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Abstract. Let � be an extension of a torsion free nilpotent group by a finite group G, of odd order.
Then � admits a cocompact proper action on Rn . This action determines an action of G on a nil-
manifold by isometries. In this paper, the equivariant K-theory of the finite group action is studied
and it is shown that the ‘forget control’ map is a split monomorphism.
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1. Introduction

Let � be a finite extension of a finitely presented, torsion free nilpotent group
N . Then � admits a cocompact, properly discontinuous action on the euclidean
space of dimension equal to the virtual cohomological dimension of �. Since N
acts freely on the euclidean space, the above action induces an action of the finite
group G = �=N on a nil-manifold M�. Steinberger–West, [22], [23], introduced
topological equivariant K-theory for studying equivariant h-cobordisms in this
situation. For calculating those groups, they proved that the equivariant topological
K-groups fit in an exact sequence involving the equivariant PL K-theory groups
and their controlled analogues

~KPL
i;G(M�)c! ~KPL

i;G(M�)! ~K
Top
i;G (M�)! ~KPL

i�1;G(M�)c! ~KPL
i�1;G(M�):

In this paper we study the ‘forget control’ between the equivariant PLK-groups.
The main result of the paper is that, under certain assumptions, the ‘forget control’
map is a split monomorphism.

MAIN THEOREM. Let � be an extension of a finitely presented, torsion free,
nilpotent group by a finite groupG of odd order andM� is theG-manifold defined
above. Then the ‘forget control’ map

~KPL
i;G(M�)c! ~KPL

i;G(M�)
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398 STRATOS PRASSIDIS

is a split monomorphism for all i 6 1. In particular, the above exact sequence is
reduced to a collection of short exact sequences.

Notice that the map in the main theorem is rarely an isomorphism because there
are summands of the PL K-group that are isomorphic to K-theory Nil-groups of
finite groups and so they are not controlled.

Connolly–Koźniewski, [4], have shown that the forget control map is a monomor-
phism for � a crystallographic group. The equivariant PLK-groups split in a direct
sum of the K-groups of the strata. In the Main Theorem, if we consider the sum-
mand corresponding to the top stratum, we see that the Main Theorem generalizes
the theorem in the announcement in [20].

The Main Theorem can be considered as an analogue of the Equivariant Novikov
Conjecture in K-theory ([15]). Also, the result in the Main Theorem is connected
with the equivariant K-theory rigidity conjecture and the Equivariant Borel con-
jecture. We now formulate the equivariant K-theory rigidity conjecture, a precise
statement of the equivariant Borel conjecture is in [4]. Let � be a cocompact dis-
crete subgroup of the group of isometries of a Hadamard manifold ~M . Let �0 be a
torsion free subgroup of finite index in � and G = �=�0. Then M� = ~M=�0 is a
compactG-manifold.

EQUIVARIANT K-THEORY RIGIDITY CONJECTURE. With the above nota-
tion, assume that

(1) � does not contain subgroups isomorphic toD1�Z or to H��K whereK is
the fundamental group of the Klein bottle andH is a finite group whose order
is divisible of the second power of some prime

(2) the action ofG onM� does not have fixed point sets of dimension two, three, or
four and that proper inclusions of fixed point set components have dimension
bigger than two. Then

Ĥ�(Z=2Z; ~KTop;�
i;G (M�)) = 0; for all i 6 1;

where Z=2Zacts on ~K
Top;�
i;G (M�) by inverting the G-h-cobordisms.

In [7], we prove the Equivariant K-theory Rigidity Conjecture for i 6 0 for a
large class of cocompact subgroups of groups of isometries of Hadamard manifolds
without 2-torsion elements. For the connection between the Equivariant K-theory
Conjecture and the Equivariant Borel Conjecture, see [4].

Condition (1) in the statement of the equivariant rigidity K-theory conjecture
is necessary, as it has been shown in [5]. Condition (2) is required for formulating
a geometrically reasonable problem.

The proof of the Main Theorem combines the ideas developed in [4] with the
ideas in [10–12]. We compare the controlled groups with theK-theory groups with
control to a crystallographic manifold. The above control map is defined using the
machinery of fibering apparatus defined in [10], [11] (see also [26]), [20]). Notice
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A SPLIT EXACT SEQUENCE OF EQUIVARIANT K-GROUPS 399

that the idea for comparing the two control maps has been used before in [20] for
proving a similar result. The advantage in using crystallographic manifolds is that
they admit expansive maps which are used to make the control tighter.

Using the exact sequence developed in [22], [21], we can reduce the problem
in the Main Theorem to the study of PL equivariant Whitehead groups and their
controlled analogues. Combining this idea with the ideas developed in the last
paragraph, we show that it is enough to consider controlled groups where the
control space is a crystallographic manifold. The rest of the proof applies the ideas
developed in [4].

The above discussion suggests that the equivariant topologicalK-theory groups
of finite group actions on non-positively curved manifolds are essentially built by
Nil-groups. Therefore the study of the properties of Nil-groups is very important in
understanding equivariant rigidity phenomena in this setting. This idea is applied
in [7] where calculations on Nil-groups ([3], [6]) are applied for calculating the
exponents of the lower equivariant topological K-groups.

2. Equivariant K-Theory

Let G be a finite group and X a finite G-CW complex. Then WhTop
G (X), the

topological equivariant Whitehead group of X , is the group of equivalence classes
of G-strong deformation retract pairs (Y;X), where Y is a compact G-ANR. The
equivalence relation is generated by G-CE maps, relX , and the group operation
is given by unions over X , [21], [22], [23]. The PL analogue of the above group,
WhPL

G (X) is constructed similarly. In this case we consider pairs (Y;X), where
(Y;X) is a relative finite G-CW complex, such that there is a cellular G-strong
deformation retraction from Y to X , and the equivalence relation is generated by
G-CEPL maps. Both the PL and Top equivariant Whitehead groups admit a direct
sum decomposition with one summand for each conjugacy class of subgroups of
G, [21], [23].

Generalizing the methods developed by Chapman, Steinberger and West defined
the controlled analogue of the equivariant PL group. Let B be a finite dimensional
G-metric space and p : X!B be a G-map. If " > 0, a p�1(")-G-strong defor-
mation retraction means a G-deformation retraction whose tracks have diameter
less than " when they are measured in B. The set of elements of WhPL

G (X) that are
p�1(")-G-strong deformation retractions and have inverses that are also p�1(")-
G-strong deformation retractions form a group. Notice that if "0 > " then every
p�1(")-G-strong deformation retraction is a p�1("0)-G-strong deformation retrac-
tion. Thus the above groups form a directed system. The controlled Whitehead
group, WhPL

G (X)p is the inverse limit of this system. When p is an equivariant
simplicial p-NDR then the above inverse system is stable ([18], [21–23]). The
controlled Whitehead groups admit a direct sum decomposition similar to the one
in the uncontrolled case. We write WhPL

G (X)c whenever the control map is the
identity.
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400 STRATOS PRASSIDIS

The lower Ki-groups, i < 1, are defined as the groups of transfer invariant
elements of the Whitehead groups ofX�T 1�i, where the transfer is over the finite
covers of T 1�i (the G action on T 1�i is trivial).

The main calculational tool in equivariant K-theory is the five term exact
sequence given in [21], [23], [4]

~KPL
i;G(X)c! ~KPL

i;G(X)! ~K
Top
i;G (X)! ~KPL

i�1;G(X)c! ~KPL
i�1;G(X)

for i 6 1.
We define the restricted equivariant Whitehead groups ~K

Top;�
i;G (X) to be the

subgroups of the above groups generated by pairs (Y;X) such that Y H
� �Y >H

� = ;

wheneverXH
� �X

>H
� = ; for all the components of fixed point sets. The restricted

equivariant Whitehead groups admit a direct sum decomposition with one summand
for each conjugacy class of the isotropy subgroups of G. There is a five term
exact sequence for the restricted K-groups, ([21], [4]). The restricted equivariant
Whitehead groups are isomorphic to the isovariant Whitehead groups and they
classify isovariant topological G-h-cobordisms over X when X is a G-manifold
([21]).

In (X;X 0) is a pair we define the relative Whitehead groups to be the subgroups
of the Whitehead groups ofX consisting of thoseG-strong deformation retractions
that are the identity on X 0 ([4]).

Let G act by isometries on a connected compact manifold M . Let � =
�1(EG�GM). Then there is an exact sequence 1!�0!�!G! 1; where
�0 = �1(M). Notice also that � can be identified with �1(M � �M) where �M
is the singular set of the G action on M . Following [4], we define
WhTop(�) = WhTop;�

G (M;�M). If p : M!M 0 is a G-map then we define
Wh(�)p = WhPL;�

G (M;�M)p. The lower controlled and topological K-groups
of �, Ki(�); i < 1, are defined as the subgroups of the corresponding White-
head group of M�T 1�i, where T 1�i is a trivial G-torus, consisting of the transfer
invariant elements as before. In [4] it was shown that there is an exact sequence,
for i > �1

~K�i(�)c! ~K�i(�)! ~K
Top
�i (�)!

~K�i�1(�)c! ~K�i�1(�);

where ~K1 = Wh, ~K�i = K�i for i > 0. The above exact sequence is the
restriction of the Steinberger–West exact sequence to the summands corresponding
to the top stratum ([4]). If the control map p is chosen to be the natural projection
p : EG�GM!M=G then Wh(�)c is the group H1(M=G;Wh(p)) defined in
[17] and [18] ([4]).

3. Virtually Nilpotent Groups and Fibering Apparatus

Let � be a virtually nilpotent group i.e. there is an exact sequence

1!N!�!G! 1; (*)
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A SPLIT EXACT SEQUENCE OF EQUIVARIANT K-GROUPS 401

whereN is a finitely presented torsion free nilpotent group andG is finite. SinceN
has finite cohomological dimension, � has finite virtual cohomological dimension.
Let n = vcd(�).

LEMMA 3.1. � acts cocompactly and properly discontinuously on Rn .

The proof is in [10] for the torsion free case and in [26] for the general case.
Notice that in the case of a finite group � (vcd(�) = 0), n = 0 and � acts on a
point.

DEFINITION 3.1.1. Let � be as above. A fibering apparatus for (�;Rn) is a triple
A = (�̂; �; f) where

(1) A crystallographic group �̂ � E(m), m > 0, when vcd(�) > 0, and �̂ fits
into an exact sequence

1!A! �̂!F ! 1; (**)

whereA ' Z
m is the translation subgroup, F is finite, and the action of F on

A, determined by the exact sequence, is effective. �̂ is the trivial group if � is
finite.

(2) A group epimorphism � : �! �̂.
(3) A �-equivariant map f : Rn!R

m which is a fiber bundle with fiber Rn�m .
(4) The map � induces a map of short exact sequences

1 - N - � - G - 1

1 - A
?

�0

- �̂

?

�

- F
?

�0

- 1

1
?

1
?

1:
?

PROPOSITION 3.2. If � is as in (*), then there is a fibering apparatus for (�;Rn).
Proof. The proof of the Proposition is in [10] for the torsion free case and in

[26] in the general case.

Remarks 3.2.1. (i) IfM� = R
n=N;M

�̂
= R

m=A then� induces a�0-equivariant
map f 0 : M�!M

�̂
.
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(ii) Let v2Rn and �̂v be the isotropy group of the �̂ action on R
m . Let �v =

��1(�̂v). Notice that �̂v is finite, �v is virtually nilpotent, and vcd(�v) = n�m.
Let 1!Nv!�v!Gv! 1 be the exact sequence

1!N\��1(�̂v)!��1(�̂v)!�0
�1
(�̂v)! 1:

Also notice that there is a canonical cocompact action of�v on f�1(v) �= R
n�m .

We will try to compare the control K-theory groups of the manifold M� with
control map the identity and theK-theory groups with control map f 0 : M�!M

�̂
.

PROPOSITION 3.3. There is a spectral sequence

E2
i;j = H

lf
i (M

�̂
=F ; ~Kj(�v)c); for j 6 1;

whereE1i;j abuts to ~Ki+j(�)c for i+ j 6 1.
Proof. The spectral sequence is derived from ‘the change of control’ spectral

sequence discussed in [17], 2.6 and [26], Proposition 2.3. Ifs : EG�GM�!M�=G

is the orbit map, then ~Ki+j(�)c = H
lf
i+j(M�=G; Wh(s)) where Wh is the spec-

trum introduced in [17] (or in [18]).
Consider the sequence of the two stratified systems of fibrations

EG�GM�

s
!M�=G

f̂
!M

�̂
=F:

Using the calculations in [17], [26] we obtain

E2
i;j = Hi

0
@M

�̂
=F ;

[
x2M

�̂
=F

H
lf
j (f̂�1(x); Wh(sjf̂�1(x)))

1
A ) ~Ki+j(�)c;

which can be written, using the calculations in [18], Chapter. 8

E2
i;j = Hi

0
@M

�̂
=F ;

[
x2M

�̂
=F

~Kj(�v)c

1
A

= Hi(M�̂
=F ; ~Kj(�v)c);

where v2Rm and x = [v] under the identification Rm=�̂ =M
�̂
=F:

Remarks 3.3.1. (i) The homology groups appearing in the E2-term of the spec-
tral sequence can be identified with Bredon homology as in [4]. Consider the
coefficient system, in the sense of Bredon ([1]) which assigns to each subgroup
H of �̂ the group ~Ki(�

�1(H))c and to each inclusion K � H the induction map
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indHK : ~Ki(�
�1(K))c! ~Ki(�

�1(H))c ([4]). The above coefficient system defines
an equivariant homology theory on M

�̂
([1]). Then

H
lf
i (M

�̂
=F ; ~Kj(�v)c) �= HF

i (M�̂
; ~Kj(�v)c):

(ii) Proposition 2.6 in [17] and Proposition 2.3 in [26] provide a homotopy
equivalence of spectra whose homotopy groups are the homology groups used in
the proof of Proposition 3.3. In particular, it was proved that there is a homotopy
equivalence of spectra

f� : H � (M�=G;Wh(s))! H � (M�̂
=F ; H �(f̂�1(x);Wh(sj

f̂�1(x)
)):

Let �̂ be a crystallographic group as in (��) and M
�̂
=F be the crystallographic

torus. An s-expansive map, g : M
�̂
!M

�̂
, is an F -map such that:

(1) g� : H1(M�̂
; Z)' A!H1(M�̂

; Z)' A is multiplication by s.

(2) The map ~g : gM
�̂
!gM

�̂
induced on the universal covers, is a diffeomorphism

which expands distances by a factor of s.

The map g : M
�̂
!M

�̂
induces a map id�g : EF�FM�̂

!EF�FM�̂
:

We write � = (id�g)� : �̂! �̂. Notice that � is defined up to conjugation by an
element ofA, and it is an s-expansive map in the classical sense of Epstein–Schub,
[8]. Also the map ~g is �-equivariant. The existence of s-expansive maps was shown
in [8], [4].

LEMMA 3.4. For each s � 1modjF j, s-expansive maps exist.

Let � be as in (*) andA = (�̂; �; f) be a fibering apparatus for (�;Rn) and let
g : M

�̂
!M

�̂
be an s-expansive map. Form the pull-back

Mg
fg
- M

�̂

M�

?

g�

f 0
- M

�̂
:
?

g (#)

Then Mg is a compact G-manifold, �1(Mg) = Ng is nilpotent, because this is a
subgroup of N , g� is a G-map, and fg is an �0-map, where �0 : G!F . Therefore
g induces a transfer map g!

c : ~Ki(�)c! ~Ki(�g)c where �g = �1(EG�GMg) is a
virtually nilpotent group.

LEMMA 3.5. The triple A0 = (�̂; ��j�g ; ~gf) is a fibering apparatus for the pair
(�g;R

n), where ~g is the lift of g on the universal covers.
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404 STRATOS PRASSIDIS

Proof. Notice that the diagram (#) is a pull-back diagram where the horizontal
maps are finite coverings. ThereforeN=Ng ' A=�(A) ' Z

m=sZm and the isomor-
phism is induced by�. So�(Ng) = �(A). Also, by definition,�=N ' �g=Ng ' G,
and �̂=A ' �(�̂)=�(A) ' F . Then the epimorphism �0 : G!F induces an epi-
morphism � : �g=Ng!�(�̂)=�(A) defined by �(
Ng) = �(
)�(A). Therefore

�(�g) = �(�̂). So the map �g
�j
�! �̂

�
�! �̂ is an epimorphism. Since the map ~g

is �-equivariant, it follows that the map ~gf is a ��j�g -equivariant map which is
also a fiber bundle with fiber a Euclidean space. Condition (iii) in the definition of
a fibering apparatus follows by construction. Therefore A0 is a fibering apparatus
for (�g;Rn):

For v2Rm , with isotropy group �̂v, let�0v = (��)�1(�̂v). Then as in Proposition
3.3, there is a spectral sequence

E2
i;j = H

lf
i (M

�̂
=F; ~Kj(�

0

v)c); for j 6 1;

where E1i;j abuts to ~Ki+j(�g)c for i+ j 6 1.
Following the ideas in the proof of Proposition 2.13 in [4], we can show the

following

PROPOSITION 3.6. There are infinitely many s � 1modjF j such that the transfer
map g!

c : ~Ki(�)c! ~Ki(�g)c induced by an s-expansive map g, is a monomorphism
for all i 6 1:

Let � be a virtually nilpotent group as in (�), and A = (�̂; �; f) be a fibering
apparatus for the natural action of � on R

n . Let ~Ki(�)f , for i 6 1, be the
control K-group of � with control map f 0 : M�!M

�̂
. As before, ~Ki(�)f is the

summand of ~Ki(M�)f 0 corresponding to the trivial group (for the decomposition
of the equivariant controlK-groups see [21], p. 77). As before ~Ki(�)f is the group
H

lf
i (M

�̂
=F;Wh(f̂ s)) where

EG�GM�

s
!M�=G

f̂
! M

�̂
=F:

PROPOSITION 3.7. With the above notation:

(a) There is a spectral sequence

E2
i;j = Hi(M�̂

=F; ~Kj(�v)); for j 6 1

whereE1i;j abuts to ~Ki+j(�)f for i+ j 6 1.
(b) There are infinitely many s � 1modjF j such that the transfer

g!
f : ~Ki(�)f ! ~Ki(�g)gf 0

induced by an s-expansive map g, is a monomorphism for i 6 1.
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Proof. Part (a) is a special case of the spectral sequence in [18], Chapter. 8. The
proof of part (b) is the same as the proof of Proposition 2.13 in [4].

The map f induces a homomorphism f# : ~Ki(�)c! ~Ki(�)f . The map f# is
really the ‘forget control’ map in the directions of the fibers of f .

LEMMA 3.8. The forget control map induces a map

Hi(M�̂
=F ; ~Kj(�v)c)!Hi(M�̂

=F ; ~Kj(�v));

which in turn induces the map �f# : ~Kj(�v)c! ~Kj(�)f on the limit of the spectral
sequences, where �f# is the map induced by f# on the associated graded groups.

Proof. For each v2Rm , consider the assembly map of spectra, where x =
[v]2M

�̂

Av : H � (f̂
�1(x);Wh(sjf̂�1(x)

))!Wh(s�1f̂�1(x)):

The mapAv induces the forget control map to the homotopy groups of the spectra.
The maps Av induce a map between spectra

A : H �(M�̂
=F ; H � (f̂�1(x);Wh(sj

f̂�1(x)
)))! H �(M�̂

=F ;Wh(f̂�1s)):

Then the composite of the map f� of Remark 3.3.1(ii) and A

Af� : H �(M�=G;Wh(s))! H � (M�̂
=F ;Wh(f̂�1s))

is the map H �(f̂) induced by f̂ . This can be proved by direct calculation, using the
description of the map f� given in Proposition 2.3 in [26]. The map f# is induced
by H � (f̂) on the homotopy groups. Therefore the map

Hi;j(f̂) : Hi(M�=G; ~Kj(s
�1(v)))!Hi(M�̂

=F ; ~Kj(s
�1f̂�1(w)))

induced by f̂ , induces �f# on the limit of the spectral sequences. Since H �(f̂) can
be decomposed as Af�, the map Hi;j(f̂) can be decomposed as a composition
A0H�(f) of maps induced by A and f�. But the map

A0i;j : Hi(M�̂
=F ; ~Kj(�v)c)!Hi(M�̂

=F ; ~Kj(�v))

is induced by A which is induced by the forget control map on the K-groups.
Therefore the forget control map on the K-groups induces a map on the E2-terms
of the spectral sequences that induces the map �f# on the limit.

Remark 3.8.1. Using the results of [2], [13] we see that K�i(�) = 0 for i > 2
and all virtually nilpotent groups �. Using the spectral sequences in 3.3 and 3.7(a)
(also [23]), we conclude that

K�i(�)c = K�i(�)f = 0; for all i > 2:
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406 STRATOS PRASSIDIS

Finally, we are going to show that the forgetful map ~Ki(�)f ! ~Ki(�) is a
monomorphism, for � a virtually nilpotent group as in 3.1.1.

PROPOSITION 3.9. The forgetful map ~Ki(�)f ! ~Ki(�) for i 6 1 is a monomor-
phism for each fibering apparatus for �.

Proof. We use the idea of the proof of Theorem 2.14 in [4]. It is enough to
show the proposition for i = 1. We will use the Notation of 3.1.1. Let x be an
element in the kernel of the forgetful map, and assume that x has diameter d
in M

�̂
=F . Let k : X!M� be a G-strong deformation retract representing x,

where X is a finite G-CW complex. Then there is a finite G-CW complex, Z , and
G-CEPL maps �0 : Z!M�, � : Z!X , such that k�'G �

0, relM�. Assume
that the G-homotopy has diameter D in M

�̂
=F . Let g be an s-expansive map.

Then g!
f (x) is represented by a d=s-G-strong deformation retract, and the lifting

of the homotopy is a homotopy of diameter D=s, in M
�̂
=F . For s sufficiently

large, g!
f (x) = 02Wh(�g)gf 0 : By Proposition 3.7, g!

f is a monomorphism, and so
x = 0.

4. On the Negative K-Groups of Cocompact Subgroups of Lie Groups

Let � be a subgroup of a cocompact subgroup of a virtually connected Lie group
(i.e. a Lie group with finitely many components). Then one of the main results in
[13], states that K�1(Z�) is generated by the images of K�1(ZL), where L is a
finite subgroup of �. Also, the main vanishing result in [13], thatK�i(Z�) = 0 for
i > 2 An easy application of the Bass–Heller–Swan formula shows that the twisted
lower Nil-groups vanish, i.e. NK�i(Z�; �) = 0 for i > 2; for any automorphism
� of �.

PROPOSITION 4.1. Let � be as above then NK�1(Z�; �) = 0:
Proof. Notice that � and ���Z have isomorphic finite subgroups. So the inclu-

sion induced mapK�1(Z�)!K�1(Z[���Z]) is an epimorphism. But from Bass–
Heller–Swan [9] and the fact that K�2(Z�) = 0, we derive an exact sequence

K�1(Z�)!K�1(Z[���Z])!NK�1(Z�; �)�NK�1(Z�; �
�1)! 0;

where the first map is induced by the inclusion, and so it is an epimorphism.
Therefore the NK�1 groups vanish.

Let � be a virtually nilpotent group as in Chapter 3. We assume also that G
has odd order. Using Proposition 4.1, we will show that the forget control map
K�1(�)c!K�1(�) is an isomorphism.

We start first with the case of crystallographic groups. Let �̂be a crystallographic
group. Then there is an exact sequence 1!A! �̂

p
! F ! 1; where A is free

Abelian and F is a finite group acting faithfully on A. In our situation, we will
assume that F has odd order. In [10] there is a classification of crystallographic
groups of odd order holonomy:
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(a) There is an epimorphism �̂!Zwith kernel a crystallographic group.
(b) �̂ satisfies hypothesis H: there are infinitely many numbers, s � 1modjF j,

such that any hyperelementary subgroup of �̂s = �̂=sA which projects to F ,
under the natural epimorphism, projects isomorphically to F .

The above classification splits the proofs of certain statements in this paper in three
cases:

Case 1: When �̂ satisfies (a).
Case 2: When �̂ satisfies hypothesisH and F is not hyperelementary.
Case 3: When �̂ satisfies hypothesisH and F is hyperelementary.

The above classification is useful because it provides tools for applying induction
and hyperelementary induction in the proofs. In [4] it was shown that if p : �̂!K
is any group epimorphism to a finite group then the functors ~Ki() and ~Ki()c satisfy
hyperelementary induction

~Ki(�̂) �= lim
 �

~Ki(p
�1(H)); ~Ki(�̂)c �= lim

 �

~Ki(p
�1(H))c;

where the inverse limit is taken over the class of all hyperelementary subgroups of
K and the isomorphism is induced by restriction maps.

PROPOSITION 4.2. Let �̂ be a crystallographic group with odd order holonomy.
Then the forget control map K�1(�̂)c!K�1(�̂) is an isomorphism.

Proof. We use the methods developed in [4]. We will use induction first on
vcd(�̂) and then on the order of the holonomy group.

Case 1. Assume that there is an epimorphism �̂!Z. Then �̂ �= ���Z, where �
is a crystallographic group such that vcd(�) = vcd(�̂) � 1. So by the induction
hypothesis K�1(�)c �= K�1(�). Using Proposition 4.1 we get a commutative
diagram

K�1(�)c
1���
- K�1(�)c - K�1(�̂)c - 0

K�1(�)
?

1���
- K�1(�)

?

- K�1(�̂)

?

- 0;

where the top horizontal exact sequence is the splitting given in [4], the bottom
exact sequence is the classical Bass–Heller–Swan splitting in [9], and the vertical
maps are the forget control maps. By assumption the first two vertical maps are
isomorphisms, so the third vertical map is an isomorphism.

Case 2. Assume �̂ satisfies hypothesis H and F is not a hyperelementary group.
By the induction techniques developed in [4], the restriction maps induce an iso-

morphism K�1(�̂)c
�=
�! lim �K�1(�̂H)c; where �̂H = p�1(H) and the inverse
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limit is taken over the hyperelementary subgroups ofF . There is a similar induction
isomorphism for K�1(�̂) and the following diagram commutes

K�1(�̂)c - lim
 
K�1(�̂H)c

K�1(�̂)

?

- lim
 
K�1(�̂H):

?

Notice that �̂H is a crystallographic group with holonomy of order less than jF j.
So the forget control map, for �̂H , is an isomorphism. Therefore the forget control
map K�1(�̂)c!K�1(�̂) is an isomorphism.

Case 3. Assume �̂ satisfies condition H and F is hyperelementary. In [4] The-
orem 2.14, it was shown that the forget control map is a monomorphism. We
will identify K�1(�̂)c with its image in K�1(�̂). Notice that for each s �

1modjF j, Hk(F ;As) = 0 where As = A=sA and therefore the exact sequence
1!As! �̂s!F ! 1 splits and there is exactly one conjugacy class of subgroups
of �̂s which is sent isomorphically onto F by the natural epimorphism �̂s!F
([12]). Since �̂ satisfies conditionH, for infinitely many s � 1modjF j, that is the
unique class of hyperelementary subgroups of �̂s whose order equal to the order
of F . Let K be a subgroup in this class. If H is any hyperelementary subgroup of
�̂s, not conjugate to K , then the holonomy group of �̂H is isomorphic to a proper
subgroup of F and consequently the holonomy number of �H is strictly less than
the holonomy number of �. Also there is an s-expansive map g : �̂! �̂ such that
g(�̂) = �̂K .

Let x be an element of K�1(�̂). By the stability of the controlled groups, there
is an integer S such that: for each s > S, s � 1modjF j, and each s-expansive
map g, g!(x)2K�1(�̂)c.

If we choose s as above then for each hyperelementary subgroup H of �̂s,

not conjugate to K , res�̂sH (x)2K�1(�̂H) and by the induction hypothesis

res�̂sH (x)2K�1(�̂H)c. Also, res�̂sK = g! which implies that res�̂sK (x) =

g!(x)2K�1(�̂K)c: Thus, if res : K�1(�̂)! lim �K�1(�̂H) is the restriction
map res(x)2 lim �K�1(�̂H)c: Therefore x2K�1(�̂)c which completes the proof
in Case 3 and the proof of the proposition.

By applying Proposition 4.2 to the other components of the direct sum decom-
position of KPL

�1;F (M�̂
) we derive

COROLLARY 4.3. The forget control map

KPL
�1;F (M�̂

)c!KPL
�1;F (M�̂

)

is an isomorphism. ThereforeKTop
�1;F (M�̂

) = 0.
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Let � be a virtually nilpotent group such that G has odd order. We are going
to prove the analogue of Proposition 4.2 for �. Define the holonomy number
of �, h(�), to be the minimum of the orders of the holonomy groups of the
crystallographic groups appearing in a fibering apparatus of �. Let A = (�̂; �; f)

be a fibering apparatus for � as in 3.1.1. Let q : �̂!K be an epimorphism to the
holonomy groupF , or one of the finite groups �̂s. Then the methods of [4] show that
the functor ~Ki()f satisfies hyperelementary induction ~Ki(�)f �= lim � ~Ki(�H)f ;
where �H = ��1q�1(H), the limit is taken over the hyperelementary subgroups
of K and the isomorphism is induced by the restriction maps. Notice that �H is a
virtually nilpotent group with the same virtual cohomological dimension as � and
AH = (q�1(H); �j; f) is a fibering apparatus for �H .

THEOREM 4.4. Let� be as above. Then the forget control mapK�1(�)c!K�1(�)
is an isomorphism.

Proof. We are going to use induction first on the vcd(�) and then on h(�). Let
A = (�̂; �; f) be a fibering apparatus for � as in 3.1.1.

Case 1. Assume that there is an epimorphism �̂!Z. Then there is an epimorphism
�!Zwith kernel a virtually nilpotent group with virtual cohomological dimension
less than vcd(�). The proof can be completed as in Case 1, Proposition 4.2.
Notice also that the forget control map factors through K�1(�)f and the map
K�1(�)f !K�1(�) is a monomorphism (Proposition 3.9). Therefore the map
f# : K�1(�)c!K�1(�)f is an isomorphism.

Case 2. Assume that �̂ satisfies condition H and F is not hyperelementary. Then
the proof can be completed as in Case 2, Proposition 4.2. Notice that the map
f# : K�1(�)c!K�1(�)f is an isomorphism in this case.

Case 3. Assume that �̂ satisfies condition H and F is a hyperelementary group.
First we will show that the forget control map K�1(�)f !K�1(�) is an isomor-
phism. We use the same argument as in Proposition 4.2. For infinitely many s,
s � 1modjF j, there is a unique conjugacy class of hyperelementary subgroups
of �̂s which project isomorphically to F . Let K be a group in this class. For
x2K�1(�), and for each hyperelementary subgroup H of �̂s, not conjugate to K

res�̂sH (x)2K�1(�H)f by induction, because h(�H) < h(�): Also, res�̂sK = g!, for

some s-expansive map g. So for large enough s res�̂sK (x) = g!(x)2K�1(�K)f : In
every case

res(x)2 lim
 �

K�1(�H)f �= K�1(�)f :

Therefore x2K�1(�)f , the forget control map is an epimorphism andK�1(�)f �=
K�1(�): Using Remark 3.8, we see that

K�1(�)c �= H0(M�̂
=F;K�1(�v)c) �= H0(M�̂

=F;K�1(�v)) �= K�1(�)f ;
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where the second isomorphism is obtained using the induction hypothesis, since
vcd(�v) < vcd(�). Therefore K�1(�)c �= K�1(�):

COROLLARY 4.5. The forget control map KPL
�1;G(M�)c!KPL

�1;G(M�) is an

isomorphism. ThereforeKTop
�1;G(M�) = 0.

5. A Split Short Exact Sequence

In this chapter we will show that the five term exact sequence introduced by
Steinberger and West [21], [22], reduces, in the case of a finite group of odd order
acting by isometries on a nilmanifold, to split short exact sequences.

Let � be as in (�) together with a fibering apparatus A = (�̂; �; f) as in 3.1.1.
We assume thatG is an odd order group which implies that the holonomy group F
has odd order. We are going to show that the forget control map ~Ki(�)c! ~Ki(�),
for i 6 1, is a split monomorphism. The proof will be done in two stages. First we
will show that the forget control map ~Ki(�)f ! ~Ki(�) is a split monomorphism
using the methods developed in [4]. Then we will show that the forgetful map
~Ki(�)c! ~Ki(�)f is a split monomorphism.

Let N1(�) be the subgroup of Wh(�) consisting of those elements that vanish
under the transfer map of an s-expansive monomorphism, s � 1modjF j, for
infinitely many numbers s i.e. N1(�) consists of those elements of Wh(�) that lie
in the zero eigenspace of s-expansive maps for infinitely many s � 1modjF j. We
also defineNi(�), i < 1, as the set of elements in the zero eigenspace of all maps
on ~Ki(�) induced by s-expansive maps, for infinitely many s � 1modjF j. We
will show that the forget control map ~Ki(�)f ! ~Ki(�) is a split monomorphism
and the orthogonal summand of ~Ki(�)f is Ni(�).

We start by proving an analogue of Bass–Heller–Swan formula for ~Ki(�)f .
Let A = (�̂; �; f) be a fibering apparatus for � as in 3.1.1. Assume that there
is a group epimorphism  : �̂!Z, with kernel a crystallographic group �̂0 of
rank m � 1. Then �̂ = �̂0��Z. The map  induces a fiber bundle Rm=�̂!S1

with fiber Rm�1=�̂0, [26]. Also  induces an epimorphism �!Z with kernel a
virtually nilpotent group �0 = ��1(�̂0). Then � = �0��Z. The map f induces a
fiber bundle Rn=�!S1 with fiber Rn�1=�0. Then A0 = (�̂0; �j; f j) is a fibering
apparatus for �0. Set f1 = f j.

LEMMA 5.1. With the preceding notation, there is an exact sequence

~Ki(�
0)f1

1���- ~Ki(�
0)f1 !

~Ki(�)f ! ~Ki�1(�
0)f1

1���- ~Ki�1(�
0)f1 :

Proof. Notice that there is a bundle M�!S1 with fiber M�0 . The controlled
K-groups satisfy the Mayer–Vietoris property. This follows from [25] and their def-
inition as generalized homology theory ([26], Proposition 2.1). The exact sequence
now follows as in Lemma 3.5 in [4].
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The exact sequence in 5.1 can be written as a short exact sequence

0! ( ~Ki(�
0)f1)�!

~Ki(�)f ! ( ~Ki�1(�
0)f1)

�! 0;

where ( ~Ki(�
0)f1)� = ker(1� ��) and ( ~Ki�1(�

0)f1)
� = coker(1� ��).

The next proposition uses methods similar to the ones used in [4], Section 3.

PROPOSITION 5.2. The forgetful map is a split monomorphism, and induces a
direct sum decomposition ~Ki(�) �= ~Ki(�)f�Ni(�); i 6 1:

Proof. First we will show that the two subgroups are orthogonal. Let
x2 ~Ki(�)f\Ni(�). Then for some s, s � 1modjF j, and some s-expansive map g,
g!(x) = 0. Since x2 ~Ki(�)f , g!

f (x) = 0. But by Proposition 3.7, g!
f is a monomor-

phism on ~Ki(�)f . Therefore x = 0. Notice that ~Ki(�)f�Ni(�) is a subgroup
of ~Ki(�). We complete the proof by showing the other inclusion. We will use
induction first on vcd(�) and then on the holonomy number of �, h(�). For this
we use the classification of crystallographic groups with odd order holonomy, as
in the proof of Theorem 4.4. LetA = (�̂; �; f) be a fibering apparatus for �.

Case 1. Assume that there is an epimorphism �̂!Z. Then by Lemma 5.1 and the
results of Farrell–Hsiang ([9]) we get a commutative diagram (also [4], 3.6)

0 - ( ~Ki(�
0)f1)�

- ~Ki(�)f - ( ~Ki�1(�
0)f1)

�
- 0

0 - ( ~Ki(�
0))�

?

- ~Ki(�)=Ci

?

- ( ~Ki�1(�
0))�

?

- 0

where Ci denotes the summand corresponding to the exotic Nil-groups. The first
and the third vertical maps are monomorphisms, therefore the second map is a
monomorphism. An s-expansive map g induces maps of the above exact sequences
and thus of the exact sequence of the quotients

0! (Ni(�
0))�!

~Ki(�)

Ci
� ~Ki(�)f ! (Ni�1(�

0))�! 0:

The summandCi � Ni(�) because the elements of Ci vanish after transfers along
the last Z-direction. From the above exact sequence we get an exact sequence of
the zero eigenspaces of the expansive maps

0! (Ni(�
0))�!

Ni(�)

Ci
! (Ni�1(�

0))�! 0;

which implies that ~Ki(�)� ~Ki(�)f �Ni(�). This completes the proof in Case 1.
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Case 2. Assume that �̂ satisfies hypothesis H and F is not hyperelementary. The
restriction maps induce isomorphisms

~Ki(�) �= lim
 �

~Ki(�
�1q�1(H)) and ~Ki(�)f �= lim

 �

~Ki(�
�1q�1(H))f :

The first isomorphism commutes with transfer maps induced by s-expansive maps.
Therefore it induces an isomorphism Ni(�) �= lim �Ni(�

�1q�1(H)); where
the inverse limit is taken over the hyperelementary subgroups of F . Since inverse
limits preserve direct sums and monomorphisms we get ~Ki(�)�= ~Ki(�)f �Ni(�):

Case 3. Assume that �̂ satisfies hypothesis H and F is a hyperelementary group.
The proof in this case is similar to the proof in Case 3 in Theorem 4.4.

Remark 5.2.1. The forgetful map �i : ~Ki(�)c! ~Ki(�) fuctors through ~Ki(�)f .
Therefore Im(�i)\Ni(�) = f0g and the map pi : ~Ki(�)! ~K

Top
i (�) is a monomor-

phism when restricted toNi(�). We writeN 0i (�) = ~K
Top
i (�)=Ni(�). Then the exact

sequence

~Ki(�)c! ~Ki(�)! ~K
Top
i (�)! ~Ki�1(�)c! ~Ki�1(�)

induces the exact sequence, for i 6 1,

~Ki(�)c
f#
�! ~Ki(�)f !N 0i(�)!

~Ki�1(�)c
f#
�! ~Ki�1(�)f :

Next we study the forgetful map f# : ~Ki(�)c! ~Ki(�)f . We will show that it is
a split monomorphism.

PROPOSITION 5.3. With the above notation, the forgetful map f# : ~Ki(�)c!
~Ki(�)f is a split monomorphism.

Proof. We will use induction on vcd(�). Therefore the forget control map

h# : ~Ki(�)c! ~Ki(�)h

is a split monomorphism if vcd(�) < vcd(�) (here h is a map appearing in
a fibering apparatus for �). Thus by Proposition 5.2, the forget control map
~Ki(�)c! ~Ki(�) is a split monomorphism. By 3.7 there is a spectral sequence

converging to ~Ki+j(�)f (for i+ j 6 1) with

E2
i;j = Hi(M�̂

=F; ~Kj(�v)):

But vcd(�v) < vcd(�) and the assumption hypothesis implies that

~Kj(�v) = ~Kj(�v)c � ~K
Top
j (�v); i 6 1:

The map ~Kj(�v)c! ~Kj(�v) is the forget control map. Therefore the E2-term
above splits as a direct sum with one summand Hi(M�̂

=F; ~Kj(�v)c) which is the
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E2-term of the spectral sequence of 3.3 converging to ~Ki+j(�)c. By Lemma 3.8
the forget control map induces a map

E02i;j = Hi(M�̂
=F ; ~Kj(�v)c)

A0

ij

�! Hi(M�̂
=F ; ~Kj(�v)) = E2

i;j;

on the E2-terms of the spectral sequences of Proposition 3.3 and Proposition 3.7
that in turn induces the map �f# : ~Ki(�)c! ~Ki(�)f on the associated graded groups.
Since vcd(�v) < vcd(�), the induction hypotheses implies that the forget control
map

(fv)# : ~Kj(�v)c! ~Kj(�v)fv ; j 6 1

is a split monomorphism. Thus the five-term exact sequence of Remark 5.2.1 is
reduced to a split short exact sequence

0! ~Kj(�v)c
(fv)#
- ~Kj(�v)fv !N 0j(�v)! 0; j 6 1:

The proof that f# is a split monomorphism will be done in two steps.

Step 1. The map f# is a monomorphism and there is an exact sequence

0! ~Kj(�)c
f#- ~Kj(�)f !N 0j(�)! 0; j 6 1:

Proof. The map A0ij on the E2-terms is a split monomorphism. Therefore the
map �f# induced on the E1-terms is a split monomorphism of graded groups. A
diagram chase shows that f# is a monomorphism, not necessarily split. The short
exact sequence is derived from the five-term exact sequence of Remark 5.2.1.

Step 2. The map f# is a split monomorphism.
Proof. The group E2

i;j splits as a direct sum for j 6 1

Hi(M�̂
=F; ~Kj(�v)c)�Hi(M�̂

=F;N 0j(�v)):

The inclusion and projection maps

~Kj(�v)c! ~Kj(�v)! ~Kj(�v)c

induce maps in the E2-terms of the two spectral sequences. The maps commute
with the differentials. Thus d2 is given as a diagonal matrix�

d02 0
0 d002

�
: Hi(M�̂

=F; ~Kj(�v)c)�Hi(M�̂
=F;N 0j(�v))

!Hi�2(M�̂
=F; ~Kj+1(�v)c)�Hi�2(M�̂

=F;N 0j+1(�v));

for j 6 0. Then in the limit of the spectral sequences we get an isomorphism

~Ki+j(�)c �N 0i+j(�)!
~Ki+j(�)f ;
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where the first map is f# (the supplementary summand of ~Ki+j(�) isN 0i+j(�) being
the cokernel of f#). Therefore the forget control map f# is a split monomorphism.

By combining the results in Propositions 5.2, 5.3, we derive the following

THEOREM 5.4. With the above notation

(a) The forget control map ~Ki(�)c! ~Ki(�) is an isomorphism for i 6 �1 and a
split monomorphism for i = 0; 1.

(b) The forget control map ~KPL
i;G(M�)c! ~KPL

i;G(M�) is an isomorphism for i 6
�1 and a split monomorphism for i = 0; 1.

(c) The sequence

0! ~KPL
i;G(M�)c! ~KPL

i;G(M�)! ~K
Top
i;G (M�)! 0

is split exact for i 6 1.
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