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Abstract. Let I" be an extension of atorsion free nilpotent group by afinite group G, of odd order.
Then I' admits a cocompact proper action on R™. This action determines an action of G on a nil-
manifold by isometries. In this paper, the equivariant K-theory of the finite group action is studied
and it is shown that the ‘forget control’ map is a split monomorphism.
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1. Introduction

Let I" be a finite extension of a finitely presented, torsion free nilpotent group
N. Then I admits a cocompact, properly discontinuous action on the euclidean
space of dimension equal to the virtual cohomological dimension of T'. Since N
acts freely on the euclidean space, the above action induces an action of the finite
group G = I'/N on a nil-manifold M. Steinberger—West, [22], [23], introduced
topological equivariant K-theory for studying equivariant h-cobordisms in this
situation. For calculating those groups, they proved that the equivariant topol ogical
K-groups fit in an exact sequence involving the equivariant PL K -theory groups
and their controlled analogues

K7 (Mr)e = K6(Mr) — K (Mr) — K[y 6 (Mr)e = K[y 6 (Mr)-

Inthis paper westudy the*forget control’ between the equivariant PL K -groups.
The main result of the paper is that, under certain assumptions, the ‘forget control’
map is a split monomorphism.

MAIN THEOREM. Let T" be an extension of a finitely presented, torsion free,
nilpotent group by a finite group G of odd order and M- isthe G-manifold defined
above. Then the *forget control’ map

K¢ (Mr)e— K;c(Mr)
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is a split monomorphismfor all 7 < 1. In particular, the above exact sequenceis
reduced to a collection of short exact sequences.

Notice that the map in the main theorem israrely an isomorphism becausethere
are summands of the PL K-group that are isomorphic to K -theory Nil-groups of
finite groups and so they are not controlled.

Connolly—Kozniewski, [4], have shown that theforget control map isamonomor-
phismfor I a crystallographic group. The equivariant PL K -groups splitinadirect
sum of the K-groups of the strata. In the Main Theorem, if we consider the sum-
mand corresponding to the top stratum, we see that the Main Theorem generalizes
the theorem in the announcement in [20].

TheMain Theorem can be considered asan anal ogue of the Equivariant Novikov
Conjecturein K-theory ([15]). Also, the result in the Main Theorem is connected
with the equivariant K-theory rigidity conjecture and the Equivariant Borel con-
jecture. We now formulate the equivariant K -theory rigidity conjecture, a precise
statement of the equivariant Borel conjectureisin [4]. Let I' be a cocompact dis-
crete subgroup of the group of isometries of a Hadamard manifold M. Let I'g bea
torsion free subgroup of finiteindex inI" and G = I'/T'o. Then My = Z\ZI/FO isa
compact G-manifold.

EQUIVARIANT K-THEORY RIGIDITY CONJECTURE. Wth the above nota-
tion, assume that

(2) T doesnot contain subgroupsisomorphicto Do, xXZ or t0 H x , K where K is
the fundamental group of the Klein bottle and H isa finite group whose order
is divisible of the second power of some prime

(2) theaction of G on M doesnot havefixed point sets of dimension two, three, or
four and that proper inclusions of fixed point set components have dimension
bigger than two. Then

H*(2/22; K. & (Mr)) =0, foral i< 1,

where 7 /27 acts on K, o (Mr) by inverting the G-h-cobordisms.

In [7], we prove the Equivariant K -theory Rigidity Conjecturefor i < Ofora
large class of cocompact subgroupsof groups of isometries of Hadamard manifolds
without 2-torsion elements. For the connection between the Equivariant K -theory
Conjecture and the Equivariant Borel Conjecture, see [4].

Condition (1) in the statement of the equivariant rigidity K -theory conjecture
IS necessary, as it has been shown in [5]. Condition (2) is required for formulating
ageometrically reasonable problem.

The proof of the Main Theorem combines the ideas developed in [4] with the
ideasin [10-12]. We comparethe controlled groupswith the K -theory groupswith
control to a crystallographic manifold. The above control map is defined using the
machinery of fibering apparatus defined in [10], [11] (see also [26]), [20]). Notice
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that the idea for comparing the two control maps has been used before in [20] for
proving asimilar result. The advantage in using crystallographic manifoldsis that
they admit expansive maps which are used to make the control tighter.

Using the exact sequence developed in [22], [21], we can reduce the problem
in the Main Theorem to the study of PL equivariant Whitehead groups and their
controlled analogues. Combining this idea with the ideas developed in the last
paragraph, we show that it is enough to consider controlled groups where the
control spaceis acrystallographic manifold. The rest of the proof appliesthe ideas
developedin [4].

The abovediscussion suggeststhat the equivariant topological K -theory groups
of finite group actions on non-positively curved manifolds are essentially built by
Nil-groups. Therefore the study of the properties of Nil-groupsisvery important in
understanding equivariant rigidity phenomenain this setting. Thisideais applied
in [7] where calculations on Nil-groups ([3], [6]) are applied for calculating the
exponents of the lower equivariant topological K-groups.

2. Equivariant K-Theory

Let G be a finite group and X a finite G-CW complex. Then Wh'{*(X), the
topological equivariant Whitehead group of X, isthe group of equivalence classes
of G-strong deformation retract pairs (Y, X ), where Y isacompact G-ANR. The
equivalence relation is generated by G-CE maps, rel X, and the group operation
is given by unions over X, [21], [22], [23]. The PL analogue of the above group,
Wh-(X) is constructed similarly. In this case we consider pairs (Y, X), where
(Y, X) is arelative finite G-CW complex, such that there is a cellular G-strong
deformation retraction from Y to X, and the equivalence relation is generated by
G-CEPL maps. Both the PL and Top equivariant Whitehead groups admit a direct
sum decomposition with one summand for each conjugacy class of subgroups of
G, [21], [23].

Generalizing the methods devel oped by Chapman, Steinberger and West defined
the controlled analogue of the equivariant PL group. Let B be afinite dimensional
G-metric spaceand p : X — B beaG-map. If ¢ > 0, ap~1(e)-G-strong defor-
mation retraction means a G-deformation retraction whose tracks have diameter
lessthan e when they are measured in B. The set of elements of Wh- (X)) that are
p~1(e)-G-strong deformation retractions and have inverses that are also p—1(e)-
G-strong deformation retractions form a group. Notice that if €/ > ¢ then every
p~1(e)-G-strong deformation retraction is ap—(¢’)-G-strong deformation retrac-
tion. Thus the above groups form a directed system. The controlled Whitehead
group, Whi* (X), is the inverse limit of this system. When p is an equivariant
simplicial p-NDR then the above inverse system is stable ([18], [21-23]). The
controlled Whitehead groups admit a direct sum decomposition similar to the one
in the uncontrolled case. We write Wh- (X)c whenever the control map is the
identity.
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The lower K;-groups, ¢ < 1, are defined as the groups of transfer invariant
elements of the Whitehead groups of X xT%~%, where the transfer is over thefinite
coversof T2~ (the G action on 1~ istrivial).

The main calculational tool in equivariant K-theory is the five term exact
sequencegivenin [21], [23], [4]

K76 (X)e = KT (X) = K (X) = K 6(X)e = KT 6(X)

fors < 1.

We define the restricted equivariant Whitehead groups f(gg”” (X) to be the
subgroupsof the above groups generated by pairs (Y, X) suchthat Y,/ — Y > = ()
whenever X2 — X > = () for all the componentsof fixed point sets. Therestricted
equivariant Whitehead groupsadmit adirect sum decomposition with one summand
for each conjugacy class of the isotropy subgroups of G. There is a five term
exact sequence for the restricted K-groups, ([21], [4]). The restricted equivariant
Whitehead groups are isomorphic to the isovariant Whitehead groups and they
classify isovariant topological G-h-cobordisms over X when X is a G-manifold
([21]).

In (X, X'") isapair we define the relative Whitehead groupsto be the subgroups
of the Whitehead groupsof X consisting of those G-strong deformation retractions
that are the identity on X' ([4]).

Let G act by isometries on a connected compact manifold M. Let ' =
m1(EGxgM). Then there is an exact sequence 1—I'o—1'— G — 1, where
I'o = m1(M). Notice also that I' can be identified with 71 (M — o M) where o M
is the singular set of the G action on M. Following [4], we define
WhT™(') = Wh{®”(M,oM). If p : M — M’ is a G-map then we define
Wh(T'), = WhE* (M, o M),. The lower controlled and topological K-groups
of I', K;(T'),i < 1, are defined as the subgroups of the corresponding White-
head group of M xT'~%, where T1~* is atrivial G-torus, consisting of the transfer
invariant elements as before. In [4] it was shown that there is an exact sequence,
fori > —1

K i(D)—=K (D)= K®D) =K ; 1(I).— K _; 1(I),

where K1 = Wh, K_; = K_; for i > 0. The above exact sequence is the
restriction of the Steinberger—West exact sequenceto the summands corresponding
to the top stratum ([4]). If the control map p is chosen to be the natural projection
p 1 EGxgM — M/G then Wh(I"). is the group H1(M/G; Wh(p)) defined in
[17] and [18] ([4]).

3. Virtually Nilpotent Groupsand Fibering Appar atus
Let I" be avirtually nilpotent group i.e. thereis an exact sequence
1-N->T'—-G—1, *)
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where N isafinitely presented torsion free nilpotent group and G isfinite. Since N
has finite cohomological dimension, I" hasfinite virtual cohomological dimension.
Letn = ved(I).

LEMMA 3.1. T" acts cocompactly and properly discontinuously on R”.

The proof isin [10] for the torsion free case and in [26] for the general case.
Notice that in the case of afinite group I' (ved(I') = 0), n = Oand I" actson a
point.

DEFINITION 3.1.1. Let I" be as above. A fibering apparatusfor (I', R") isatriple
A= (T, ¢, f) where

(1) A crystallographic group I' € E(m), m > 0, when ved(I') > 0, and I fits
into an exact sequence

15 AT 5 F—1, (**)

where A ~ 7™ isthe translation subgroup, F' isfinite, and the action of £’ on
A, determined by the exact sequence, is effective. I" isthetrivial groupif I" is
finite.

(2) Agroup epimorphism¢ : ' — I

(3) A ¢p-equivariant map f : R® — R™ which isa fiber bundle with fiber R ™.

(4) The map ¢ induces a map of short exact sequences

1 N r G 1
¢o ¢ ¢’
1 A I F 1
1 1 1

PROPOSITION 3.2. If "isasin (*), then thereis a fibering apparatusfor (I, R").
Proof. The proof of the Proposition isin [10] for the torsion free case and in
[26] in the general case.

Remarks3.2.1. (i) If Mr = R* /N, My = R™ /A then ¢inducesaq’-equivariant
map f': Mp — M.
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(||) Let veR" and I, be the isotropy group of the I action on R™. Let I, =
¢~Y(I',). Notice that I, isfinite, I, is virtually nilpotent, and ved(I',) = n — m.
Letl— N,—T, — G, — 1bethe exact sequence

1o NN~ (D) = ¢~ (0w) = ¢/ (D) = 1.

Also noticethat thereisacanonical cocompact actionof I, on f~1(v) = R*~™.

We will try to compare the control K -theory groups of the manifold M with
control map theidentity and the K -theory groupswith control map f* . Mr — M;.

PROPOSITION 3.3. Thereis a spectral sequence
B?; = H(My/F; Kj(T).), forj <1,

where £ abuts to Klﬂ( Jefori+j <1

Proof. The spectral sequence is derived from ‘the change of control’ spectral
sequencediscussedin[17], 2.6and [26], Proposition2.3.1f s : EGx¢Mr — My /G
is the orbit map, then Ky, ;(T). = H’(Mr/G; Wh(s)) where Wh is the spec-
trum introduced in [17] (or in [18]).

Consider the sequence of the two stratified systems of fibrations

EGxaMr 5 Mp/G 25 M /F.
Using the calculationsin [17], [26] we obtain
%Zm@WTUE%WMWWWWO$mﬂh
IEMf‘/F
which can be written, using the calculationsin [18], Chapter. 8
EZ; = H; (Mf/F; U f(j(rv)c>
IEMf‘/F
= Hi(Mf/F; Kj(rv)c)a
where veR™ and z = [v] under the identification R™ /T" = M./ F.

Remarks 3.3.1. (i) The homology groups appearing in the E2-term of the spec-
tral sequence can be identified with Bredon homology as in [4]. Consider the
coefficient system, in the sense of Bredon ([1]) which assigns to each subgroup
H of T the group K;(¢~*(H)). and to each inclusion K C H the induction map



A SPLIT EXACT SEQUENCE OF EQUIVARIANT K -GROUPS 403

ind? : K;(¢~Y(K)). = Ki(¢~2(H)). ([4]). The above coefficient system defines
an equivariant homology theory on M. ([1]). Then

H (My/F; Kj(Ty)e) 2 HE (Mp; K;(Ty)e)-

(ii) Proposition 2.6 in [17] and Proposition 2.3 in [26] provide a homotopy
equivalence of spectra whose homotopy groups are the homology groups used in
the proof of Proposition 3.3. In particular, it was proved that there is a homotopy
equivalence of spectra

fo B (M /Gy Wh(s)) = H (Mg /F3 L (f () Wh(s| j_1(,)).

Let I be acrystallographic group asin (xx) and M./ F bethe crystallographic
torus. An s-expansive map, g : My — M., isan F-map such that:
(1) g« - Hi(Mp; Z) ~ A— Hy(Mp; 7) ~ Aismultiplication by s.
(2) Themap g : My — M. induced on the universal covers, is a diffeomorphism
which expands distances by a factor of s.
Themap g : My — M inducesamapidxg : EF X p My — EF X p M.
Wewrite o = (idxg), : I'— I". Notice that « is defined up to conjugation by an
element of A, anditisan s-expansivemap in the classical sense of Epstein—Schub,

[8]. Alsothemap g is a-equivariant. The existence of s-expansive mapswas shown
in[8], [4].

LEMMA 3.4. For each s = 1mod|F'|, s-expansive maps exist.

LetT beasin(*)and A = (f, ¢, f) beafibering apparatus for (I', R™) and let
g My — M. be an s-expansive map. Form the pull-back

fq

M, My
gr 9 #
My —— M.

Then M, is a compact G-manifold, w1 (M,) = N, is nilpotent, because this is a
subgroup of NV, gr isaG-map, and f, is an ¢’-map, where ¢’ : G — F'. Therefore
g induces atransfer map g, : K;(T). — K;(T';). where T, = mi(EGxcM,) isa
virtually nilpotent group.

LEMMA 3.5. Thetriple A’ = (I, adlr,,gf) isafibering apparatus for the pair
(I'y, R™), where g isthe lift of g on the universal covers.
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Proof. Notice that the diagram (#) is a pull-back diagram where the horizontal
mapsarefinitecoverings. Therefore N/N, ~ A/« (A) ~ Z™/sZ™ and theisomor-
phismisinducedby ¢. So ¢(N,y) = a(A). Also, by definition,I'/N ~I'y /N, ~ G,
andI'/A ~ a(T")/a(A) ~ F. Then the epimorphism ¢/ : G — F induces an epi-
morphism ® : I'y /N, — a(I")/a(A) defined by ®(yNy) = ¢(v)(A). Therefore
p(ly) = o(I). So the map 'y — id =5 I' % I is an epimorphism. Since the map §
is a-equivariant, it follows that the map g f is a a¢|r,-equivariant map which is
a so afiber bundle with fiber a Euclidean space. Condition (iii) in the definition of
a fibering apparatus follows by construction. Therefore A’ is a fibering apparatus
for (I'y, R™).

For veR™ , withisotropy group L', letI” = (o) ~(T",,). Thenasin Proposition
3.3, there is a spectral sequence

E}; = H (Mp/F.K;(T})e), forj<1,

)

where EP% abutsto K (D) fori+j < 1.
Following the ideas in the proof of Proposition 2.13 in [4], we can show the
following

PROPOSITION 3.6. There areinfinitely many s = 1mod| 7’| such that the transfer
map g.. : (F) — K;(T ¢)c induced by an s-expansivemap g, isa monomor phism
forall i €

Let T be avirtualy nilpotent group asin (), and A = (T, ¢, f) be afibering
apparatus for the natural action of I' on R". Let K;(I');, for ¢ < 1, be the
control K-group of I" with control map f’ : My — M;. As before, K;(T) s isthe
summand of K;(Mr) - corresponding to the trivia group (for the decomposition
of the equivariant control K -groupssee[21], p. 77). Asbefore K;(T') 7 isthegroup
H! (M /F,Wh(fs)) where

EGxaMr - My/G % M. /F.

PROPOSITION 3.7. With the above notation:
(a) Thereis a spectral sequence
EZ; = Hi(M;/F,K;(Ty)), forj<1

where E25 abutsto K, ;(T') s for i +j < 1.
(b) Thereareinfinitely many s = 1mod|F’| such that the transfer

g Ki(T); = Ki(Tg)gp

induced by an s-expansive map g, is a monomorphismfor i < 1.
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Proof. Part (a) is aspecial case of the spectral sequencein [18], Chapter. 8. The
proof of part (b) is the same as the proof of Proposition 2.13in [4].

The map f induces a homomorphism fu : K;(T'). — K;(I') ;. The map fu is
really the ‘forget control’ map in the directions of the fibers of f.

LEMMA 3.8. The forget control map induces a map
H;(Mp/F; Kj(Ly)e) = Hi (M) F; K5 (1)),

which in turn induces the map fx : K;(T,). — K;(T') ; on the limit of the spectral
sequences, where fx is the map induced by fx on the associated graded groups.

Proof. For each veR™, consider the assembly map of spectra, where ¢ =
[U]EMF

Ay - HL (@) WS 1)) = Wh(sTH 7 Ha).

Themap A, inducestheforget control map to the homotopy groups of the spectra.
The maps A,, induce a map between spectra

AL (Mg /F3H (F 74 0) Whis| o)) = B (M /F; Wh(F25)),
Then the composite of the map f, of Remark 3.3.1(ii) and A
Af. D H (Mr/G; Wh(s)) = H. (M /F; Wh(f 1))

isthe map H, ( f ) induced by . This can be proved by direct calculation, using the
description of the map f. given in Proposition 2.3 in [26]. The map fx isinduced

~

by HL (f) on the homotopy groups. Therefore the map
Hij(f) : Hi(Mr/G; Kj(s™(v))) = Hi(Mp/F; Kj(s7Hf 7 (w)))

induced by f, induces fx on the limit of the spectral sequences. Since H, ( f ) can

be decomposed as Af., the map H; ;(f) can be decomposed as a composition
A'H,(f) of mapsinduced by A and f,. But the map

Al Hi(Mp/F KG(Ty)e) = Hi(My ) F; Kj(T,))

is induced by A which is induced by the forget control map on the K-groups.
Therefore the forget control map on the K'-groups induces a map on the E?-terms
of the spectral sequencesthat inducesthe map fx on the limit.

Remark 3.8.1. Using the results of [2], [13] we seethat K_;(I") = Ofori > 2
and all virtually nilpotent groupsI'. Using the spectral sequencesin 3.3 and 3.7(a)
(also[23]), we conclude that

K,Z'(F)c = K,Z'(F)f =0, for al i > 2.
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Finally, we are going to show that the forgetful map f(i(l“)f — K;(I') isa
monomorphism, for I" avirtually nilpotent group asin 3.1.1.

PROPOSITION 3.9. The forgetful map K;(T") ; — K;(T) for i < 1 isa monomor-
phism for each fibering apparatusfor I".

Proof. We use the idea of the proof of Theorem 2.14 in [4]. It is enough to
show the proposition for ¢ = 1. We will use the Notation of 3.1.1. Let = be an
element in the kernel of the forgetful map, and assume that x has diameter d
in My/F. Let k : X — Myp be a G-strong deformation retract representing z,
where X isafinite G-CW complex. Then thereis afinite G-CW complex, Z, and
G-CEPL maps 3’ : Z— Mr, 8 : Z— X, such that k3 ~¢ 3, rel M. Assume
that the G-homotopy has diameter D in M /F. Let g be an s-expansive map.
Then g}(x) is represented by a d/s-G-strong deformation retract, and the lifting
of the homotopy is a homotopy of diameter D/s, in M /F. For s sufficiently
large, g () = 0€Wh(T'y),. By Proposition 3.7, g’ is amonomorphism, and so
z = 0.

4. On the Negative K-Groups of Cocompact Subgroupsof Lie Groups

Let I be a subgroup of a cocompact subgroup of a virtually connected Lie group
(i.e. aLie group with finitely many components). Then one of the main resultsin
[13], states that K_1(ZI") is generated by the images of K_1(ZL), where L isa
finite subgroup of I". Also, the main vanishing resultin [13], that K_;(ZI') = Ofor
i > 2 An easy application of the Bass—Heller—Swan formula showsthat the twisted
lower Nil-groups vanish, i.e. NK_;(ZI',«) = Ofori > 2, for any automorphism
aof T,

PROPOSITION 4.1. Let I be asabovethen NK_1(ZI", ) = 0.

Proof. Notice that I and I x ,Z have isomorphic finite subgroups. So the inclu-
sioninducedmap K_1(ZI') — K _1(Z[I"x4Z]) isan epimorphism. But from Bass—
Heller—Swan [9] and the fact that K (ZI") = 0, we derive an exact sequence

K _1(Z1) = K_1(Z[['xqZ]) = NK_1(ZT,a)®NK_1(Z, oY) =0,

where the first map is induced by the inclusion, and so it is an epimorphism.
Therefore the N K_4 groups vanish.

Let I" be a virtually nilpotent group as in Chapter 3. We assume aso that G
has odd order. Using Proposition 4.1, we will show that the forget control map
K_1(I"). — K_41(I") isan isomorphism.

Westart first with the case of crystallographic groups. Let I beacrystallographic
group. Then there is an exact sequence 1+ A —1' % F — 1, where A is free
Abedlian and F is a finite group acting faithfully on A. In our situation, we will
assume that F' has odd order. In [10] there is a classification of crystallographic
groups of odd order holonomy:
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(a) Thereisan epimorphism [’ — Z with kernel a crystallographic group.

(b) I satisfies hypothesis #: there are infinitely many numbers, s = Imod|F|,
such that any hyperelementary subgroup of I'; = I'/s A which projectsto F,
under the natural epimorphism, projectsisomorphically to F'.

The above classification splits the proofs of certain statementsin this paper in three
cases:

Case 1: When I satisfies (a).
Case 2: When I satisfies hypothesis# and F' is not hyperelementary.
Case 3: When I satisfies hypothesisH and F' is hyperelementary.

Theaboveclassificationisuseful becauseit providestoolsfor applyinginduction
and hyperelementary induction in the proofs. In [4] it wasshown that if p : I' — K
isany group epimorphism to afinite group then thefunctors K;() and K; (). satisfy
hyperelementary induction

K;() = LiLan(P_l(H))a Ki(l), = LiLnf(i(P_l(H))c,

where the inverse limit is taken over the class of al hyperelementary subgroups of
K and the isomorphism isinduced by restriction maps.

PROPOSITION 4.2. Let ' be a crystallographic group with odd order holonomy.
Then the forget control map K _1(I'). — K_1(I") isan isomorphism.

Proof. We use the methods developed in [4]. We will use induction first on
vcd(f) and then on the order of the holonomy group.

Case 1. Assumetthat thereis an epimorphismI' — . Then T’ = Ax 7, where A
is a crystallographic group such that ved(A) = ved(T') — 1. So by the induction
hypothesis K_1(A), = K_1(A). Using Proposition 4.1 we get a commutative
diagram

K_1(A), =% K_1(A)e — K_1(f)e ——— 0

K_1(A) =%+ K_1(A) — K_4(I) —— 0,
where the top horizontal exact sequence is the splitting given in [4], the bottom
exact sequenceis the classical Bass-Heller—Swan splitting in [9], and the vertical
maps are the forget control maps. By assumption the first two vertical maps are
isomorphisms, so the third vertical map is an isomorphism.

Case 2. Assume [ satisfies hypothesis # and F' is not a hyperelementary group.
By the induction techniques developed in [4], the restriction maps induce an iso-

morphism K _1(I"). — lim__ K_1(['x)., where 'y = p=1(H) and the inverse
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limit istaken over the hyperelementary subgroupsof F'. Thereisasimilar induction
isomorphism for K_41(I") and the following diagram commutes

K,]_(f‘)c —_— |£n K—l(fH)c

K () — ILmK,l(f‘H).

Notice that I'; is a crystallographic group with holonomy of order less than |F|.
So the forget control map, for I, is an isomorphism. Therefore the forget control
map K_1(I"). — K_1(T") isan isomorphism.

Case 3. Assume I satisfies condition # and F' is hyperelementary. In [4] The-
orem 2.14, it was shown that the forget control map is a monomorphism. We
will identify K_1(I'), with its image in K_1(T'). Notice that for each s =
1mod|F|, H*(F; A;) = Owhere A, = A/sA and therefore the exact sequence
1-As— ['; — F — 1 splitsand thereis exactly one conjugacy class of subgroups
of I, WhICh is sent |somorph|cally onto F by the natural ep|morph|sm I, - F

unique class of hyperelementary subgroups of Iy whose order equal to the order
of F. Let K beasubgroup inthisclass. If H isany hyperelementary subgroup of
I, not conjugate to K, then the holonomy group of I'; isisomorphic to a proper
subgroup of F' and consequently the holonomy number of Ty, is strictly less than
the holonomy number of T. Also there is an s-expansivemap g : I' — T' such that
g(l') =Tk.

Let z be an element of K ,1(f‘). By the stability of the controlled groups, there
is an integer S such that: for each s > S, s = 1mod|F'|, and each s-expansive
map g, ¢' (z) EK_1(T)e. A

If we choose s as above then for each hyperelementary subgroup H of T,
not conjugate to K, res,;(z)€K_1(I'y) and by the induction hypothesis
res,; (z)€K_1(T'y).. Also, resi = g¢' which implies that resi:(z) =
¢ (z)eK_1(Tk)c. Thus, if res : K_1(I') = lim_ K_;(I'y) is the restriction
mapres(z)elim_ K 1(I'y).. ThereforezcK 1(I"). which completesthe proof
in Case 3 and the proof of the proposition.

By applying Proposition 4.2 to the other components of the direct sum decom-
position of K ”{'-(M;.) we derive

COROLLARY 4.3. The forget control map
KELl p(Mp)e— KELl F(MF)

is an isomorphism. Therefore K%, (M;.) = 0.
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Let " be a virtually nilpotent group such that G has odd order. We are going
to prove the analogue of Proposition 4.2 for I'. Define the holonomy number
of I', A(I'), to be the minimum of the orders of the holonomy groups of the
crystallographic groups appearing in afibering apparatus of I". Let A = (I, ¢, f)
be afibering apparatusfor I' asin 3.1.1. Let g : : T' = K be an epimorphism to the
holonomy group F, or oneof thefinite groupsI’,. Thenthe methodsof [4] show that
thefunctor K; () ; satisfieshyperelementary induction K;(I') ; = lim K;(T'g)y,
whereT'y; = ¢~ 1¢~1(H), the limit istaken over the hyperelementary subgroups
of K and the isomorphism is induced by the restriction maps. Noticethat ' isa
virtually nilpotent group with the same virtual cohomological dimension asT" and
A = (¢"Y(H), ¢|, f) isafibering apparatusfor I'j;.

THEOREM 4.4. LetI" beasabove. Thentheforget control map K 1(I'). — K_1(I")
is an isomorphism.

Proof. We are going to use induction first on the ved(I") and then on A(T"). Let
A= (', ¢, f) beafibering apparatusfor I asin 3.1.1.

Case 1. Assumethat thereis an epimorphism I’ — Z. Then thereis an epimorphism
I' — Zwith kernel avirtually nilpotent group with virtual cohomological dimension
less than ved(I'). The proof can be completed as in Case 1, Proposition 4.2.
Notice also that the forget control map factors through K_1(I') ; and the map
K (I‘) 5 — K_1(I') is a monomorphism (Proposition 3.9). Therefore the map
fo: K_1(I')e = K_1(I") y isan isomorphism.

Case 2. Assume that I satisfies condition 7 and F is not hyperelementary. Then
the proof can be completed as in Case 2, Proposition 4.2. Notice that the map
fu: K_1(I'). = K_1(T') y isan isomorphism in this case.

Case 3. Assume that I satisfies condition £ and F is a hyperelementary group.
First we will show that the forget control map K_1(I"); — K_(I') is an isomor-
phism. We use the same argument as in Proposition 4.2. For infinitely many s,
s = 1mod|F|, there is a unique conjugacy class of hyperelementary subgroups
of I, which project isomorphically to F. Let K be a group in this class. For
zeK_1(I'), and for each hyperelementary subgroup H of I',, not conjugateto K
res,; (z)€K 1(I') by induction, because h(I'yr) < h(T). Also, resé = ¢', for

some s-expansive map g. So for large enough s resié (z) = ¢' ()€K _1(Tg)s. In
every case

eS(:U)E LiLnK,]_(FH)f = K,]_(F)f.

Thereforeze K_1(T') 7, the forget control map is an epimorphismand K_1(I") f =
K_41(T"). Using Remark 3.8, we see that

K 1(I')e = Ho(Mp/F, K 1(T'y)c) = Ho(Mp/F, K 1(I'y)) = K 1(I')y,
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where the second isomorphism is obtained using the induction hypothesis, since
ved(I',) < ved(I'). Therefore K_1(I), = K_1(I").

COROLLARY 4.5. The forget control map K™ ,(Mr).— K™ (Mr) is an
isomor phism. Therefore K Ic;_F:G(M[‘) =0.

5. A Split Short Exact Sequence

In this chapter we will show that the five term exact sequence introduced by
Steinberger and West [21], [22], reduces, in the case of afinite group of odd order
acting by isometries on a nilmanifold, to split short exact sequences.

Let T beasin (+) together with afibering apparatus A = (T, ¢, f) asin 3.1.1.
We assumethat G isan odd order group which implies that the holonomy group F
has odd order. We are going to show that the forget control map K;(T"). — K;(I'),
fori < 1,isasplit monomorphism. The proof will be donein two stages. First we
will show that the forget control map K;(T') ; — K;(T') is a split monomorphism
using the methods developed in [4]. Then we will show that the forgetful map
K. — K; (I") s isasplit monomorphism.

Let N1(I") be the subgroup of Wh(I") consisting of those elements that vanish
under the transfer map of an s-expansive monomorphism, s = 1mod|F|, for
infinitely many numbers s i.e. N1(T") consists of those elements of Wh(T") that lie
in the zero eigenspace of s-expansive maps for infinitely many s = 1mod|F|. We
also define N;(I'), 7 < 1, asthe set of elementsin the zero eigenspace of al maps
on K;(T") induced by s-expansive maps, for infinitely many s = 1mod|F|. We
will show that the forget control map K;(I')  — K;(T") is a split monomorphism
and the orthogonal summand of K;(I') s is N;(T).

We start by proving an analogue of Bass-Heller—Swan formula for K; ().
Let A = (F o, f) be aflberlng apparatus for I" as in 3.1.1. Assume that there
is a group epimorphism 1 : I’ — 7, with kernel a crystallographic group I’ of
rank m — 1. Then T' = I"x 37. The map ¢ induces a fiber bundie R™ /T" — S*
with fiber Rmfl/f" [26]. Also v induces an epimorphism I' — Z with kernel a
virtually nilpotent groupI" = ¢~(I"). ThenI" = I'x,Z.Themap f induces a
fiber bundle R /T' — S* with fiber R*~1/T". Then A’ = (I, ¢|, f|) is afibering
apparatusfor I'. Set f1 = f].

LEMMA 5.1. With the preceding notation, there is an exact sequence
KT 2% K1) =KD —» Kia(l)y, =% Kioa(T')p,.

Proof. Notice that there is a bundle M — ST with fiber Mp/. The controlled
K -groupssatisfy the Mayer—Vietoris property. Thisfollowsfrom [25] and their def-
inition as generalized homol ogy theory ([26], Proposition 2.1). The exact sequence
now followsasin Lemma3.5in[4].
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The exact sequencein 5.1 can be written as a short exact sequence
0— (Ki(rl)fl)a — Ki(r)f — (Ki—l(rl)fl)a — Ov

where (K;(T") 1) = ker(1— o) and (K;—1(T");,)® = coker(l — o).
The next proposition uses methods similar to the ones used in [4], Section 3.

PROPOSITION 5.2. The forgetful map is a split monomorphism, and induces a
direct sum decomposition K;(I") = K;(T);@N;(T), i < 1

Proof. First we will show that the two subgroups are orthogonal. Let
z€K;(T) ;NN;(T). Thenfor somes, s = 1mod|F|, and some s-expansivemap g,
g'(z) = 0.Sinceze K;(T"), g} (x) = 0. But by Proposition 3.7, g} is amonomor-
phism on K;(T');. Therefore z = 0. Notice that K;(T") ;@N;(T) is a subgroup
of K;(I'). We complete the proof by showing the other inclusion. We will use
induction first on ved(I') and then on the holonomy number of I, A(T"). For this
we use the classification of crystallographic groups with odd order holonomy, as
in the proof of Theorem 4.4. Let A = (f, ¢, f) beafibering apparatusfor I".

Case 1. Assume that there is an epimorphism I' — 7. Then by Lemma 5.1 and the
results of Farrell-Hsiang ([9]) we get a commutative diagram (also [4], 3.6)

0

(Ki(l"))a — Ki(l); — (Ki 1(I"))* —— 0

0 (Ki(I"))o — Ki(I')/C; — (K;_a(I"))" 0

where C; denotes the summand corresponding to the exotic Nil-groups. The first
and the third vertical maps are monomorphisms, therefore the second map is a
monomorphism. An s-expansive map g induces maps of the above exact sequences
and thus of the exact sequence of the quotients

ch(,r) SK;(T) ; — (N;—1(I")* — 0.

0— (N;(I"))a —

Thesummand C; C N;(I") because the elements of C; vanish after transfers along
the last Z-direction. From the above exact sequence we get an exact sequence of
the zero eigenspaces of the expansive maps

N;(T)
Ci

0— (N;(T"))o — — (N;_1(I")* =0,

which impliesthat K;(I')CK;(T) ; & N;(I). This completes the proof in Case 1.



412 STRATOS PRASSIDIS

Case 2. Assumethat I satisfies hypothesis £ and F' is not hyperelementary. The
restriction maps induce isomorphisms

Ki(T) = imKi(¢~'g () and  Ki(D); = lim K¢~ (H);.

Thefirst isomorphism commutes with transfer mapsinduced by s-expansive maps.
Therefore it induces an isomorphism N;(I") = lim__ N;(¢~1¢~1(H)), where
the inverse limit is taken over the hyperelementary subgroups of F'. Since inverse
limits preserve direct sums and monomorphismswe get K; (I') = K;(I) ; & N;(T).

Case 3. Assume that I satisfies hypothesis # and F is a hyperelementary group.
The proof in this caseis similar to the proof in Case 3 in Theorem 4.4.

Remark 5.2.1. The forgetful map ¢; : K;(I'). — K;(T") fuctorsthrough K;(T') ;.
Thereforelm(:;)NN;(I') = {0} and themap p; : ](F) — K, (I') isamonomor-
phismwhen restrictedto IV; (T'). Wewrite N/ (T') = K, (") /N;(T'). Thentheexact
sequence

Ki(D), = K;(I') = K, ®(I) = K; 1(I).— K;_1(T)
induces the exact sequence, for ¢ < 1,
Ki(I), 5 K1) = N/(T) = Ki_1(T), 25 Ki_q(D);.

Next we study the forgetful map f : K;(T"). — K;(T") ;. Wewill show that it is
a split monomorphism.

PROPOSITION 5.3. With the above notation, the forgetful map fy : K;(T).—
K;(T') s isasplit monomor phism.
Proof. We will useinduction on ved(T"). Therefore the forget control map

hy . Kz(A)c — KZ(A)h

is a split monomorphism if ved(A) < ved(I') (here h is a map appearing in
a fibering apparatus for A). Thus by Proposition 5.2, the forget control map
Ki(A),— K; (A) is a split monomorphism. By 3.7 there is a spectral sequence
converging to Kiﬂ( )r (fori 47 < 1) with

E}j = Hi(My/F, K;(Ty)).
But ved(T',) < ved(TM) and the assumption hypothesisimplies that
Kj(Ty) = Kj(Ty)e ® KJP(Iy), i<l

The map K;(I',). — K;(I',) is the forget control map. Therefore the E2-term
above splits as adirect sum with one summand H; (M} / F, K;(T',).) whichisthe
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E2-term of the spectral sequence of 3.3 converging to f(l-ﬂ- (T').. By Lemma 3.8
the forget control map induces a map

. Al -
EP? = Hy(Mp/F; Kj(D,)e) =% Hi(Mp/F; K;(T,)) = B2,

on the E?-terms of the spectral sequences of Proposition 3.3 and Proposition 3.7
thatinturninducesthemap fx : K;(I"). — K;(I") y ontheassociated graded groups.
Sinceved(I',) < ved(I'), the induction hypothesesimplies that the forget control
map

(fo)#  Kj(To)e— K;(Tu)y,, §<1

is a split monomorphism. Thus the five-term exact sequence of Remark 5.2.1 is
reduced to a split short exact sequence

0 K;(Ty)e L% K;(r,);, — Ni(T,) >0, j<L
The proof that fx isa split monomorphism will be donein two steps.
Sep 1. The map f4 isamonomorphism and there is an exact sequence
0— K;(I). L+ K;(I);—N{T) =0, j<Ll.

Proof. The map A’ on the E?-terms is a split monomorphism. Therefore the

map fx induced on the E*>-terms is a split monomorphism of graded groups. A
diagram chase shows that fx is a monomorphism, not necessarily split. The short
exact sequenceis derived from the five-term exact sequence of Remark 5.2.1.

Sep 2. Themap f4 is asplit monomorphism.
Proof. The group E spI itsasadirect sumforj <1

H;(M;/F, K;(Ty).) @ Hi(Mp/F,Nj(Ty)).
The inclusion and projection maps
KJ' (Fv)c — Kj (Fv) - kj(rv)c

induce maps in the E2-terms of the two spectral sequences. The maps commute
with the differentials. Thus d, is given as a diagonal matrix

<C(i;2 c?g) P Hi(My /F, kj(rv)c) ® H;(M;/F, NJ’(I‘U))
= Hi o(Mp/F, Kja(To)e) © Hi2(Mp/F, Nj1(I)),

for 5 < 0. Thenin the limit of the spectral sequenceswe get an isomorphism

<
Kipj(T)e ® N{;(T) = Kij (D),
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wherethefirst mapis fx (the supplementary summand of K, ;(T') isN;,;(T") being
the cokernel of f4). Therefore the forget control map fx is asplit monomorphism.
By combining the results in Propositions 5.2, 5.3, we derive the following

THEOREM 5.4. With the above notation

(a) Theforget control map K;(I"), — K;(T') isanisomorphismfor i < —landa
split monomorphismfor i = 0, 1.

(b) The forget control map K%, (Mr). — KF%(Mr) is an isomorphism for i <
—1 and a split monomor phism for 4 O 1

(c) The sequence

0— KP%(Mr), — K% (Mr) — KTOp(M ) =0

issplit exact for ¢ < 1.
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