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Abstract

A review on ruin probabilities in the collective risk theory is given. Two-sided bounds of ruin
probabilities are proposed for a classical risk model. Under Cramér’s condition, these bounds
coincide with those obtained by Rossberg and Siegel. In the heavy-tailed case, the bounds are
new.

1 Introduction

Ruin probability is a convenient characteristic of a collective risk process which can be regarded
as surplus dynamics of an insurance company. The surplus varies owing to two reasons: clients’
premium incomes and claim expenses. Usually (but not always) models with deterministic premium
income process are considered. However, the insurance claim sizes are always stochastic. Therefore,
the risk process is random. The policy of an insurance company determines the premium and
claim sizes. Obviously, a stochastic nature of risk process should be taken into account in this
determination. In practice this is performed via the central limit theorem. Namely, a normal
approximation of the accumulated claim sizes is yielded by a sufficiently large number of claims
during some time interval and this provides the possibility to calculate an appropriate premium size
for any given confidence level. Application of the large deviations theory permits to improve the
approximation.

However, for decisions of any kind and especially for determination of the premium size, it is
intentional to have a criterion evaluating the quality of these decisions which is sensitive to parameter
variations. One of the most popular criteria is the ruin probability, conceivable as the probability
that the risk process falls below a prescribed level (for example, zero) during a given time interval
(finite or infinite). Usually, ruin probability is regarded as a function of an initial capital of an
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insurance company (initial surplus). The mathematical research of ruin probability began with the
classical works of H. Cramér [39], [40], and his results can be found in textbooks on probability theory.
Recently this problematic enjoys great popularity. The involved questions are very interesting from
the mathematical point of view and require elaboration of new research methods. It is sufficient to
note that even for the analysis of classical models, such methods as the Wiener-Hopf factorization,
Spitzer’s intentity, the martingale theory, the Markov process theory, the random walk theory and
many others were enrolled. The desire to exanime more realistic models leads to consideration of
new factors (inflation, reinsurance, etc.), to the unavoidable enlarging the spectrum of the applicable
methods, and also to new qualitative phenomena. For example, the asymptotic behaviour of the ruin
probability (as the initial capital of an insurance company infinitely increases) is completely different
in the two cases, where a random claim size has an exponential moment or where its distribution
has a “heavy tail”.

Since it is impossible to find the ruin probability in a closed form for many models of interest, it
is necessary to seek its approximations. The famous Cramér-Lundberg formula (see [75]) provides
a nice example of such an approximation. This and other similar approximations are discussed in
Section 2. Heuristic approximations (like De Vylder’s formula; see [98] and [181]) represent another
type of approximations. If we consider a diffusion approximation, it can be regarded as a third
type of approximations obtained with the help of limit theorems. All these approximations are
discussed in Section 2. Their essential defect is the absence of their accuracy estimates. Moreover,
these approximations may yield huge relative errors. Because of this, it seems preferable to seek
lwo-sided bounds of ruin probabilities. A significant part of this paper is devoted to elaboration
of methods that yield such bounds showing at least the area which an unknown function belongs
to. Among the variety of approximations, numerical and simulation methods should be mentioned.
The effectiveness and correctness of these methods is usually provided by solutions of non-trivial
mathematical problems. For example, the standard methods of mathematical statistics do not work
for estimation of ruin probabilities by crude simulation of risk processes because the ruin represents
arare event. This leads to the necessity of simulation, for example, of processes transformed from an
initial risk processes by appropriate change of the underlying probability measure. However, both
the form of such a transfomation and its computer realization are far from trivial. A series of works
that examine similar problems, are referred to in Section 2.

The structure of this paper is the following. In Section 2 a short review of the literature on ruin
probability is given. The rest of the paper is devoted to the search of bounds for ruin probabilities.
In Section 3, additional notation is introduced needed for study of the ruin probability as distribu-
tion function of a so-called geometric sum, that means a sum of independent identically distributed
random variables (i.i.d.r.v.) in a random number which is a geometrically distributed and indepen-
dent of the summands. Section 4 is devoted to two-sided bounds of the ruin probability in the case
of Cramér’s condition. These estimates were derived earlier by Rossberg and Siegel [146], but our
method is essentially simpler and based on probabilistic arguments only (not analytic). Sections 5
and 6 include correspondingly lower and upper estimates of ruin probability in the case when claim
sizes have no finite exponential moment. Numerical calculations illustrating these results are given
in Section 7.

2 Review and basic notation

Let ¢ > 0 denote an initial capital of an insurance company; S(t) is the total premium size, paid
by clients during time interval {0,¢}; T;, Z;,7 > 1, are sequences of times at which claims are paid
and corresponding claim sizes, 0 < 77 < T < T3 < .. 5 N(t) = max{n : T,, < t} is the number of
claims in the time interval [0,t]. We consider (if it is not said an opposite) that the function S(t)
is non-negative, continuous and non-decreasing, and the claim sizes Z; are positive. We define risk




process X (t), t > 0, by the following balance equation

X@W)=z+SWt) - D Z (2.1)

i<N(t)
and let a ruin epoch be given by the relation
r=inf{t: X(t) < 0}. (2.2)

In general, the process {S(t)} and sequences {7;} and {Z;} are random. Hence, the risk process
{X(t)} as well as the ruin epoch 7 are random too. But the r.v. 7 is not proper (in general) in the
sense that P(7 < 00) < 1. The function

¥(z) =P(r < o0 | X(0) =2z) (2.3)
is called an infinite-time ruin probability given initial capital z. The function
U(t,z) =P(r<t|X(0)==z) (2.4)

is called a finite-ttme ruin probability over horizon ¢ given an initial capital z. Probability (2.3)
serves as the main object of our research, although we will touch a finite-time ruin probability also.

We will speak about the Sparre Andersen risk model (see [3], [98]) in the cases, where process
S(t) is deterministic and S(t) = ct (constant ¢ > 0 represents a gross premium rate), sequence {Z;}
consists of i.i.d.r.v.’s, and {T;} is a renewal process, that is inter-occurrence times 0; = T; —T;_1,1 >
1, are i.i.d. In this case, we denote the disribution function (d.f.) of claim sizes by

B(u) = P(Z1 < u) (2.5)
and the d.f. of inter-occurrence times by
A(u) =P(6; < u). (2.6)

We will speak about a classical risk model, if it is a Sparre Andersen model with

A(u) = 1 - exp(—du). @27)
Let
o = /O " wdA() < o, (2.8)
by = /0 "~ wdB(w) < oo, (2.9)
p = ca‘b:b1>0. (2.10)

The last relation means particularly that the risk process decreases in the mean, and constant p is
a relative safety loading.

Mathematical aspects, associated with ruin probabilities, are examined in a great number of
works, among them several books that bring to light the state of art to the moment of their publica-
tion from the point of view of the author’s interest. We mention the most important monographies,
where further references can be found: [12], {27}, [38], [55], [84], [93], [98], [140], [153].

The modern theory of ruin probabilities can be traced back to F. Lundberg’s works [126] and
[127] where the first estimates of ruin probability (in paricular, the famous Lundberg inequality) were



obtained. However, as it usually happens, Lundberg’s works do not contain rigorous mathematical
statements. Because of this, the establishment of the mathematical collective risk theory is usually
reffered to Cramér’s works [39] and [40]. In these works, a classical risk model is examined under
the additional assumption (known as the Cramér condition) that a unique positive solution # > 0
(called Lundberg’s exponent) of the equation

_)l ooeRu - "=
- /o (1= B(u))du=1 (2.11)

exists. In this case (see [75], Chapter 11) function ¥g(z) = ¥(z)e"* satisfies the renewal equation
yielding the limiting relation
lim ¥g(z) = ker, (2.12)
E L d >0

where
[ e®™ [°(1 — B(v)) dv du
fs7 ueRu(1 ~ B(u)) du

is the so-called Cramér-Lundberg constant, and the relation (2.12) can be written in the form of the
Cramér-Lundberg asymplotic formula

kor = (2.13)

¥(z) ~ kCLe—Rz. (2.14)

Note that in the case of the Markov risk model, for which

B(u) = 1 — exp (—bi) : (2.15)
1
the function ¥(z) can be found in a closed form
¥(z) = lip exp(—Rz), (2.16)
where p
R= —r——. 2.17
b1(1 + p) ( )

A classical risk model is generalized in [59], where the risk process process X(t) is defined by the
relation
Xt)y=z+ct- Z Zi + W(t),
i<N(1)

where W (t) is the Wiener process, EW(t) = 0. It was shown, in [59] that the ruin probability
satisfies a renewal equation for a stopped renewal process and the cases where its solution can be
found in a closed form were discussed.
Relation (2.14) holds also for Sparre Andersen models, if one replaces (2.11) by the Cramér
condition in the form
Eexp(R(Z1 — b)) =1 (2.18)

and redefines the constant kcp. This generalization is discussed in [72] (see also works [23], [98],
[167], [168], [170], and [171]). All these works used the Wiener-Hopf theory and relationships between
the ruin probability ¥(z) and the distribution of maximum of a random walk and the corresponding
ladder epochs and heights (see [23]):

¥(z) = P(M > z), (2.19)




where

M = supoy, (2.20)
k

oo = 0, op =&+ - + &, (221)

f,' = Z,' - Cﬁi (2.22)

We note that the waiting time in a single server queue equals (in distribution) to the total maximum
of a random walk (see [6], [8], [75], [125], [155]), and this relationship permits to translate the
queueing theory results to the risk theory and vice versa. This analogy was examined in details in
[11].

In order for the Cramér conditions (2.11) (or (2.18)) to hold, it is necessary, but not sufficient
(in general; see [72]) the existence of an exponential moment

/00 ™ dB(u) < oo (2.23)
0

for some « > 0.
In works [167] and [72] the asymptotic behaviour of ¥(z) in the case where (2.23) holds, but the
Cramér condition (2.18) fails, is examined. If

r = sup{a: Eexp(a(Z; - cby)) < 1},

but
E exp(r(Z; — ¢b1)) = o0,
then
¥(z) =o(e™7").

It is adopted that relations of the Cramér-Lundberg type approximate ¥(z) to a good accuracy.
But the real accuracy of these approximations remains unknown and can attain tens of percentages
(see [95], [96], [98], [101], [181]). In addition, the computation of the Lundberg exponent requires
the exact knowledge of d.f.’s A and B that does not hold in practice. A variety of approximations
of ruin probability were suggested. They can schematically be divided into two classes: heuristic
approximations and approximations resulted from limit theorems of probability theory. It is true
that the real accuracy of all approximations in both classes remains unknown. Practical calculations
showed that heuristic De Vylder’s approzimation is accurate enough (see [97], [98], [181]). It is
applicable to a classical risk model and consists in the following. Let X™*(t) be a classical risk process
with exponential distributed claim sizes (Markov model) that can be determined by parameters A*, b3
and p*. Let X(t) be the initial (classical) risk process with the mean claim size b; and parameters
A and p. Let us find the parameters A*, b} and p* from the following three equations:

EX*t) = E(X@®)*, k=123

It can be proved that these equations define the desired parameters uniquely. De Vylder’s approxi-
mation ¥py (z) of ¥(x) can be regarded as ruin probability for process X*(t) and it is defined by
formulae the (2.16) and (2.17), in which one must substitute A*, b7 and p* instead of A, b; and p.
Let us mention that De Vylder’s approximation can be used also for estimates of fintte {ime ruin
probabilily since the Markov risk model permits this kind of calculations.

Let us mention also the Beeckman-Bowers approzimation (see [28], [98]), which is applicable to
the classical risk models and consists in the replacement of the function H(z) = 1 — (1 + p)¥(z)
by a gamma distribution function such that the first two moments of this distribution coincide with
the first two moments of H(z).




The diffusion approximation is an example of usage of limit theorems to find ruin probability.
For this, a Sparre Andersen risk process is replaced by a Wiener process (see [95], [98], [109]).
The correctness of such a replacement.(accompanied by standard normalizations of time and state
variables) is yielded from the invariance principle (see [109] and [98]). For Wiener’s process, the
problem is reduced to the first passage time problem which has been already solved. Weak points
of this approach are the following: (1) low real accuracy of the estimates, reaching hundreds of
percentages (see [98]); (2) disagreement between the exponential form of ruin probability resulted
from the diffusion approximation and the minimal requirements in concern with the form of the
claim size d.f. In reality, under this approximation only existence of the two first moments of the
d.f. B is required that does not yield the exponentiality of ¥(z).

It seems that Gerber’s works [82] — [84] opened the gate for martingales to the theory of ruin
probability. In order to give an impression of this approach, we examine a classical risk model that
satisfy the Cramér condition. Let

1(t) = exp(—RX(t)), (2.24)
where R > 0 is the Lundberg exponent (see (2.11)). Then, for any u > 0,
o k
Bu(t + )| u(0) = O Y Bk emhueReupeRaie 420 = () (2.25)
k=0

that is p(t) is a martingale. Let 7 be a ruin epoch (see (2.2)). As X(t) — oo a.s. when t — o0, it
follows from (2.25) that

E(u(r); T < 00) = u(0) = e F%.
By (2.3), the ruin probability takes the form
exp(—Rz)
¥(z) = . 2.26
®) = B Tr < ) (220)
Since u(r) > 1, relation (2.26) yields the Lundberg inequality
¥(z) <e Fe. (2.27)

In fact, the equation (2.26) relates the ruin probability with variable E(u(7) | 7 < 00). A series
of estimates of this variable can be found in [82], [84]. Two-sided estimates of ruin probability
presented in [146] immediately follow from (2.26):

Ce R < ¥(z) < Ce B, (2.28)

¢ = yigg{e~"y(1 -5 e dB(u))_l},
C = zs/g% {e“Ry(l - B(y)) (/yoo eft dB(u))-l} .

It is noteworthy that the estimates (2.28) were found in [146] not for a classical model, but for a
more general Sparre Andersen model. The martingale approach and its “relatives” based on the
theory of Markov processes and generalized Dynkin’s formula turned to be productive and were
applied to a variety of models, the majority of which satisfying analogs of the Cramér condition; see
[43], [59), [65], [90], [134], [142], [166], [180], [190], and [191]. We mention a recent work [78], where

where




the results of paper [59] are spreaded to the case of Sparre Andersen’s and more general models.
Using the structure of Markov piecewise-deterministic processes (see [44], [45], [112], [114]) and
constructing martingales of an exponential form for them, the authors obtain two-sided estimates of
finite- and infinite-time ruin probabilities. Finite-time ruin probability ¥(t, z) was examined also in
(7], [26], [51], [68], [89], [108], and [175]. As a matter of fact, probability ¥(¢, z) is more interesting in
collective risk theory. However, it is extremely difficult to find it and this explains the small number
of works devoted to this problem.

A series of works is devoted to ruin probability in a Coz model, where claim occurrence times {7T;}
form a Coz process, conceivable as a Poisson process with randomly varying intensity. One of the
first work in this direction was done by Ammeter (see [2]), and this model was systematically studied
in Grandel’s book [98] (see also [33], [64], [111], [110], and [143]). The interest to the Cox model
can easily be explained by practical needs to account claim size (or rate) fluctuations. A particular
case of Cox process is the so-called Markov modulaled process, when the intensity is governed by a
Markov process. A number of works are devoted to this case, see [9], [10], [13], [L02] and references
therein. Among recent works on this topic, using martingale approach, we mention [68], [150] and
[151].

One of the important directions in collective risk theory is the ruin probability theory in the
case, where the Cramér condition is not satisfied and particularly, where the claim size distribution
has heavy tail that means when it has no finite exponential moment. Now the ruin mechanism
differs from the corresponding mechanism in Cramér’s case. While in the Cramér case the ruin
occurs as the result of accumulation of many claims of “modest size”, in the heavy tailed case the
typical ruin is resulted from one large claim size. Simulation of risk processes shows impressively
this difference (see [147]). Of course, if the variance of claim sizes is small, then the ruin mechanism
is approximately the same as in the Cramér case, even in the presense of large claims.

Let us consider the Sparre Andersen risk model (see notation (2.5) — (2.10)) and use the ruin
probability representation as maximum of a random walk (2.19). We define a ladder epoch of the
random walk (see [8], [75])

L = inf{k: o > 0}. (2.29)

By condition (2.10), L is an improper random variable. Let
qg=P(L = 0). (2.30)

We define the conditional distribution of a ladder height or:
Fy(u) =P(op < u|L < o0). (2.31)

It is well known (see for example, [8]) that the maximum M of the random walk o} satisfy the
following equality in distribution

MExi+ - +x-, (2.32)
where r.v. v does not depend on the sequence of r.v.’s x1, X2, . . ., follows the geometric distribution
Plv=k)=q(1-¢)* !, k>1, (2.33)

and
P(x1 < u) = Fy(u), (2.34)

For the classical risk model, the following relations hold (they may be viewed as a consequence
of the Pollacheck-Khinchine formula; see [8]):

, (2.35)




Fo(u) = % /0 "= B(2)) dz, (2.36)

which facilitate significantly the ruin probability analysis.

If we remove the assumption about the exponentiality of the distribution of r.v.’s {§;}, then
formulae similar to (2.35) and (2.36) can be found for stationary sequences of occurrence times (see
[21] and [133]), but in this case we can not use any relation of the form (2.32). Equality (2.19)
together with (2.30) — (2.34) renders to the following representation of ruin probability

o]

¥(z) =Y g1 - q)F T EED(a), (2.37)

k=1

where F,Ek‘l) is the (k — 1)-fold convolution of d.f. Fy, and F',((k—l)(u) =1- F,Ek_l)(u).
The following class S of d.f.’s plays an important role in examination of the risk processes when
the Cramér condition does not hold: Fy € S, if

1— F2(u)

im —2X 2 =2, 2.38
w0 1 - Fy(u) ( )
It follows from equality (2.38) that 1 — F,E")(u) ~ 1— F?(u). This means that the sum x1+ --- +Xxn
behaves asymptotically as max(xi, ... Xn). Various properties of d.f.’s from the class S as well as
from other related classes are studied in works [31], [66], [67], [72], [79], [92], [112], [144], and [171].
If F) € S, then, by (2.37),

¥(z) ~ 1%"(1 ~ Fy(=)),

see [72]. Particularly, if we examine the classical risk model, then

1 o0
\Il(:c)~-/-)7):/$ (1 - B(u) du. (2.39)

The result (2.39) was found at first in the two special cases: when the claim sizes follow the Pareto
distribution (see [24]) and the lognormal distribution (see [176]). A general case is examined in
the fundamental work [72], where the case F, € § as well as other cases were studied using the
Wiener-Hopf theory. Known defect of any asymptotic approximation in general and of (2.39) in
particular is the absense of convergence rate estimates. As we will see in Section 7, relation (2.39)
can be too optimistic. Among other works devoted to the “heavy tailed” case we mention [1], [15],
[22], [73], [116], and [121]. In particular, the asymptotic of ruin epoch and the claim size that yields
a ruin is studied in [15].

Similar to the Cramér case, in the heavy tailed case (large claim sizes) there is an interest to
generalizations accounting fluctuations in the intensities and claim sizes. A series of results in this
direction can be found in [9], [10], [12], [13], and [14].

A few works are devoted to the analysis of the influence of new factors on ruin probability. Thus,
it is proved in a recent work [123] that the introduction of an interest rate into the classical risk
model in the presense of large claim sizes leads to an asymptotic behaviour of ¥(z) that differs from
(2.39). Namely, if 6 > 0 is the interest rate coefficient (this means that the capital y increases up to
the value yexp(6t) during time t), then

¥(z) ~ ks(1 = Fy(z)), 6> 0, (2.40)

where the coefficient k5 depends on 4 (in the case § = 0 we have formula (2.39)). This topic is
considered in {161} as well.




Formula (2.40) profess the thesis that an asymptotic representation does not disclose complete
information about the behaviour of ruin probability. It is proved in [185] that if the inflation factor
is taken into account in the Sparre Andersen model, then ¥(z) = 1 (see also [183]). Reinsurance
models that have a significant applied interest, lead to complicated mathematical problems (see
(182], [187]). Works [77], [78], 147}, and [148] examine models in the presense of loans, investments,
and random character of premium income.

As we have already seen, the analytical calculation of ruin probability is difficult and, for this
reason, numerical procedures for calculation of ruin probabilities are of interest (see [132], [139],
[157], [158], [172], [177], and [160]). An effective algorithm for calculation of ruin probability for
a classical risk model, based on representation (2.37), was proposed in [58] and [94]. A reccurent
procedure that works with upper and lower discrete approximations of d.f. F was constructed (see
[29] and [55]). A recursive estimate of finite time ruin probability ¥ (¢, z) is described in [118]. Similar
problems are considered in [50] and [175]. A matrix approach for calculation of ruin probability is
developed in [18]. For this, the distribution B of claim sizes is replaced by a phase type distribution,
which has a finite exponential moment. Despite this, the accuracy of the proposed approach remains
high, even in the cases where B has heavy tail. Monte-Carlo methods can be regarded as specific
numerical methods. Obviously, the estimates that use a relative number of successes (of ruins) do
not work as the ruin probability is small. Because of this, special methods for rare event estimates
are elaborated and an analogy between ruin probability and the stationary waiting time distribution
in a single server queue is studied (see [11], [20], [58], [105]).

Finally, we mention statistical aspects of the risk theory. Here we list works [30], [52], [69], [70]
that propose different models to describe the appearance of extremal situations. A series of papers is
devoted to estimates of parameters in risk models (see [16}, [41], [46], [106], [145], and [152]). Various
estimates of ruin probability are proposed in works [42], [74], [76], and [107]. In particular, paper
[42] is devoted to the asymptotic behaviour of a nonparametric estimate of ruin probability in the
classical risk model. This estimate is based on representation (2.36), in which the real distribution
of claim sizes is replaced by the corresponding empirical distribution.

3 Additional notations

We return to the representation of ruin probability at a Sparre Andersen model in the form of a
geometric sum (2.37). As we have already noted, this is quite convenient from many points of view,
In the present paper, we shall start from this representation as well.

Let us introduce a renewal process

So=0, Sa=xi+ - +xa(n21) (3.1)

and let
N(z) =min{n: S, > z} (3.2)
and
€z = SN(@z) — & (3.3)

be the ezcess of renewal process (3.1) over level > 0. It is not difficult to show (see, for example,
[113] or [115]), that
¥(z) = E(1 — ¢)V®), (3.4)

Formula (3.4) serves as starting point for various estimates of ¥(z).
Let us introduce the following classes of non-negative monotone increasing functions defined on
[0, 00):




(1) class £ consists of these functions A such that A(0) = 0, limy e A(u) = 00, A(u)/u does not
increase and limy, o0 A(u)/u = 0;
(2) class G*, s > 0, consists of these functions G(u) = exp(A(u)), A € L, such that

N & C) I
ull»ngo (1 + ‘U)’ =%

(3) class G, consists of these differentiable functions G such that G(u) is convez for u > 0 and
its derivative g(u) = dG(u)/ du is concave for u > 0 and g(u) — oo for u — oo.

Let us note that class G, appears in a natural way in the study of the uniformly integrable r.v.’s
(see [115], Section 1.1).

The following assertions hold true. We will not prove them since the proof is quite similar to
that of Theorem 2.3.1 from [114].

Lemma 1 Let Y be a non-negative r.v. IfEY*® < 00, s> 0, then
(1) there ezists a function G € G such that E (1+Y)*"1G(Y)) < oo;
(2) there ezisis a function G € G* such that EG(Y') < oo.

Obviously, G* C G* for s > t. In addition, if G € G*, s > 0, then the function G is subezponential
in the sense that
lim e " G(u) =0
U—+00

for any k& > 0. As for any finite (a.s.) r.v. Y there exists a function G € G* such that EG(X) < oo,
the finiteness of EG(X) does not mean, in general, that X € S, where class S is defined in Section
2 (see also [72] and [165]).

We introduce additional notation

¢ = —-In(1-g), (3.5)
_ 0, ifu<o,
1u) = {1, ifu>0,

_ 0, if the event B occurs,
I(B) { 1, otherwise,

aAb = min(a,b),
aVb = max(a,b),
(a)+ = aV 0,

(3.6)

which we use together with other notation introduced in this section and with notation (2.29) -
(2.37) without any comments.

4 Two-sided estimates under the Cramér condition

We first examine the case, in which the Cramér condition holds. That is we assume the existence
of a positive solution R > 0 of equation (2.18). Since sequence exp(Roy,), n > 0, is a martingale,
standard arguments lead to the equation

(1 - g)Eexp(Rx1) = 1. (4.1)
Let us consider the Markov sequence

(o =(n,5,), n>0, (4.2)
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and put
V(¢a) = (1 —¢q)" exp(RSn), V(o) =1. (4.3)

The Cramér condition (4.1) yields that V({,) is a martingale and as N(z) is a stoping time (EN(z) <
00), the following equation holds true

EV((N@)) = E ((1 - gN® exP(RSN(z))) =V()=1.
We rewrite it in the form (cf. (3.3))

E ((1 - g)N= exp(Re,)) = exp(—Rz).

Hence,
E ((1 — ¢)V®E (exp(Re) | N(:c))) = exp(—Rz), (4.4)
It can be proved that
k < E(exp(Res) | N(z)) < F (4.5)
with probability one, where
.. J° exp(Ru) dFy(u)
b= i - R (4.9)
P [, exp(Ru) dFy(u) @7)

v30 exp(Ru)(1 — Fy(v))’

Constants k and k are not convenient for calculations because they are expressed in terms of the
auxiliary distribution F). However, it can be shown that estimates (4.6) and (4.7) still hold if we
put there B instead of Fy. Two-sided estimate (2.28) follows from (4.4). As it has been already
mentioned, this estimate was firstly derived by Rossberg and Siegel in [146] by compicated analytical
methods. We also remark that the Lundberg inequality (2.27) follows directly from relation (4.4).
The accuracy of estimates (2.28) in concrete examples was examined in [117).

To close this section we give a heuristic approzimation of ruin probability as a naive consequence
of formula (4.4). If we consider ¢, and N(z) as independent r.v.’s (which is not true in general),
then it follows from (4.4) that

_ exp(—Rz)
=) = Eexp(Rez)
Further, we put instead of the real distribution of the excess ¢, its limit distribution that has the

form (2.36) and exists under well-known non-restrictive conditions on the renewal process (3.1) (see
[115]). Then

1 o0
E exp(Re;) = b_x-./o e (1 — Fy(u)) du = m

As a result, we arrive at the following heuristic approximation

(1-0Rh _p,

\Il(:c) ~ ‘I’H(J:) = p

(4.8)

The accuracy of the proposed heuristic approximations (4.8) is illustrated in the following two
examples, where the exact values of ruin probability are taken from Grandell’s book [98]. In both
examples, we examine a classical risk model.

Example 1. Mizture of ezponential distributions’

1




In this example the claim size distribution is a mixture of three exponential distributions:
1 — B(u) = 0.0039793 ¢~0-014631u 4 ( 1078392 ¢~0-190206% (8881815 ¢~ >-514588,

The mean claim size is equal to 1. The results of calculations by formula (4.8) are shown in the
following table

p z | ¥(z) | ¥u(x)
10 | 0.8897 | 0.8597
0.05| 100 | 0.7144 | 0.7161
1000 | 0.1149 | 0.1151
10 [0.7993 | 0.7513
0.10 ] 100 | 0.5393 | 0.5431
1000 | 0.0210 | 0.0211
10 | 0.7242 | 0.6657
0.15] 100 | 0.4247 | 0.4301
10 [ 0.6611 ; 0.5969
0.20 | 100 | 0.3455 | 0.3522
10 | 0.6073 | 0.5406
0.25 | 100 | 0.2886 | 0.2961
10 {0.5610 | 0.4936
0.30 | 100 | 0.2461 | 0.2540
10 }0.2634{ 0.2199
1.00 | 100 | 0.0724 | 0.0787

The figures appearring in this table show a pretty high accuracy of the proposed approximation.

Example 2. Gamma distribution
Now we consider that the claim sizes follow the gamma distribution with mean 1:

u L,B-131/8
B(u):/0 -Z—T‘-(—g)—exp(—zﬁ)dz,

where I'(3) is Euler’s gamma-function. The following table contains the results of calculations for
B =0.01and p=0.1:

z 300 600 900 1200 1500 | 1800 | 2100 | 2400 | 2700 | 3000
¥(z) [0.5211]0.3087 | 0.1829 | 0.1083 | 0.0642 | 0.0380 | 0.0225 | 0.0134 | 0.0079 | 0.0047
Yy(z) [ 0.5221 | 0.3093 | 0.1832 [ 0.1084 | 0.0643 | 0.0381 | 0.0226 | 0.0134 | 0.0079 | 0.0047

These figures also claim the high accuracy of the approximation.

5 Lower bounds in the presense of large claims

In this and the following sections we shall examine the case, where the Sparre Andersen model does
not satisfy the Cramér condition (2.18) and there is no exponential moment of the claim sizes Z;.
We say in such a case that d.f. B has heavy tail. Specific restrictions, under which the following
consideration holds, will be posed when necessary.

In order to avoid cumbersome expressions, we suppose that

EX1<oo
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and examine the normalized r.v.’s i
2

==} } Z ) .
X B i>1 (5.1)
and the corresponding sum
o0
To(z) =Y _g(1— g TFEY, (5.2)
k=1
where
F(u) = P(X; < u). (5.3)

By force of (2.34), (2.37), (5.1), and (5.2) the following relations are obvious and can be used for
transformation of “narmalized characteristics” into those required by the original setup:

Fy(w) = F('E%) (5.4)
¥(z) = ¥ (Eixl) (5.5)

Let us regard all r.v.’s having different notations (in the sense of either different literal notations or
different indices) as independent. Moreover, variables with different indices only, will be regarded
as indentically distributed. For example, r.v.’s X, X;, X2 and Y are considered as independent by
default, and X, X; and X, are i.i.d. as well. Besides, we shall omit the index of a r.v. when stating
any property in terms of the d.f. of a generic r.v. from a set of i.i.d.r.v.’s. For example, the mean
value of a r.v. X; will be denoted as EX (instead of EX;).

Let us introduce “truncated” non-negative r.v.’s (the truncation parameter is b > 0), defining
their d.f.’s on the non-negative half-axis:

FO@) = PX() <u)= { f (u), gtgefw';;e, (5.6)
o = rrosa= {5 T2t on
Thus,
X(b) £ XAb, (5.8)
Y £ XI(X >b). (5.9)
Let us denote the moments of the variable X (if they exist) by
pi =EX', i>1, (pp=1). (5.10)
If G is a non-negative measurable function then we denote
»(G) = EG(X), (5.11)

where the case p(G) = oo is possible. Let now
pi(d) = EX*(b), i21.
Obviously, there exist all power and exponential moments for the truncated r.v. X(b). Let

N®(z) = min{n: X1(b) +- - + Xn(b) > z}.
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Renewal function EN(®)(z) satisfies the following Lorden’s inequality (see [115], Section 1.5):

¢ pa(b)

EN®(z) < + : 5.12
RO REEI0 (5:12)
Lemma 2 Let 2 < oo. Then
2bz
EN® ()< ——— 4 ;. 5.13
@ G—p, TP 19
Proof. Since ¢1 = 1 and ¢ < 00,
o] 1 o0 ©2
p1(b)=1— (1-F(u))du>1-— u(l— F(u))du>1- .
b b J, 2b

It is easy to see that 2(b)/@3(b) is a non-decreasing function of b. Hence ¢2(b)/9%(b) < p2/9? = 2.
Thus, inequality (5.13) follows from (5.12). m]

Lemma 3 Let o3 = o0 and ¢(G) < oo for a function G € G, G(0) = 0. Then

®) (g g(b) . 2bp(G)
ENT®) < Qo —p@)s ( 00 —so‘<G>>+)' (5.14)

Proof. By the condition, g3 = oo and therefore the function G cannot increase faster than the
quadratic function. By Lemma 1, there exists a function G € G, such that ¢(G) < co. Similarly to
Lemma 2,

¢(G)
b) > 1 - ===
901( ) = g(b)
We have ) )
2b 2bp(G)
(,02b):2/u1—F(u)du§--—-/gu1—Fu du < .
0 =2 [ u( - Fw)du < 5 [ o)1 - ) du g 2
Relation (5.14) follows now from Lorden’s inequality (5.12). o
Let us find lower estimates of the function ¥y(z).
Theorem 1 Let p; < 00. Then
1-F
Uo(z) > E(z;92) + K{q, .z')_q(_x)‘ (5.15)
where
, ¢'(zV (202)) )
E(z; = exp(— exp | — )
(25 02) P(—¢'p2) exy ( v 2r) = 73)
2
g*(1-gq) ( ' 2 ’ )
K(g,z) = =—%(14+exp(—qys)— —(1 - exp(—q'y. ,
(¢,2) @) p(='y) = ( p(—q'v»))
z  p2—1 2z
. = = 1—4/1 .
wo= Pl i 2




Proof. By definition of X;(b) and accounting relation (3.4),

p(z X,.@”)w(z Xn ¥ X,.Msx)

i<v-1 i<v—1 i<v-1

\I’o(:l:)

E(l — q)N(b)(w) + Zq(l _ q)n-—lp ( Z X; >z, Z XiANb< m) . (5.16)
1

n>1 i<n-1 i<n-—

Put .
b= —. 5.17
. (5.17)

Then by Jensen’s inequality and (5.13),
N® q'z? '
EQl-V @ >exp | ————————-q02 ], (5.18)
(z - #2)+

Now, we take into account the fact that the function in the left-hand side of (5.18), does not increases
along z. At the same time, the function in the right-hand side of (5.18) monotone decreases for
z > 2¢ps. Therefore,

E(1 - )V > B(z;02) (5.19)
Denote
pm=P| > Xi>z, Y XiAb<z|, n>1 (5.20)
i<n-1 i<n-1

Obviously, p; = 0. The total probability formula, relation (5.17), and the fact that X; are i.i.d.r.v.’s,
render as consequence the inequality, true for any n > 2:

Pn Z (n—l)P(ZX,>m, ZXiAbS$1X1S;’a"'aXn—ZSE;i)Xﬂ—l>§',)
i<n—-1 i<n-1
z z z
= (71 - l)P (Xn—-l > —-i;-le', i<nZ;2Xi S '2—, X] S —2', e 7Xn—2 S E)
z z z
> (n=DP(Xp1>2)P (ig;xi <5 X<5 0 Xna < 5)
= 1=1DPXaci>2)P | Y X gg .
i<n—2
Hence,
pn > (n = 1)(1 = F(z))F0=2 (-’25) (5.21)

We estimate F(*~2)(z/2). As ¢, < 00, we have by Chebyshev’s inequality

F®(2) > 1(z — k) (1 - f“-(f?—l-ll) . (5.22)
+

(z - k)?




Define

u(p2 — 1) z
=1-2¥270 < Z 23
du)=1 @2 =0 uSy <3 (5.23)
Obviously, function d(u) is concave on [0, y.], d(0) = 1, and d(y.) = 0. Hence,
du)>1-—, 0<u<uy,
and
S -0l 2 (1= F@) Y g1 - g i n - DFE-D (2)
"= 2
n21 n21
n—-1 n—2
> (1-F(z) Y q1-g)" (n-1)(1-
n<y.+2 Y
v, u
> ql-¢)(1- F(:c)/ e 1%y (1 - -y—> du
0 *
= K(ga) = 5(””) (5.24)
The assertion of the theorem follows from (5.16), (5.19), and (5.24). o

A similar estimate can be obtained in the case, where 2 = 0o but ¢(G) < oo for a function
G € gc- Let

z, =min{z: g (;) > o(G)}, (5.25)
where ¢ is the derivative of function (i. Using properties of the function g, one can prove that

function zg?(z/2)/(g(z/2) — ¢(G))? is unimodal for z > z.. We denote by z.. the point where this
function takes its maximal value that is

x = argiiiax xg2(z/2) M x
~ = A {(g(z/:z)—so(GW' 2 } (5.26)

Let

2;G) =exp | — ¢'z'g*(«'/2)
()= o (-G ) 20

where
!
T =TV Tys.

Theorem 2 Let p2 = 00 and ¢(G) < oo for a function G € G, G(0) = 0. Then
1- F(x)

\I’o(l') Z E](.’L‘; (?) + I(l(q, (L’)—q—, (528)
where R
, 1- 2
Kalg, )= L0 (14 explog'aen) = —=(1 = exp(=1.)) ) (5.29)
(¢") q'Yur
and Y.« ts the unique solution of the equation
z
Yer(G) + G(ts) = G (.2-) . (5.30)
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Proof. Main arguments in the proof of Theorem 1 remain true in this case too. There are only two
differences. To estimate variable E(1 — ¢)V ® (z) by Jensen’s inequality, one should use inequality
(5.14), from where the term F;(z;G) in the right-hand side of estimate (5.28) appears.

Term F("~2)(z/2) in formula (5.21) can be estimated with the help of Chebyshev’s inequality:

F®)(z) > (1 _EGKito ot Xk)) . (5.31)
G(2) +
Using concavity of g(u) and Jensen’s inequality, we arrive at the relation
k X1+ +Xi k k
EG (Z x,-) = E/ g(u)du < E (Z G(X:)+ > Xig(Xa 4+ X.-_1)>
i=1 o i=1 i=2
< ke(G)+g(1) + -+ g(k = 1) < kp(G) + G(k).
Therefore,
F(2) > (1 - Ml) .
G(z) +
Define the function (G)+ ()
up + G(u
du) =1 - —————tt
(u) s
which is obviously concave on the interval [0, y..]. Using the arguments of Theorem 1, we arrive at
the desired assertion. ()

6 TUpper bounds in the presense of large claims

We find now upper estimates of probability ¥o(z) (see (5.2)). For this, let us introduce truncated
r.v.’s X(b) and Y (b) (see (5.8) — (5.7)) with truncation level

a
b= -, 6.1
- (6.1)
where a is a constant to be appropriately chosen.
The assertion of the following lemma results from the definition of r.v.’s X(b) and Y (b) and
equality (6.1) (equality (5.16) was derived similarly).

Lemma 4 If variable b is defined by (6.1), then

¥5(2), if 0 <z <afq,

¥ () + ra(2), if 2 > afq, (6.2)

To(z) < {
where

¥("(2)

P (Z Xi(b) > :c) ,

i<y

ra(z) = P (Z (Xi(b) + Yi(8) > 25 Y Yi(b) < x) :

<y i<y
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Summand \I’f,a) depends on the truncated r.v. X;(b) = X;(a/q) and therefore it can be estimated
with the help of Lundberg’s inequality. Let

M(a):%(e“—l—a). (6.3)

Lemma 5 Let 2 < o0 and

R(a) = m (~1+ VIt 2092 M(a)) - (6.4)

Then for every a > 0 and b, defined by equation (6.1),
¥67(2) < exp(—R(a)2). (6.5)
Proof. For every p > 0

exp(pa/q) — 1 — pa/q
(pa/q)? '

Let p = R(a). Evidently, p < q. Since EX(b) < 1 and EX?(b) < o2,

exp (pX (b)) < 1+ pX(b) + p* X*(b)

1
Eexp (pX(b) S 1+p+ 3p°02M(a) = 1+4.
As b=a/q,
(1-g)Eexp(R(a)X(0)) <(1+¢)(1 -¢) < 1.
It follows from the results of Section 4 that relation (6.5) holds. 0
If p3 = o0, then the following result can be stated.

Lemma 8 Lel p2 = 0o and ¢(G) < 0o for G € G.. Let g(u) = dG(u)/du, b be defined by (6.1), and

R@) =1 (1 (6) - G(O))M(a)m) (6.6)

+
Then tnequality (6.5) holds true.

Proof. For any p > 0

P2 X2(b) exp(pX (b)) —1 - pX(b)

exp (pX(8) < 14 pX() + (G(X0) = G000 s — 6y X0

ASGEgc,

G(w) - 6(0) > LY,

and therefore,

E exp(pX (b)) < 1+ p+ p*(¢(G) — G(0))M (a) EON < 14 p+ p*(¢(G) — G(0))M(a) ———.
9(X (b)) q9(a/q)

Put p = R(a) (see (6.6)). Evidently, p < ¢ and hence

(1 —g)Eexp (R(a)X(b)) <1,
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which yields the assertion of the lemma. ]
We estimate now the summand r;(z) from the right-hand side of relation (6.2):

ra(z) = Y (1= 9)*r¥(z), (6.7)
k21
where
r ) =P (Z (Xi(b) + Yi(d)) > =5 ZY,(b) < :c) . (6.8)
i<k i<k

Lemma 7 For every a > 0, the uniform estimale

sup rq(z) < 1-¢ (1 -F (2)) (6.9)
z>aflq q q
holds.
Proof. As
SO0 + %) > 5 N0 <2 T wm > 0p Y {n> 2},
i<k i<k i<k i<k 1
we have
wsi(er(3)
q
from which, using (6.7), we arrive at the assertion of the lemma. a

Let us obtain now a non-uniform estimate of r4(z), z > a/g. For this, we need in d.f.’s F(®)(u)
and T®)(u) (see (5.6) and (5.7)) for b = a/q. Denote by F,Sb)(u) and T,Sb)(u) the k-fold convolutions
of the corresponding d.f.’s. Take an arbitrary number 0 < ¢ < 1. By definition of r‘(,k)(x),

ri)(z) = /0I (1 - T,gb)(x - u)) dF,Sb)(u).

Further,

1- T (z - u)

]

P (Z Yib) >z —u; | J {%i(b) > fw})

i<k i<k

+

P (ZY,-(b) >z — u; ﬂ{Y,-(b)_<_ez}) = A+ B.

i<k i<k

Obviously, for ¢ > a/q,
A<kP(Y(b) > ex) < k(1 - F(ex)).

We define Y;, ¢ > 1 as i.i.d.r.v.’s with a common d.f.

T(b)(v)

PY<v)=PY()<v|Y(b) <ex)= TO(ez)’ v <
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Then for every A > 0,

B = (T(b)(é:c))k P (EY, >z - u)

i<k

IN

exp(—A(z — u)) (/ow exp(Av) dT(")(v)> ‘

Assume that p(G) < oo for a function G(u) = exp(A(u)) € G* (s > 0). We choose
Aex)

€x

A=

Such a choice yields (by condition ¢t € G*)

exp(Av) < exp{A(v)) = G(v), 0<v<ex,

p< o ([“ew) dT"’><v))

Substituting the above estimates for A and B in the expression for r, )(:c), we arrive at

and because of this

k
r8)(z) < k(1 - F(ez)) + G~ V¢(ez) (EG(Y (b)))* (E exp (A(w)X(b))) (6.10)

This relation, equalities (6.7) and (6.8) and Lemmas 4, 5 and 6 yield the following assertion.

Lemma 8 Let, for firtedq>0,a>0,z>a/q,0<e¢<1, and G€G* (s> 0), the conditions

¢(G) < 00
and
d= (1 - q) EG(Y (b)) Eexp (A(“")X(b)) (6.11)
are salisfied. Then
Uo(z) < exp(—R(a)zx) + —_— (1 - F(ex)) + dd G'l/‘(e:c), (6.12)

where the constant R(a) is defined in Lemma 5 for p3 < 0o and in Lemma 6 for G € G.NG,.

In spite of the fact that the assertion of Lemma 8 does not seem attractive, it is convenient as
a starting point for numerical calculations, as all the variables involved in the right-hand side of
inequality (6.12) can be either computed or estimated.

The form of the estimate, appearing in Lemma 8 as well as of the lower estimate (see (5.15)
and (5.28)) is rather intuitive. The first summand in all these estimates, by its origin and meaning,
corresponds to the exponential form of ruin probability in Cramér’s case.

Moreover the power of the exponent in lower estimates (see Theorems 1 and 2) and in upper
estimates (see (6.12)) are asymptotically equivalent to ¢ for ¢ — 0. The same property is inherent to
Lundberg’s exponent, defined by equation (2.18). The first summand may play an important role for
comparatively small sizes of initial capital z > 0. But when z increases, the main role is passed on
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other components. The second summand in the lower and upper bounds corresponds to asymptotic
formula (2.39), although there is the difference between (2.39) and these summands: lower bounds
(5.15) and (5.28) contain coefficient K(g, z) such that
. . 1-4¢
Jim K(g,z)= T + o(q).

In upper estimate (6.12), the second summand includes an arbitrary constant ¢ (0 < ¢ < 1). For
€ = 1, this summand equals exactly to the asymptotic approximation (2.39). However, the variable
1/G(z), appearing in the third summand in (6.12), decreases slower than the second summand when
z — 00. Perhaps, this is resulted from the fact that estimate (6.12) is valid for a class of d.f.’s F
which is wider than class S. In order for the second term to dominate in the right-hand side of (6.12),
a constant ¢ was introduced. The following lemma clears up partly the role of e. It is concerned
with the class of d.f.’s F that plays an important role in the risk theory (see [72] and [165]). This
class is characterized by the property that function Ap(u) = —In (1 — F(u)) is finally concave. This
means that there exists up > 0 such that Ap(u) is concave for u >-ug. For example, the lognormal
distribution, the Pareto distribution and integrated tails of these distributions have this property.

Lemma 9 Let the function —In(1 — F(u)) be finally concave. Then there ezists a fuction G € G°
(for some s > 0) such that
G™Y¢(ez) = o(1 - F(ex)) (6.13)

for every € < 1 which is close enough to 1.

Proof. By the conditions of the lemma, there exists a number u, > 0 such that Ap(u)/u decreases
for u > u,. Fix a positive number £ < 1 and choose

[ kuAp(us)/ue, for u < u,
Alu) = { kAp(u) for u > u,.

Function G(u) = exp (A(u)) belongs to a class G* (at least, G € G(?) and ¢(G) = EG(X) < 00. In
addition,

G~Ye(ex) = (1 = F(ex))™¢
for u > u.. Hence the assertion of the lemma is true for ¢ > «. =]

Let us note that the asymptotic behaviour of the summands give information that is true only
for £ — oo. In concrete calculations when it is necessary to estimate the ruin probability for finite
values of the initial capital x, the behaviour of the summands can be cardinally different from the
limiting behaviour. We note also that the quality of the upper estimate depends on the choice of
the function G. Such a situation is typical in mathematics. For example, the second Lyapunov’s
method from the theory of stability and its various generalizations uses the idea of the choice of
a test function in order to obtain the required property of the underlying system (see for example
[112)).

Let us examine now the components of upper estimate (6.12) in details.

We start with variable E exp(A(ez)X(b)/ez). Fix a > 0 and 0 < € < 1 and denote

p(z) = éﬁ_;ﬂ

Obviously, p(z) — 0 for £ — oo.
Assume first that 3 < oo. Then the proof of Lemma 5 yields that

- pA(z)pa M (a)

Eexp (A(ex)X(b)/ex) <1+ p(z) + 3 =1+ r(z). (6.14)

21




In the case p; = co and G € G, we have, with the help of Lemma 6,

ga(p(G) = G(0))M(a) _
9(a/q) -

Function 7(z) (its different forms are presented in equations (6.14) and (6.15)) has the property that
r(z) — 0 along £ — co.

It follows from the proof of Lemma 8 that for every fized ¢ > 0 there exists a number a > 0 such
that

Eexp (A(ex)X(b)/ex) <1+ p(z) + 1+ r(z). ~ (6.15)

(1-q)1-F(ex))  qd _y.
q + 740 (),

ra(z) < 8§ (a) ~ (6.16)

for every ¢ > 0, where the number d is define in the (6.11) and \I'gl) in the relation after the (6.20).
Although EG(Y (a/gq) — 1 for a/q — oo, this does not yield (in general) the uniformity (with
respect to ¢) of this limit for a — oo.
The results above can be summed up in the form of theorem. For this, we denote

¥(G,b) = 1+ E(G(X)I(X > b)) (6.17)

Obviously (see (5.9)),
v foe (59 EG(Y (b)) < ¥(G,)).

Theorem 3 Let G € G* (s > 0), the function ¢ defined in the (6.17), and the variables a, € and =
satisfy the relation
di = (1 - ¢)(1 + r(z))¥(G,a/g) < 1. (6.18)

Then

To(z) < exp(~R(a)e) + 1 (z - f;-) ((1 - ")(lq' Fe)) | lfljil G‘”‘(ex)) , (6.19)

where R(a) is given in Lemma 4 and r(z) is defined by equality (6.14) in the case 3 < oo, and
R(a) is given in Lemma § and v(z) is defined by equality (6.15) in the case G € G.NG*.

Inequality (6.19) can be improved by accounting the following two features. First, let us recall
that a uniform upper bound of r,(z) was found in Lemma 7 (see (6.9)). Hence,

¥o(z) < exp(—R(a)z) +1 (:c - g—) ¥{M(z) = ¥, (), (6.20)

where

#9(2) = min (1 oL (1 _F (E)) a- q)(lq-— Plez) , gt 1 G-'I/E(e,,)> ,

Second, ¥o(z) is a monotone non-increasing function. This yields the validity of the estimate

To(z) < min ¥y (u). (6.21)
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7 Numerical examples

We examine a classical risk model, determined by parameters A, ¢ and d.f. B(u). We denote by by
(k > 1) the kth moment of d.f. B. In order to use the results of Sections 5 and 6, we introduce
probability ¢ by formlula (2.35) and d.f. F of the normalized ladder height X by formula

bgu/Z
Flu) = / (1= B(2)) dz. (7.1)
0
The power moments of r.v. X (see (5.10)) are equal to

2br 41
= EXF= —F
T (k4 1)k

In this section we shall restrict ourselves to the case ¢; < oo and find upper and lower bounds
of ruin probability ¥(z), deriving them from the corresponding bounds of probability ¥o(z) (see
formula (5.5)). Lower bounds are taken from formlula (5.15) while upper bounds are taken from
the assertion of Theorem 3. The main part of the calculations can be written in the form of the
following algorithm.

Calculation of upper bounds of ruin probability

Fix parameters ¢, a, ¢, , and function G € G*.
Find M(a) from formula (6.3) and R(a) from formlula (6.4).
Calculate (or estimate from above) (G, a/q) (see (6.17)).
Find r(z) from formula (6.14).
. Define d; from formula (6.18).

6. If d; > 1, then an upper bound is not defined for given values of parameters. In the opposite
case, take the right-hand side of formula (6.19) as an upper bound.

Sk

In the calculation process, parameters ¢ and z are given. Other parameters (a, €) and function
G are chosen so that they minimize the value of the upper estimate. The possibility to get d; < 1,
permiting the calculation of an upper estimate in point 6 of the algrorithm, was proved in Section
6. It is natural that the choice of function G is realized as the choice of some parameters defining
the function.

We provide two examples where two-sided bounds of ruin probability in the presense of large
claims are found. We do not display routine calculations (like calculations of lower and upper bounds
of probability ¥o(z) by formulae (5.15) and (6.21) and transition from them to lower ¥(z) and
upper ¥(z) estimates of ruin probability ¥(z) (see (5.5)), the Embrechts-Veraverbeke asymptotic
approximation (2.39), etc.), but we display the main formulae only.

Example 3. Lognormal distribution of claim sizes
Let B(u) be a lognormal distribution with density

_(lnu+d?/2)?

b(u ex .

(w) = \/27rua P ( 20% )

In this case, by = exp(k(k — 1)0?/2) and, in particular, b; = 1. Function F, defined by equality
(7.1), has an asymptotic representation (see {176])

a?by (In(bgu/2) — 02/2)?
L= P~ e e hus) —ot/0) °F (" 207 ) ‘
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Let G(u) = exp(A{u)), where

_ f Aq(u), ifu>z",
Aw) = {Al(x‘)u/:c*, ifu <z,

1 b 2\? b
Al(u) = 5;—2- <ln (27’“) + %‘) —tln (ZTu) + K,

Variable z* will be defined later on, and both £ € (—00,00) and ¢ > 0 serve as parameters of function
G to be chosen.
It is easy to see that ¢(G) < oo for t > 1. In calculations, we consider that ¢ > 1. If

1+ t(t—1)o*
DS ————
r= 202 !

the function A;(u)/u decreases while u > 0 increases. Thus, Aj(u) takes its minimal value at the

point
3
* =2 t—=)o?}.
z exp(( 2)0’)

Evidently, function G thus constructed belongs to any class G* (for any s > 0).

The following tables contain the results of calculations. In them, a, t, &, € are the values of the
parameters, for which ¥(z) takes the minimal value at point z, and the values of the asymptotic
approximation ¥ gy (¢) computed by formula (2.39).

The first table contains numerical data corresponding to the value o = 1.8 (b = 25.53).

P z U(z) a |t K € ¥(z) Yev(x)

0.1]10000(59-10-° 1115141} 09 [3.0-10"°[3.5-10°°
500001 2.8-10"4 27|16 (1.72) 1.0 |3.6-10"7|4.0-10"7
1000 | 6.7-10-2[33|1.4[1.07{093[9.8-10-*[2.9.10-7
0.2110000}27-10"3(51/13/080]098[1.4-10"%|1.7-10"5
50000 | 4.7-10% 6.3 1.7(210}) 1.0 |1.7-10-7}2.0-10"7
1000 {5.3-10°2|27[16[1.70] 1.0 [80.10"%*[1.9-1073
0.3{10000;18-10"3(3.1/1.3/079]099[88-10"%[1.2.10"%
50000§55-10"5(48|14]1.10]099[1.0-10-"}1.3-10~7
1000 {53.10°2[24[1.9{290/098|6.6-10"%[1.4-10"3
0.4]10000]3.7-10-%(4.7|1.611.70]/050(6.2-10"6187.10"%
5000011.8-10"%|6.2]16]1.70(0.70172-10"8]1.0-10"7
1000 [4.0-10°7371261690[070(54-10-%F|1.1-1077
0.5|10000]|78-10"3(23}1.7}1209[099)4.6-10"%|7.0-10"°
50000 {6.2-106|1.7}112]055]/0.80{54-10"8{8.0-10"8

It is seen that the lower bound fits the asymptotic value of ruin probability to a good accuracy.
The accuracy of the upper bound is low which can be explained partly by the fact that the choice
of optimal values of qa, ¢, £, and ¢ was organized as an item-by-item examination of a few values of
these parameters and the function ¢ was taken only in the mentioned form. One should not forget
however that unknown ruin probability certainly lies between these bounds.

The second table corresponds to the case o = 0.989 (b, = 2.72).
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p | z U(z) a |t K € ¥(z) Upv(z)

10 |[6.1-1007[2932] 40 | 1.0 {1.8-10°1]9.5-10°3
0.1} 50 |81-107%21]|25{235}| 1.0 |14-10"2|54.10"3
100 [1.1-10"%2 3624|210} 1.0 |4.0-10-%|2.8-10"5
10 [40-10-7[14(24(220] 1.0 |40-10"2148.10~7
0250 |35-1072(37(18]122] 1.0 |34-10"%]2.7-10"¢
100 [5.5-103 49|27 28 | 1.0 |7.7-10"%]1.4-10"5
10 [37-100Y (1225 24 [ 1.0 [1.0-10°2[3.1-10"2
03|50 ]29.10-2 3718|1210 [|72-10-3]|1.8-10"*
100 {5.1-1073|56]21] 16 | 1.0 |54-10"%]9.3.10"¢
10 [3.0-10-T116[19] 1.4 [09813.2-10"[2.4-10"2
04]50 |27-1072|42|17]110| 1.0 {55-10~%[1.3-10"¢
100 | 5.1-10"3 (38|35 48 [0.9814.0-10°%}7.0-10"6
10 [29-10-T[13]21] 1.6 [098]15-10"311.9-10"7
05|50 123.10-2(27|24|325|046|46-10"5)1.1-10"*
100 {2.2-10=3 | 2717|1110 |31-107%|5.6-10"F

It can be seen that here the values calculated with the help of the asymptotic formula in some
cases do not lie between upper and lower bounds. This can be explained by the fact that the
behaviour of ruin probability for moderate values of z should be calculated with the accounting
of the first (Cramér’s) summand, which presents in the lower and upper bounds derived above.
Namely this summand begin dominating when o decays. This fact is particularly keen for o = 0.53
(b2 = 1.32); see the following table.

plz| ¥ |alt | Kk | ¢ ¥(z) | ¥pv(z)

1012 -10°T]29(791 951 [ 10 [79-10"2]1.2-10"°
02!/20]18-10"2|1.116.9} 755 | 1.0 [1.3-10"2| 1.5-10"8
30(24-1073|13]6.9] 755 ] 1.0 |2.2-10"3|1.9.10"1%0
10[83-10"2]1.11/60] 602 | 1.0 [26-10-2[ 7.9-10°°
03{20(6.1-1073|141/6.0}] 6.02 | 1.0 [20-10"3| 1.0-10"8
30|55-10-%118159] 59 | 1.0 [1.5-10"%[1.3-10"10
10 [56-10"2113|54| 5.14 | 1.0 [9.2-10-3[ 6.0-10°°
04120)30-1073[18]54| 514 | 1.0 [34-10"%| 7.6-10"°
30/16-10"%10.1(65] 7.84 | 0.3 [1.2-107%|9.5.10-11
10[42-10-2115]50 460 | 1.0 [3.5-10"3[ 4.8-10°°
05(20]18-10"%}0.1{6.7] 819 ]0.35|6.7-10"%| 6.1-10-°
30 (3.3-107510.1176]10.89(0.32|1.2-10"%]7.6.10"11

For p = 0.1 the upper bound was trivial (= 1) and for this reason we do not give the values of
corresponding parameters in the table. In this case, upper and lower bounds are pretty close and the
asymptotic approximation does not work. This can be explained by the fact that the first summand
(the Cramér one) totally dominates here.

Example 4. Parelo distribulion of claim sizes




Let B(u) be a Pareto distribution with mean 1:

B(u) = 1-(1-1/t)/ut, foru>1-1/t,
— 1o, in opposite case ,

t > 1is the paremeter of the distribution. In particular, by = (t — 1)%/(¢(t — 2)) decreases when ¢
increases. We consider that ¢ > 3 (more precisely, ¢ = 3.01 corresponding to b, = 1.33) in order for
claim sizes to have a finite third moment. Therefore, d.f. F' has a finite second moment 3 < oo. Let
G(u) = 1+ aju + au?, where a; > 0 and a; > 0 are the parameters of G to be chosen. Evidently,
Geg'.

The following table contains the results of calculations. In it, a,ai,¢ are the values of the
chosen parameters where ¥(z) is minimal. An optimal value of a2 is equal to 0 identically. When
calculating lower bounds, we used exact values of truncated moments ¢1(b) and p3(b) since they
can be calculated easily.

p | z ¥(z) a |ap | e Y(x) Vev(z)

1.0[39-10°T[5.8-10"7
1.0[1.8-10"1{1.4-10"2
0.1]50 |10-1071 1.1 1.0]6.0-10-%|5.7-10"¢
100 |1.9-10"2 1.8 1.0(52-1075|1.4-10"¢
500/38-1075(23|1.1]|041}46-10"%[5.5.10"8
5 167-100F[137 0 [10]16-10"1]29-10"4
10 {52.10°1y1.1} 0 {1.0{39.-10°2(7.2-10"3
02) 50 |54.1072 |17 0 {10[6.4-10"%|2.8-10"%
100 19.2-10"3(1.0{0.1102[3.8-10"%]7.0-10"5
500 [1.6-107%33|24(05]22-10"%[2.8.10"6
5 [6.8-10°T[19[ 0 [1.0[73-1072}1.9-10"2
10 [46-1071 13| 0 [1.0]|94-10"3}4.8.10"3
03150 |39-1002|19| 0 |10]58-10"%]19.-10"¢
100 2.6-1073(1.1]02]03[2.7-10"54.7-10°5
500 /1.0-10-5(37|3.1]|05|14.-10"%51.8.10-°
5 |66-1071[1.3] 0 [1.0[35-10"2[1.5-10"2
10 |42-10"1113| 0 [{10]25-10"3(3.6-10"3
04|50 [32-1002|21}t 0 |10§50-10"%(14-10"%
100 [1.1-10311.1]0310.3}2.0-10"%|3.5-10"3
500|73-10"%(39136/05{98-10"7[1.4.10"%
5 [6.4-10-T113] 0 [10[18-10"2[1.2-10"7
10 139-10-*{13} 0 |10]|76-10"%[29.10"3
05|50 |28-10"2{23] 0 |10([43-10"%]|1.1-10"*
100 {6.5-10"41.3|04(03[1.6-107%}2.8-10"5
500 |5.7-10°%|4.1(41]05|73-10"7|1.1-10"¢

5 [6.1-1077[0.7
10 |[6.1-1071 1.5

It is interesting to compare this table with the table presented for a lognormal case with ¢ = 0.53
when the two first moments of claim sizes are the same in both cases. It can be seen that in the
Pareto case the asymptotic approximation works better than in the lognormal case although its
values do not lie between the lower and upper bounds. In this case, ruin probability decreases slower
which is natural since the tail of the Pareto distribution is heavier than the tail of the lognormal
distribution. This explains the difference. One can see that the accuracy of two-sided bounds is not
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bad. The fact that a; = 0 in some lines is explained by the fact that the optimal upper bound is
uniform as defined in Lemma 7.

Acknowledgement. We are gratéful to S. Asmussen, J. Grandell, E. Omey, and H. Schmidli
for valuable remarks and discussions.
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