (v,K).
If (v,K) is reducible, then T J(v,K) = T J(v′,K′). If not, then K $ B(v) (Remark 3.2),
and vQK ∩ T J(v′,K′) is the union of faces of the form vQK∪{s}, s∈B(v) − K. By
assumption, all the faces vQK∪{s} are contractible. Their intersection⋂

s∈B(v)−K
vQK∪{s} = vQB(v)

is also contractible by the induction hypothesis (|J | ≤ |K| � |B(v)|). By Van
Kampen’s theorem, the map induced by inclusion, π1(T J(v′,K′)) → π1(T J(v,K)), is
an injection. Thus the inclusion induced map π1(QJ) → π1(UWJ ) is an injection
(QJ = wJQJ corresponds to the minimal element in VJ ). Therefore π1(QJ) = 0
and QJ is contractible.

Summarizing, we get

Proposition 3.6. The classifying space U(W,Q) of a finite S-panel complex Q is
of type EW if and only if Q is admissible.

4. Reflection Groups

We study properties of groups that act by reflections on manifolds. It turns
out that all such groups are Coxeter groups ([13]; [30]). In that context, algebraic
properties of the group can help in determining geometric properties of the action.
By ‘manifold’ we mean ‘topological manifold’.

Definition 4.1. Let M be a connected manifold, possibly with boundary.
1. A reflection on M is a locally smooth involution r : M → M with fixed point

set M r a submanifold of M that separates M into two components.
2. A discrete group W that acts on M effectively, properly discontinuously, and

locally smoothly, and is generated by a set of reflections on M , is called a
reflection group on M .
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Let W be a reflection group on a connected manifold Mn. Then the action
determines a set S of Coxeter generators of W , and the elements of W that act
by reflections on M are exactly the reflections in the Coxeter system (W,S) ([13]).
Furthermore, the action determines an S-panel space (Q, (Qs)s∈S) ([13]). Actually
Q, as a panel space, is modeled on the standard cone in Rn ([13]). Such a panel
space Q is called a panel manifold. If furthermore (Q, (Qs)s∈S) is admissible it is
called an admissible S-panel manifold.

Remark 4.1. The proofs given in [13] are for manifolds without boundary, but the
same methods work when W acts by reflections on a manifold with boundary. Let
Q be a chamber of such an action. Then Q is an S-panel manifold, and it is also a
manifold with boundary

∂Q = δQ∪(Q ∩ ∂M).

Also, each panel Qs is an (S − {s})-panel (n − 1)-manifold. Inductively, each QJ
is an (S − J)-panel n− |J |-manifold with boundary

∂QJ =
⋃

({QK : J$K, |K| = |J |+ 1}) ∪ (QJ ∩ ∂M).

Definition 4.2. A Coxeter W -manifold is a contractible W -manifold (possibly
with boundary) on which W acts properly discontinuously, locally smoothly, co-
compactly and so that the fixed point sets of finite subgroups are non-empty and
contractible. In particular, a Coxeter W -manifold is a manifold of type EW ([9];
[27]).

Using the theory of reflection groups on manifolds, M. Davis characterized the
Coxeter systems that admit cocompact actions, by reflections, on contractible man-
ifolds. They are the Coxeter systems such that K0(W,S) is a generalized homology
sphere, i.e., K0(W,S) and the link of each simplex are homology spheres. M. Davis’
result concerns topological manifolds. There is a discussion for an extension of the
results to smooth manifolds in Section 17, [13].

Definition 4.3. A Coxeter system (W,S) is called a manifold-reflection system if
K0(W,S) is a generalized homology sphere. The group W is called a manifold-
reflection group.

Remark 4.2. 1. For a manifold-reflection system (W,S), the universal space
U(W, |K(W,S)|) is a contractible W -manifold ([13]) and a space of type EW
(Proposition 3.6). Thus U(W, |K(W,S)|) is a Coxeter W -manifold.

2. In [16], the complete characterization of the virtual Poincaré duality Coxeter
groups is given. It is shown that (W,S) is a virtual Poincaré duality group
if and only (W,S) ∼= (W1, S1)×(W2, S2), where W2 is a finite Coxeter group
and (W1, S1) is a manifold-reflection system.

In the following lemma we characterize the action of a reflection group on Coxeter
manifolds.

Lemma 4.1. With the above notation:
1. Let M be a Coxeter W -manifold without boundary and (W,S) a manifold-

reflection group. Then W acts by reflections on M .
2. Let (Mn

i , ∂Mi), i = 1, 2, be Coxeter W -manifolds with boundary. Let W be a
manifold-reflection group that acts by reflections on M2 and ∂M2. Let

f : (M1, ∂M1) → (M2, ∂M2)
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be a W -homotopy equivalence which restricts to a W -homeomorphism on
∂M1. Then W acts by reflections on M1.

Furthermore, an element of W acts as a reflection on M1 if and only if it acts
as a reflection on M2.

Proof. (i) In [26], Proposition 2.14 and Proposition 3.8, the result is proved for W
a right angled Coxeter group. The proof extends to the general case. The proof
actually shows that a reflection of (W,S) acts as a reflection on M .

(ii) Let S be a set of Coxeter generators induced by the W -action on M2 (The-
orem 2.1). Let r∈W be an element that acts as a reflection. First notice that M r

1

has the same dimension as M r
2 because their boundaries have the same dimension.

Thus M r
1 is codimension 1 submanifold of M1. Let M ′i = Mi−∂Mi, i = 1, 2. Then

f induces a proper W -homotopy equivalence from M ′1 to M ′2. Thus

Hn
c (M ′1,M ′

r
1) ∼= Hn

c (M ′2,M ′
r
2),

and Alexander-Poincaré duality implies that

H0(M ′1 −M ′r1) ∼= H0(M ′2 −M ′r2) ∼= Z⊕ Z,
because s acts as a reflection on M ′2. So M ′r1 is a codimension one submanifold
of M ′1 that separates M ′1 into two components. Thus W is generated by a set of
elements that act by reflections on M ′1 and ∂M1. Therefore W acts by reflections
on M1.

The same argument shows that if r∈W acts as a reflection on M1, then it acts
as a reflection on M2.

Notice that, in both cases, the W -action on M1 is effective because the action
on M2 is effective.

The following lemma holds for any discrete group W .

Lemma 4.2. Let M be a contractible manifold on which W acts properly discon-
tinuously and cocompactly. Let W = W1×W2 be a decomposition of W such that
W2 is finite and MW2 is contractible. If ∂M 6= ∅, assume that W2 acts trivially on
∂M . Then W2 acts trivially on M .

Proof. We first assume that ∂M = ∅. The groupN(W2)/W2
∼= W1 acts on the fixed

point set MW2 . Since MW2/W1 is a closed subset of the compact space M/W1, the
action of W1 on the contractible manifold (without boundary) MW2 is cocompact.
Thus

dim(MW 2
) = vcd(W1) = vcd(W ) = dim(M).

Therefore MW2 is a submanifold without boundary of the connected manifold M
of the same dimension, which is closed as a topological subspace. By the invariance
of domain, MW2 = M , which implies that W2 acts trivially on M .

If ∂M 6= ∅, then the fixed point set MW2 , is a submanifold of M with boundary
∂M which is a closed subspace. As before, MW2 = M and W2 acts trivially.

Corollary 4.3. Let (W,S) be a manifold-reflection group. Then there is no de-
composition of (W,S) as a product (W1, S1)×(W2, S2) with W2 a finite Coxeter
group.

Proof. Let M be a contractible manifold on which W acts by reflections. Thus W2

acts by reflections on M , which contradicts Lemma 4.2.
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We will now study uniqueness properties of the Coxeter presentation of a manifold-
reflection Coxeter group.

Lemma 4.4. Let (W,S) be a manifold-reflection system. Then WS−{s} has infinite
index in W for each s∈S. Furthermore, vcd(WS−{s}) < vcd(W ).

Proof. We will give a proof by contradiction. We assume that WS−{s} has finite
index in W . The Coxeter system (W,S) can be written as a product of Coxeter
systems (Wi, Si), i = 1, . . . k, such that, for each i, (Wi, Si) is irreducible. Let s∈Si0 .
Then there is a bijection between right cosetsW/WS−{s} and WSi0

/WSi0−{s}. Thus
[WSi0

: WSi0−{s}] < ∞. Proposition 4.2(ix) in [17] implies that WSi0
is finite,

contradicting Corollary 4.3.
Since W is a virtual Poincaré duality group, it contains a Poincaré duality sub-

group W0 of finite index. Then the subgroup W0∩WS−{s} is a torsion free subgroup
of finite index of WS−{s}, and it is contained in W0. By [31], cd(W0∩WS−{s}) <
cd(W0). But

vcd(WS−{s}) = cd(W0∩WS−{s}) < cd(W0) = vcd(W ).

Let (W,S) be a Coxeter system which acts on a manifold Mn by reflections. We
write Q for the fundamental domain, which is homeomorphic to a manifold with
boundary. Write

R =
⋃

w∈W
wSw−1.

Then the elements of R act on M by reflections, and the singular set of the action
is given by

σ(M) =
⋃

r∈R
M r.

In what follows, Z/2Z-coefficients are understood. There is a Poincaré duality
isomorphism

P : Hn
c (M,σ(M)) → H0(M − σ(M)).

But since the action is by reflections,

M − σ(M) =
⋃

w∈W
int(wQ).

By the naturality of the Poincaré duality, the inclusion maps induce an isomorphism

ι∗c =
⊕

w∈W
ι∗w : Hn

c (M,σ(M)) →
⊕

w∈W
Hn
c (wQ, ∂(wQ)).

Thus the set B = {(i∗c)−1([wQ, ∂(wQ)]∗)/w∈W} forms a basis of Hn
c (M,σ(M))

(here [wQ, ∂(wQ)]∗ demotes the dual of the Poincaré class of (wQ, ∂(wQ)). We
write [wQ]∗ for (ι∗c)

−1([wQ, ∂(wQ)]∗). On the other hand, W acts onHn
c (M,σ(M)),

on the left, in such a way that each element w acts through the map

(w−1)∗ : Hn
c (M,σ(M)) → Hn

c (M,σ(M)).

Under this action, Hn
c (M,σ(M)) has the structure of a free left Z/2Z[W ]-module

on one generator [Q]∗.

Lemma 4.5. Let W = 〈r〉 ∼= Z/2Z act by reflections on manifolds Mn
i , i = 1, 2,

and let Bi, i = 1, 2, be the Z/2Z-bases of Hn
c (Mi,M

r
i ) corresponding to the com-

ponents of Mi −M r
i . If f : M1 → M2 is a proper W -homotopy equivalence, then

f∗(B2) = B1.
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Proof. Identify Hn
c (Mi,M

r
i ) with the free Z/2Z[W ]-module with basis a fundamen-

tal domain [Qi] (i = 1, 2). Then the map f∗ : Hn
c (M2,M

r
2 ) → Hn

c (M1,M
r
1 ) is a

Z/2Z[W ]-isomorphism. Thus it is given by multiplication by a unit of Z/2Z[W ].
But the units of Z/2Z[W ] are {1, r}. Then f∗([Q2]) is equal to [Q1] or to r∗([Q1]),
which implies the result.

We assume further that the action of W on M is cocompact. In this case, all
the domains wQ are compact manifolds with boundary. There is an isomorphism
([19], Ch. VIII, §2)

J : Hn(M,σ(M)) → Γc(M − σ(M)),

where the term on the right is the vector space generated by the components of
M − σ(M) that have compact closure. Since all the components have compact
closure, the inclusion maps induce an isomorphism

ι∗ =
⊕

w∈W
ιw∗ :

⊕
w∈W

Hn(wQ, ∂(wQ)) → Hn(M,σ(M)).

For each w∈W we have w∗ : Hn(M,σ(M)) → Hn(M,σ(M)), and the collection
of the maps w∗ induces an action of W on Hn(M,σ(M)). Under this action,
Hn(M,σ(M)) becomes a free left Z/2Z[W ]-module with generator [Q], the image
of the fundamental class of (Q, ∂(Q)).

We also consider the dual construction. Taking duals, as Z/2Z vector spaces,
results to an isomorphism∏

w∈W
ι∗w : Hn(M,σ(M)) →

∏
w∈W

Hn(wQ, ∂(wQ)).

The induced action of W on Hn(M,σ(M)) is by the formula x·w = w∗(x) and
induces a right Z/2Z[W ]-module structure on it. Since Z/2Z[W ] is a ring with
involution, Hn(M,σ(M))) admits a natural left Z/2Z[W ]-module structure with
w·x = x·w−1 = (w−1)∗(x). We would like to characterize the dual of Hn(M,σ(M))
as a Z/2Z[W ]-module. By [6], Ch. VIII, Lemma 7.4,

HomZ/2Z[W ](Hn(M,σ(M)),Z/2Z[W ]) ∼= Homc(Hn(M,σ(M)),Z/2Z),

where the last group consists of Z/2Z-homomorphisms φ from Hn(M,σ(M)) to
Z/2Z such that φ(wx) = 0 for all but finitely many w. In this case,

Homc(Hn(M,σ(M)),Z/2Z) ∼=
⊕

w∈W
Hn(wQ, ∂(wQ))

as left Z/2Z[W ]-modules. But there is a Poincaré duality isomorphism

P : Hn
c (M,σ(M)) → H0(M − σ(M)),

which implies that

ι∗c =
⊕

w∈W
ι∗w : Hc

n(M,σ(M)) →
⊕

w∈W
Hn(wQ, ∂(wQ))

is an isomorphism. Thus the Z/2Z[W ]-dual of Hn(M,σ(M)) is isomorphic to
Hn
c (M,σ(M)), and the following diagram commutes:

Hn
c (M,σ(M))

⊕
w∈W ι∗w−−−−−−→

⊕
w∈WH

n(wQ, ∂(wQ))y y
Hn(M,σ(M))

∏
w∈W ι

∗
w−−−−−−→
∏
w∈WH

n(wQ, ∂(wQ)).

where the vertical maps are the natural maps.
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Combining the above remarks, we get

Lemma 4.6. The Z/2Z[W ]-vector spaces Hn(M,σ(M)) and Hn
c (M,σ(M)) are

free Z/2Z[W ]-modules which are naturally dual to each other, i.e., if M and N
are two manifolds equipped with a W -action by reflections and f : M → N is a
proper W -map, then f∗ : Hn

c (N, σ(N)) → Hn
c (M,σ(M)) is the Z/2Z[W ]-dual of

the map f∗ : Hn(M,σ(M)) → Hn(N, σ(N)).

Proof. . The first part follows from the remarks before the statement of the lemma.
For the naturality property, first notice that the map induced on cohomology is
the Z/2Z-dual of f∗. The result follows by considering the cohomology groups
with compact supports as subgroups of the ordinary cohomology and using the
commutativity of the last diagram.

Proposition 4.7. Let Mn
i , i = 1, 2, be Coxeter W -manifolds without boundary.

Let W act by reflections on M2, and let (W,S) be the Coxeter system induced by
the action. Then W acts by reflections on M1, and there is an S-panel submanifold
fundamental domain Q1 of M1 such that M1

∼=WU(W,Q1).

Proof. By Lemma 4.1, W acts by reflections on M1, and the set of elements of W
that act by reflections on M1 is equal to the set of elements that act by reflections on
M2, which is equal to the set of reflections of (W,S). Choose a fundamental domain
P of the W action on M1 and suppose that T is the set of generating reflections
determined by the action t. Then M1

∼=WU(W,P ) ([13], Thm. 4.1). From now on,
we will assume that M1 is the universal space U(W,P ). By [25], the manifold M1

admits a CAT(0) locally flat metric, and W acts on M1 by isometries.
Since Coxeter manifolds are spaces of type EW , any two are W -homotopy equiv-

alent ([9]). Let f : M1 → M2 be a W -homotopy equivalence and g a W -homotopy
inverse of f . Since the action is properly discontinuous and cocompact, f is a
proper homotopy equivalence. Since W acts by reflections on M2, the generators
s∈S act as reflections on M2 and there is an S-panel subspace Q2 of M2 such that
M2
∼=WU(W,Q2). The subspaceQ2 is the closure of a component of the non-singular

set of M2. Since Q2 is also the orbit space of the action, it is compact.
For R′⊆R a set of reflections in W , set Mi(R′) =

⋃
r∈R′M

s
i , i = 1, 2. In

particular, Mi(R) = σ(Mi).

Claim 1. Hn(M2,M2(S)) ∼= Z, and for each s∈S, Hn(M2,M2(S − {s})) = 0.

Proof. The nerve of the cover of M2(S) by the walls M s
2 (s∈S) is the same as the

nerve of the cover of ∂Q2 by the panels Q2s. Since all the intersections of the
elements of the cover are contractible, the orbit map p2 : M2 → Q2 induces a
homotopy equivalence p2| : M2(S) → ∂Q2 ([2], Thm. 8.2.2). Thus

Hn(M2,M2(S)) ∼= Hn(Q2, ∂Q2) ∼= Z.
For the second part, set S′ = S − {s}, W ′ = WS′ . Then W ′ acts on M2 by
reflections. Let Q′2 be the closure of the component of the singular set of the W ′

action that contains Q2. Then, for each s′∈S′,
dim(Q′2∩M2s′) = dim(Q2∩M2s′) = n− 1.

Thus Q′2 is a fundamental domain of the W ′ action on M2. By Lemma 4.4,
vcd(W ′) < n, and thus Q′2 is not compact, which implies

Hn(M2,M2(S′)) ∼= Hn(Q′2, ∂Q
′
2) = 0.
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Claim 2. (i) Hn(M1,M1(S)) ∼= Z, and, for each s∈S, Hn(M1,M1(S−{s})) = 0.
(ii) M1 −M1(S) contains a unique component with compact closure, but all the

components of M1 −M1(S − {s}) have non-compact closure.

Proof. The W -homotopy equivalence f induces a homotopy equivalence of pairs

f : (M1,M1(S′)) → (M2,M2(S′)), S′ = S or S − {s}.
The result in (i) follows from Claim 1. For part (ii), notice that there is a sequence
of isomorphisms (S′ = S or S′ = S − {s})

Γc(M2 −M2(S′))
J−1

2−−→ Hn(M2,M2(S′))
f∗−→ Hn(M1,M1(S′))

J1−→ Γc(M1 −M1(S′)),

where Γc(−) denotes the free abelian group on the components of the space which
have compact closure ([19], Ch. VIII, Proposition 3.3). The result follows from
part (i).

Claim 3. Let Q1 be the closure of the unique component of M1 − M1(S) with
compact closure. Then:

(i) Q1 is homeomorphic to a compact manifold with boundary, and it is a totally
geodesic subspace of M1.

(ii) dim(Q1 ∩M s
1 ) = n− 1, for all s∈S.

(iii) The space Q1 is a union of an odd number of domains, i.e.

Q1 =
⋃2k+1

j=1
wjP.

(iv) Set

[Q1]∗ =
∑2k+1

j=1
[wjP ]∗∈Hn

c (M1, σ(M1))

(Z/2Z-coefficients are understood). Then f∗([Q2]∗) = [Q1]∗.

Proof. (i) For each s∈S, the fixed point set M s
1 is a totally geodesic subspace of M1.

Furthermore, M1 −M s
1 = int(M s

1 (+))∪int(M s
1 (−)) as a union of two components,

and the closure of each component is a totally geodesic subspace of M1. The space
Q1 is the intersection of the half spaces that contain it, i.e. it is the intersection
of totally geodesic subspaces and thus it is totally geodesic. Since s∈S acts by
reflections on M1, Q1 is a manifold with boundary.

We prove (ii) by contradiction. Let s∈S be such that dim(Q1∩M s
1 ) < n−1. Then

the set M1−M1(S−{s}) has a component with compact closure Q1, contradicting
Claim 2(ii).

For (iii), we use homology and cohomology with Z/2Z-coefficients. The group
Hn(Mi,Mi(S)) is generated by the fundamental class of (Qi, ∂Qi), for i = 1, 2.
Since

f∗ : Hn(M1, σ(M1)) → Hn(M2, σ(M2))

is an isomorphism of free Z/2Z[W ]-modules in one generator (Lemma 4.6), there
is a unit u in Z/2Z[W ] such that f∗([P ]) = u([Q2]). The element u is the sum of
an odd number of elements of the group ring, because u is mapped to the unit of
Z/2Z under the augmentation map. The same is true for the inverse u−1. Now let

fS∗ : Hn(M1,M1(S)) → Hn(M2,M2(S)),
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and each group is a Z/2Z-vector space of dimension 1. Thus fS∗([Q1, ∂Q1]) =
[Q2, ∂Q2]. By the commutativity of the diagram

Hn(M1,M1(S))
fS∗−−−−→ Hn(M2,M2(S))

κ1

y yκ2

Hn(M1, σ(M1))
f∗−−−−→ Hn(M2, σ(M2))

we derive that

[Q2] = κ2◦fS∗([Q1]) = f∗◦κ1([Q1])

⇒ κ1([Q1]) = (f∗)−1([Q2]) = u−1[P ]

⇒ κ1([Q1]) =
∑2k+1

j=1
[wjP ].

By the definition of the map κ1,

Q1 =
⋃2k+1

j=1
wjP.

Part (iv) follows from the fact that f∗ is the Z/2Z[W ]-dual of the map f∗ (Lemma
4.6).

Claim 4. For each R′ ⊂ R, the natural set of generators of Hn
c (Mi,Mi(R′)) is the

set corresponding to the components of Mi −Mi(R′) under the Poincaré duality
isomorphism (i = 1, 2). Then for each r∈R, the inclusion induced map

ιir : Hn
c (Mi, σ(Mi)) → Hn

c (Mi,M
r
i ), i = 1, 2,

maps [wQ1]∗ to a natural generator. Furthermore, the diagram commutes:

Hn
c (M1, σ(M1))

f∗−−−−→ Hn
c (M2, σ(M2))

ι1r

y yι2r
Hn
c (M1,M

r
1 )

f∗r−−−−→ Hn
c (M2,M

r
2 )

In particular, if M r
i (+) demotes the closure of the component of Mi −M r

i such
that ιir([Qi]∗) = [M r

i (+)]∗ (i = 1, 2, r∈R), then f∗r ([M r
1 (+)]∗) = [M r

2 (+)]∗.

Proof. By Claim 3, we know that

wQ1 =
⋃2k+1

j=1
wwjP.

Let M1 −M r
1 = M1(+)∪M r

1 (−), the union of two closed half-spaces whose inter-
section in M r. We consider two cases
Case 1. Let wQ1 be contained in the closure of one of the half-spaces determined
by r, say M r

1 (+). Then wwjP is contained in M r
1 (+) for j = 1, . . . , 2k + 1. If

[M r
1 (+)]∗ denotes the natural generator of Hn

c (M1,M
r
1 ) represented by M r

1 (+),
then

ι1r([wwjP ]∗) = [M r
1 (+)]∗ ⇒ ι1r([wQ1]∗) =

∑2k+1

j=1
ι1r([wwjP ]∗) = [M r

1 (+)]∗.

Case 2. If wQ1 is not contained in any of M r
1 (±), then M r

1∩int(wQ1) 6= ∅. Since
wQ1, M r

1 (±) are totally geodesic subspaces of M1, the intersections wQ1∩M r
1 (±)

are totally geodesic and therefore connected. Each intersection is a union of cham-
bers. Since the number of chambers in wQ1 is odd, one intersection will contain
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an odd number of chambers and the other an even number. Then, ι1r([wQ1]∗) is
equal to the generator corresponding to the half-space containing an odd number
of chambers.

The last assertion of the claim follows from Lemma 4.5.

Claim 5. For each r∈R, define

P ′r = {w∈W : ι1r([wQ1]∗) = ι1r([Q1]∗)}.
Then P ′r = Pr = {w∈W : `(rw) > `(w)}, where the length is relative to the
generating set S.

Proof. Claim 4 implies that the element ι1r([wQ1]∗) is a natural generator, for all
w∈W . Since the action of W on M2 is by reflections with fundamental domain
Q2, Pr is the set of all w∈W such that wQ2 and Q2 belong to the same half-space
bounded by M r ([13], Remark 7.4) or equivalently, ι2r([wQ2]∗) = ι2r([Q2]∗). Since
the diagram

Hn
c (M1, σ(M1))

g∗−−−−→ Hn
c (M2, σ(M2))

ι1r

y yι2r
Hn
c (M1,M

r
1 )

g∗−−−−→ Hn
c (M2,M

r
2 )

commutes, we have the following:

w∈P ′r ⇔ ι1r([wQ1]∗) = ι1r([Q1])∗

⇔ g∗ι1r([wQ1]∗) = g∗ι1r([Q1]∗)

⇔ ι2rg
∗([wQ1]∗) = ι2rg

∗([Q1]∗)

⇔ ι2r([wQ2]∗) = ι2r([Q2]∗)

(the last implication is a consequence of Claim 3(iv) and the fact that g∗ is W -
equivariant), which means that wQ2 and Q2 are on the same side of M r

2 .

Claim 6. Let s, s′∈S, s 6= s′. Then M s
1 (+)∩M s′

1 (+) is a fundamental domain of
the action of the dihedral group 〈s, s′〉.

Proof. Let r be a reflection in 〈s, s′〉 of shortest length (in the generators s and
s′) such that M r

1∩(M s
1 (+)∩M s′

1 (+)) 6= ∅. We can assume that the order of ss′

is greater than two, because if it is equal to 2, there are no reflections in 〈s, s′〉
other than s and s′. Without loss of generality we can assume that r = s′r′s′ is a
reduced expression of r. We will give the proof in the case that the dihedral group
generated by s and s′ is finite. The other case follows similarly. The space M r

1

separates M s
1∩(M s

1 (+)∩M s′

1 (+)) and M s′

1 ∩(M s
1 (+)∩M s′

1 (+)). Since Q1 intersects
both intersections in a codimension 1 submanifold, M r

1∩int(Q1) 6= ∅. Let

ιi : Hn
c (Mi, σ(Mi)) → Hn

c (Mi,Mi({s, s′, r})), i = 1, 2,

be the inclusion induced maps. The following diagram commutes:

Hn
c (M2, σ(M2))

f∗−−−−→ Hn
c (M1, σ(M1))

ι2

y yι1
Hn
c (M2,M2({s, s′, r})) f ′−−−−→ Hn

c (M1,M1({s, s′, r}))
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Figure 1. Schematic representation of the regions deteremined
by the three walls M s

i , M s′

i , M r
i .

(where f ′ is induced by f) and the two horizontal maps are isomorphisms. We
represent the generators of the groupsHn

c (Mi,Mi({s, s′, r})), i = 1, 2, schematically
in Figure 1.

If s′(int(Q1))∩M r
1 6= ∅, then int(Q1)∩M r′

1 6= ∅, contradicting the minimality of
the length of r. Thus s′(int(Q1))∩M r

1 = ∅ and s′Q1 ⊂ x3∪x4. Since s′Q1 is the
union of an odd number of domains andM s

1 separates it into two components, either
x3 or x4 contains an odd number of components. Then ι1([s′Q1]∗) is equal to either
x3 or x4. If ι1([s′Q1]∗) = x4, then ι1s([s′Q1]∗) = [M s

1 (−)]∗, contradicting Claim 5.
Thus ι1([s′Q1]∗) = x3, which implies that f ′(y2) = x3. Also, rs′Q1 ⊂ x1∪x5∪x6,
which implies that ι1([rs′Q1]∗) = a1x1 + a5x5 + a6x6.

If `(srs′) < `(rs′), then rs′ = sr′′, which cannot happen in a dihedral group
for a reflection r. Thus `(srs′) > `(rs′). In particular, ι2([rs′Q2]∗) = y3 (because
rs′Q2 must lie on the opposite side of M s′

2 and M r
2 , and on the same side of M s

2 as
Q2). Then

f ′(y3) = f ′(ι2([rs′Q2]∗))

= ι1(f∗([rs′Q2]∗))

= ι1([rs′Q1]∗)
= a1x1 + a5x5 + a6x6

Let

ji : Hn
c (Mi,Mi({s, s′, r})) → Hn

c (Mi,M
s
i ∪M s′

i )

be the inclusion induced map (i = 1, 2). Then the following diagram commutes:

Hn
c (M2,M2({s, s′, r})) f ′−−−−→ Hn

c (M1,M1({s, s′, r}))yj2 yj1
Hn
c (M2,M2({s, s′})) f ′′−−−−→ Hn

c (M1,M1({s, s′}))
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Using the fact that j2(y2) = j2(y3), we have

f ′′(j2(y2)) = f ′′(j2(y3))

⇒ j1(f ′(y2)) = j1(f ′(y3))

⇒ j1(x3) = j1(a1x1 + a5x5 + a6x6)

which cannot occur. Contradiction.
For the case of the infinite dihedral group, the same method works. In this case,

the proof actually is outlined in [33], Proposition 4, part (ii).

Claim 7. The space Q1 is a fundamental domain of the W -action on M1.

Proof. The proof of the Claim 7 is classical. Claim 6 implies that M s
1 (+)∩M s′

1 (+)
is the fundamental domain of the action of the dihedral group generated by s and
s′. Thus, for all w in the dihedral group,

(i) w(M s
1 (+)∩M s′

1 (+)) ⊂M s
1 (+) and `(sw) = `(w) + 1, or

(ii) w(M s
1 (+)∩M s′

1 (+)) ⊂ sM s
1 (+) and `(sw) = `(w)− 1.

The rest of the proof follows as in [23], Theorem 2.1 (also [32], [33]).
Thus Q1 is the closure of a component of the non-singular set. Since

dim(Q1 ∩M s
1 ) = n− 1 (for all s∈S), it contains points which are fixed only by s.

By definition Q1 is an S-panel fundamental domain for the W -action on M1.

Combining Proposition 3.6 and Proposition 4.7, we have a uniqueness statement
on the manifold-reflection presentation of a Coxeter group.

Theorem 4.8. Let (W,T ) and (W,S) be two manifold-reflection systems in W .
Then there is an inner automorphism of W that maps T to S, i.e., T and S are
conjugate.

Proof. By Theorem 15.3 in [13], there are two contractible manifolds MT and MS

such that W acts cocompactly by reflections on both of them, and the boundary of
the fundamental domain is |K0(W,T )| in the first case and |K0(W,S)| in the second
(as panel manifolds). The manifolds MT and MS are both spaces of type EW by
Proposition 3.6. Thus they are Coxeter manifolds. Write C for the chamber in MT

with boundary panel homeomorphic to |K0(W,T )|. By Proposition 4.7, MT admits
a fundamental domain C′, with boundary panel homeomorphic to |K0(W,S)|. Thus
MT admits two chambers, one determining the Coxeter generators T and the other
the Coxeter generators S. By Theorem 4.1(iii) in [13], there is an element w∈W
that maps one chamber to the other. Then conjugation by w induces a bijection
between S and T .

Remark 4.3. In a recent preprint ([8]), R. Churney and M. Davis have proved the
result in Theorem 4.8 using more combinatorial methods. Actually their methods
produce a more general result. More specifically, they derive the same uniqueness
result by assuming that the Coxeter group admits an action by reflections on certain
pseudo-manifolds that are not necessarily manifolds.

5. Structure Set Rigidity Theorems

In this section we are going to prove the rigidity theorems for the structure set
of manifolds equipped with a Coxeter group action, not necessarily by reflections.
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Let M be a Coxeter manifold without boundary. Since W acts properly discon-
tinuously and cocompactly on M , W is a virtual Poincaré duality group. By The-
orem B in [16], (W,S)∼=(W1, S1)×(W2, S2), where W2 is a finite Coxeter group and
(W1, S1) is a manifold-reflection system. Notice that M is a Coxeter W1-manifold.
By Lemma 4.2, the group W2 acts trivially on M .

We need the following lemma from surgery theory, which is derived using the
Poincaré conjecture ([26], Lemma 3.1; [35]; [20], for n = 4).

Lemma 5.1. Let (Mn, ∂M) be a compact contractible manifold with boundary.
Then the relative structure set

S(Mn, ∂M) = ∗ for n 6= 3.

The next lemma will be used in the construction of homeomorphisms of faces of
dimension 3.

Lemma 5.2. Let (M,∂M) be a compact three dimensional contractible manifold
embedded into S3. Then (M,∂M) is homeomorphic to the pair (D3, S2).

Proof. The boundary of M is a surface of genus zero. Therefore ∂M is homeomor-
phic to S2. By the Schoenflies lemma ([7]), S3 − S2 consists of two components
whose closures are homeomorphic to the 3-disc. Therefore M is homeomorphic to
a 3-disc.

We can now prove the structure set rigidity theorem for Coxeter groups. As
always, W will be a Coxeter group. The setting will be the following:

Let Mn be a Coxeter W -manifold without boundary. Let Nn+k be a Coxeter
W -manifold, and let

f : (N, ∂N) → (M×Dk,M×Sk−1)

be a W -map such that f |∂N is a W -homeomorphism (the W -action on Dk is
trivial).

We need the following assumption on the three dimensional fixed point sets

Definition 5.1. Let Γ be a discrete group acting on a manifold X . The pair (Γ, X)
satisfies the dimension three condition if the three dimensional fixed point sets of
X can be embedded into S3.

Theorem 5.3. Let (W,S) be a Coxeter system and f a W -map as above. Assume
that (W,N) and (W,M×Dk) satisfy the dimension three condition. Then f is
W -homotopic to a W -homeomorphism.

Proof. By assumption both spaces N and M×Dk are spaces of type EW . Thus
f is a W -homotopy equivalence. Since M is a Coxeter manifold, W is a virtual
Poincaré duality group. Thus there is a decomposition (W,S) ∼= (W1, S1)×(W2, S2)
with (W1, S1) a manifold-reflection system and W2 a finite Coxeter group. By
Lemma 4.2, W2 acts trivially on M . By Lemma 4.1(1), W1 acts by reflections on M ,
and by Theorem 4.8, there is an S-panel manifold which is the fundamental domain
of the W1-action on M , which is admissible (Proposition 3.6). Since the action of
W1 on Dk is trivial, W1 acts by reflections on M×Dk as well as on M×Sk−1. Then
Q1 = Q×Dk is a fundamental domain of the W1-action on M×Dk, which is also
admissible.
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By Lemma 4.2, W2 acts trivially on N . Therefore it is enough to show that f
is W1-homotopic to a homeomorphism. For the rest of the proof we assume that
(W,S) is a manifold-reflection system.

By Lemma 4.1(2), W acts by reflections on N . Let Q2 be the T -panel funda-
mental domain determined by the action and N∼=WU(W,Q2).

Claim 1. (W,T ) is a manifold-reflection system.

Proof. By Theorem B in [16], (W,T ) splits as the product of (W1, T1) and (W2, T2),
where (W1, T1) is a manifold-reflection system and (W2, T2) is finite. By Lemma 4.2,
W2 acts trivially on N . Unless W2 is the trivial group, this is impossible because
W acts on N by reflections. Thus (W,T ) is a manifold-reflection system.

By Theorem 4.8, T and S are conjugate in W . Thus, by choosing another
chamber in N , we can assume that Q2 is an S-panel space and it is admissible by
Proposition 3.6.

Since there are W -homeomorphisms

M×Dk∼=WU(W,Q1), N∼=WU(W,Q2),

f induces a W -homotopy equivalence:

g : U(W,Q2) → U(W,Q1).

We will construct an S-panel homeomorphism λ : Q2 → Q1. The construction is
done inductively on the faces. We first show how to extend the function to three
dimensional panels.

Claim 2. Let QiL (i = 1, 2) be 3-dimensional faces and

λ : (Q2L, ∂Q2L) → (Q1L, ∂Q1L)

an S-panel homotopy equivalence such that λ|∂Q2L is a homeomorphism. Then λ
is homotopic to a homeomorphism relative to ∂Q2L.

Proof. By the definition of faces, QiL is contained in a fixed-point set of dimension
3 (i = 1, 2). Since the pairs (W,M×Dk) and (W,N) satisfy the dimension three
condition, QiL is a compact contractible 3-manifold in S3. Lemma 5.2 implies
that (QiL, ∂Q2L) is homeomorphic to (D3, S2). Since every homeomorphism of S2

extends to a homeomorphism on D3, λ|∂Q2L extends to a homeomorphism λ on
Q2L which is homotopic to λ.

Now we start the induction argument. Let QiK , i = 1, 2, be faces of lowest
dimension. Then there is a finite subgroup H of W such that

Q1K = MH×Dk, Q2K = NH .

The subgroup H is a maximal isotropy subgroup of the W -action. If k = 0, then
QiK (i = 1, 2) is a contractible manifold without boundary; thus QiK is a point.
Therefore, Q1K and Q2K are homeomorphic. If k > 0, then QiK (i = 1, 2) is a
contractible manifold with boundary. The boundaries are

∂Q1K = MH×Sk−1, ∂Q2K = (∂N)H .

But f |∂Q2K is a homeomorphism by assumption. Since the pair (Q2K , ∂Q2K)
satisfies the homotopy extension property and Q1K is contractible, we can extend
f |∂Q2K to a homotopy equivalence λK on Q2K . By Lemma 5.1, λK is homotopic
(relative to the boundary) to a homeomorphism (we use Claim 2 if the dimension
is equal to three).
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In general, the boundary of a face Q2J is δQ2J∪(Q2J∩∂N). By induction the
homeomorphism λ∂Q2J has been defined on δQ2J (which is a union of panels of
smaller dimension) and we can set λ to be f when restricted to Q2J∩∂N . We
extend λ∂Q2J to a homotopy equivalence λ′Q2J

on Q2J . By Lemma 5.1 (or by Claim
2 if the dimension of Q2J is 3) λ′Q2J

is homotopic to a homeomorphism λQ2J . By
repeating the construction, we get an S-panel homeomorphism λ : Q2 → Q1. Then
U(W,λ)'W g ([9]) and U(W,λ) is a W -homeomorphism (Section 2). Therefore

f 'W g'W U(W,λ)

The last map is a W -homeomorphism.

6. K-theory Rigidity Theorems

We will extend the constructions developed in Section 5 to show rigidity of equi-
variant h-cobordisms induced by Coxeter groups acting on contractible manifolds.
More precisely, let W be a Coxeter group and M a Coxeter W -manifold with-
out boundary. Let W0 be a normal torsion free subgroup of finite index, and let
G = W/W0. Then the manifold M0 = M/W0 is a closed G-manifold. We will show
that the Whitehead group that classifies isovariant G-h-cobordisms over M0×T n
vanishes, i.e., WhTop,ρG (M0×T n) = 0 ([28], [29]).

Let M be a Coxeter W -manifold without boundary, and T n the n-dimensional
torus with the trivial W -action. Then (W,S) = (W1, S1)×(W2, S2), where (W1, S1)
is a manifold-reflection system and W2 is a finite Coxeter group. The subgroup W1

acts on M by reflections (Lemma 4.1). The fundamental domain Q of the action
is an admissible S-panel manifold. Thus W1 acts by reflections on M×T n with
fundamental domain Q×T n.

Definition 6.1. An S-panel h-cobordism (X ;Q1, Q2) consists of a W -finite S-
panel manifold (X, (Xs)s∈S) such that (XJ ;Q1J , Q2J) is an h-cobordism, for each
J∈F(W,S). An S-h-cobordism X is called trivial if X is S-panel homeomorphic
to Q1×I with the natural product panel structure.

Lemma 6.1. Let τ = (X ;Q1×T n, Q2) be an S-panel cobordism which is trivial
when restricted to faces of dimension less than 4. If Q1 is an admissible panel
manifold, then τ is trivial.

Proof. Inductively, we extend the trivialization over each face, as in the proof of
Theorem 5.3 (in dimension 4 we use Theorem 7.1A in [21]). The first step of the
induction works because Wh(π1(T n)) = 0.

The next lemma is the analogue of Theorem 4.8 for W -isovariant maps. The
proof is easier in this case.

Lemma 6.2. Let Mni
i , i = 1, 2, be two W -manifolds on which W acts properly

discontinuously and cocompactly. Assume that W acts on M2 by reflections and
(W,S) is a Coxeter system induced on W by the action. We also assume that M s

1

is a codimension 1 submanifold of M1, for each s∈S. Let f : M1 → M2 be an
isovariant homotopy equivalence. Then there is an S-panel manifold Q1 such that
M1
∼=WU(W,Q1).

Proof. The isovariance of f implies that W acts by reflections on M1. Let g be
an isovariant homotopy inverse of f . Since g is isovariant, it induces a homotopy
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equivalence:

g| : M2 −
⋃

r∈R
M r

2 → M1 −
⋃

r∈R
M r

1 ,

where R is the set of reflections in (W,S). Let Q1 be the closure of the component
corresponding to Q2. For s∈S, Q2 contains elements fixed only by s. Since g is
isovariant,Q1 contains elements fixed only by s. ThusQ1 is an S-panel fundamental
domain of M1.

Let h = (N0;M0×T n,M ′0) be an isovariant G-h-cobordism representing an el-
ement in WhTop,ρG (M0×T n) ([28]). Then h is an isovariant G-h-cobordism. We
assume that h is a trivial h-cobordism on fixed point sets of dimension less than 4.
The universal cover of h is a W -h-cobordism h̃ = (N ;M×T n,M ′). By Lemma 4.2,
the finite subgroup W2 of W acts trivially on M and thus on all the spaces involved.
So we can assume as before that (W,S) is a manifold-reflection system. Since M ′

is isovariantly W -homotopy equivalent to M×T n, and W acts by reflections on
M×T n, W acts by reflections on M ′. Let Q′ be the S-panel manifold which is the
fundamental domain of the action (Lemma 6.2).

Lemma 6.3. The W -cobordism h̃ is W -trivial.

Proof. Let s∈S. The triple (Ns,M s×T n,M ′s) is an h-cobordism, and thus Ns

is a codimension 1 submanifold of N , W -isovariantly homotopic to M×T n. By
Lemma 6.2, W acts by reflections onN and there is an S-panel fundamental domain
X of the action. Then τ = (X ;Q×T n, Q′) is an S-panel h-cobordism which satisfies
the assumptions of Lemma 6.1. Thus τ is trivial, i.e. X is S-panel homeomorphic
to Q×T n. Therefore

N ∼=W U(W,X)∼=W U(W,Q×T n×I)∼=W U(W,Q)×T n×I ∼=W M×T n×I.

and the cobordism h̃ is W -trivial.

Theorem 6.4. If M0 and G are as in the beginning of the section, then

WhTop,ρG (M0×T n) = 0.

Proof. Let h = (N0;M0,M
′
0) be a G-h-cobordism representing an element in the

Whitehead group. By Lemma 6.3, the universal cover of h, h̃ = (N ;M×T n,M ′),
is W -trivial, i.e. N∼=WM×T n×I. Taking the orbit spaces under the W0 action, we
conclude that h is trivial.
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11. F. X. Connolly and T. Koźniewski, Examples of lack of rigidity in crystallographic groups, in
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