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MONOTONE TRAJECTORY PRINCIPLE FOR A COMPLEX
RENEWAL SYSTEM WITH ONE REPAIR UNIT

D.G. Konstantinidis

A complex renewal system with one repair unit has been shown to obey the
monotone trajectory principle which states that under "quick” renewal of de-
fective elements, the failure intensity of a system is equivalent to the intencity
of filures by the monotone trajectory law when none of the defective elements
is renewed in a time interval beginning from the commencement of the busy pe-
riod up to the instant when the system fails. It is found that for the monotone

* trajectory principle to hold, it is sufficient that for fixed failure intensities the
probabilities of repair time of elements tend to zero.

1. INTRODUCTION

In (1] a2 complex renewal system was studied and the following limit theorem was proved: if the m:
repair time of elements tends to zero, then lim P {A(0)qr > z} = ¢~ where 7 is the time to the first failur:
the system, A(0) is the total intensity of failure of elements in a system in full order, and ¢ is the probabi.
for the system to fail in a busy period. By a busy period we understand the time interval on which at e
one element of the system is defective. ’

Imposing more stringent limitations on the higher moments of repair time, paper [1] gives the estim

} g ~ 9o,

where go is the probability for the system to fail by the monotone trajectory law in a busy period w:
none of the defective elemeats is renewed in the interval beginning from the start of the busy period till -
system fails. About quarter of a century ago Solov’ev and Kovalenko reported that relation (1) holds fc
renewable system under certain natural conditions. Today relation (1) is known as the monotone traject
principle. In [2], for a general reservation model with tenewal, if there is one repair umit, the monot:
trajectory principle has been shown to hold, provided the probability of repair time tends to zero. Our :
in this paper is to extend this result to a complex renewable system with one repair unit.

2. DESCRIPTION OF A SYSTEM. NOTATION

Let us consider a system consisting of N elements and one repair unit which renews the elements
order they arrive for repair. If there are s defective elements, the state of the system is given by the vec
@ = (i1, ..., is), Where iy, ..., i, are the ordinal pumbers of the defective elements in the order of occurra:
of failure. If all the elements of a system are in good order, we formally write @ = 0. Let o’ and & den
the vectors a’ = (i2,...,1s) a0d & = (iy, ..., f,=1)- If B denotes the vector (f,41, .- is4r), then af denotes
VECLOT (i1, coun isy fguels e Gssr). Liet @B stand for the set of all vectors of the type (i1, -1issthpyy oo Fomn
where the vector (i), - T)4,) € B° is a permutation of the vector 5.

We denote the set of all states of the system by E. Let us subdivide the set E into classes by -
number of defective elements: E = E°UE'U---UEW), Let E_ C E denote the set of those states in wh.
the system is defective and E the complement of £_. Let Eﬁ.') = E®INnE,, E®) = ENE_, n=min:

EM 22}, (n+m = max{s : E{") # &}. Furthermore, let T = {a:a € E_,& € E,} and % = af° !
+
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The failure intensity of the ith element, if at this instant the system exists in the state a, is Ai(a) > 0,
on the assumption that Zix 2i(0) = 1. The repair time = of the ith element is a random variable with the
distribution function C;(z).

Operation of this system is a special type of regeneration process (see (3]). Let g5 denote the probability
that the system fails in a busy period, under the condition that at the initial moment of the busy period the
system was in the state a and the element iy, the first to arrive for repair, was taken up for renewal. Then
we have g = 2,‘;1 2i(0)g;. We assume that 2;‘_’__1 2;{0) = 1. For the state af, a1 g = J, we iatroduce the
following notation: pa(8°,z) is the probability that in the time interval z all elements of the set B° fail and
none of the remaining elements fail before the last of the elements of B° fails. The following inequality holds:

pa(8°,2) £ H (1—e~%ik%), where X;, = max A (@) (2)
in€s iy €

and if, additionally, a8 € EW ), then

pa(8%,2) > [[(1—e™207), where A, = min X,(a). (3)
in€gd -‘.e:

If the order of 2rrival of the elements for renewal is defined by the vector 3, we obtain a Markovian pure
death process. Let us introduce the following notation: m4(8,z) is the probability that in the initial state a
the pure death process suffered at least r jumps in the time interval z, where the first r jumps correspond
to the order of occurrance of failures of the elements i,41, ..., is4r. Thus pa(8°,2) = 3_sep0 Ta(f,z). The
probability 7o(8, z) can be represented as the product:

1't'-v(ﬁrz") = fﬁr,ﬁ : 73(“")! (4)

where rf,v 5 is the probability that from the set {i,41,...,1 ~} of serviceable elements, the elements i,44, ..., 3,4~
fail in succession before the commencement of repair of the ith element (it is assumed that the repair of
the ith element is not completed until the i,4;th element fails). Let 75 (z) denote the probability that pure
death process with intensities A;,,, (@), Ai,ps(@irgy)s ooes Aivy (@B = 144, suffers at least r jumps up to the
time instant z.

Now let a, be the probability that in the time interval, when the i, th element is being repaired, none of
the elements fails, ao g be the probability that up to the time of completion of repair of the ijth element the
elements i,41, ..., is..r fail in succession, and by be the probability that the system fails before the completion
of renewal of the ith element.

Since the repair commencement instants forn a Markovian chain, the following system of equations

holds:

n+me=1

ga=ba+ Z Z G898, s=1;

r=t gee(’

n4m-—3
da = ba + daga + Z: Z 8q,99a'8, S > 1.
r=l pgeE(n
For Q, = 2° st go the above system yields
nem-—1
Q< Y bt Y D maxda,sQr, $=1;
aEEi" . r=1 céE,(:) g
N neme=—s N
Q< z ba+zmaaac-l+ z wada,pq;‘pr-x, 2s<n+m; (5)
a€E® i=1 @ = amt f@ eie
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r)
- i ¢ o w? —_ he E_i
z(a) = [ i e» ES:)] , wr(a)= [ aaﬁneﬂg:(}g)] .

3. AUXILIARY PROPOSITIONS

Lemma 1. . -
(a) ' Gap S / H(1-e-‘-'-=)dc:.-‘(x),
0 irE8 :
Rimesil

(b) ‘ > > & / T[] (1= e™34%)dGi(2) < ba €

remax(1,n-s) go=CE() 0 €A

neme—gl o o0 .
Y & [ILa-c™d6u)

r=max(1l,n—3s) go*CE(") o €8

where .
dpo _ dﬂa nungego T{.v'p dpo o Zpeﬁu ﬂ'a(ﬂ,z) go _ MaXgego Ti;f’g
1 = e I a "T;QZ -——_-r(,@ Y’ 72 =S =%
maXgego Tc,ﬂ gepe Tea X3 MiNgego T, 5

Proof. (a) Obviously, we have

0 - -]
205 < [ 7a(8,2)4Ci (), Baes < [ pae 234G ().
0 [+]

(b) Let b&'+') be the probability that the system fails before the completion of repair of the i;th element,

where the first failure state belongs to EC +'), and b4(B°®) be the probability that the system fails before
the completion of repair of the i;th element, where the first failure state belongs to %, and b,(3) be the
probability that the system fails before the completion of repair of the i;th element, where the trajectory is

given by the vector 5. Then

nemestl .
be = Z b$:+r)' bf;"") = Z ba(ﬁo"),

r=max(l,n-1) poeCE(")

() = T bal), balf) = [ 7B, 2)dC () =
' 0

sepc=

b8 = [ 3 78,2146 )

o Pesce

To evaluate the lower bound, let us use the fact that for e £I=0< dﬁ° < 1. Thus

£ rp)< T wlf)< Y (82D

pepe pepoe pepse
minwlly 3 5(2) € 3 *e(h,2) < maxel, 3 *5(2)- (6)
€ 7 pepo pese pep
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In order to evaluate 3" ;¢ 40 75(2), let us consider a new system consisting if only (s + r) elements of :
vector af. For this system let #(8,z) denote the probability similar to the probability x4(8, z) for :

initial system. Thus, we have -
72(8,2) = w5 25 (2),

here x5(z) is the same as in (4), because the corresponding pure death process for these  jumps is the sa-
in both systems. On the other hand, we have the estimate

[ITa-e2%) < 3 7(82) < [[(1=e*am),

hes pes® Y
%dfo H (1-e"3a%)g Z *e(8,2) € dg" H (1 —eFam),
l'h.Eﬁ f€po= e

This completes the proof of our assertion.
Let us introduce the notation

) N el N
= (1= (2 o [(=emryHt .
7= [1-e) T dGia), pe = 0/ LS G

0 i=1

Lemma 2. N
(a) ) max maxdep < Tpr-1, l<s<n+m

£ @) wia)

Neme=sil
(b)ei (max(1l,n - 3))‘7ﬂmx(o,n-a-1) < E ba < ( Z Ci(")) YHmax(0,n-s-1)s

aEEg_') r=max(l,n-3)
where ci(r)= miz 5 3 & [, g0)= mx > T &
SN (@) oecEn  hes BN @) g0 CE™
Proof. (a) For 0 < A < 1, we have
N
AMl=e"?)<l=e?gl=e"" Zmaxtna.xaa,p

) (@) wia)

N 2 * N
< Z max max /(1 —-e~%)dG;, (2) € /(1 -7 2 dGi, () = 7Titr-1.-
0

l'g=1 J(C) W:(C) b t‘l=1

neém—s41
(b) Y X T #Iunfa-cvi@s 3ok
0

r=max(ln-s) GEEE;’ A= E() iv€S aeE,(;)

ndm—sl *

< X X ¥ &fa-evie

r=max(l,n-s) ceEf,_') B0« £(») °

n+m—s+1 n4mestl
= 3 A< Y b€ Y (Pae-r
ramax(l,n-s) GGB&') r=max(l,n=7)

This completes the proof of our assertion.
Lemma 3. u; - pe € prse, VE, L2 0.
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Proof. Let us recall the Chebyshev inequality ([3], p.36). If G(z) is a distribution function and the
functions ¥(z) 2 0, ¢(z) 2> 0 do not monotonously increase, then

/ P(2)¥(2)dG(z) > / #(2)dG(z) / ¥(2)dG(z).

-0

For G(z) let us substitute the following destribution function

/ (1—e” )ZdG.(t)

i=1
and substitute (1 — e~%)* and (1 — ¢~%)* for (=) and ¥(z), respectively.
4. MAIN RESULT

Inequalities (5) can be "roughened” as follows:

n+m n4+me=l
o < ( 52 c;m) Tzt 3 ThrrQn

r=n-1 r=l

r=1

Neme=gsl n4mel
Qs < Z c3(r) THmax(0,n=s—1) +NQ,-1 + Z Yhre1tQspr=1, 2<s<n+m. (8)

remax(l,n-3)

Theorem. The following inczjuality holds

N N
S 2i(0)biy € 4€ Y Xi(0)beiy(1+ e7),
=1 i=]

where
n4mel r—-1 némerdidl

ry r = Nk 2 !
Acl(n-l) Z o E ;Z-; z—mu(xz.n-m)cz N

J= max (0), A=

Jax A rm‘n M(0), 1<r<n+m.
1<

Hence, it follows that g ~ Z i=1 2i(0)4¢i) as 1),—-0 <N.

Proof. Let us use the notation
z,=Q, [7/-‘mu(0,n-:-l)]-1

Then, when v ~ 0, the system of inequalities (8) yields

n+m

=y c3(r)+0(),
r=1
ne4me-l4l m<+2 m+43 n$m
ze= Y (R 4+ NI ST+ NEME Y TR ) 4+ N Y cl(r) +0(9),
r=1 r=1 r=2 rane—l
2 m+2 m+3 nem
Zminot1 = Y GHTN ) +o o+ N Y BTN + N"'“ S gTHr) + -+ NPT Y () + O(7)
r=1 r=] r=2 ren-l
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and, using the notation Z,, we obtain

Q: = Z,TBmax(0,n-s-1) + O('le“mu(o,n-a—l))s

n+m=—1

N : N N
>q= }__; Xi(0)agsy = ;4\;(0)6(.-) +3 80 Y Y aise

i=1 =l wi(i)

To evaluate the upper bound, note that
n+m=l ' ne+m=1

N .N
SN0 Y Y aisen< Y XEE}%&',,&QP-
r=1

=1 r=l wi(i) i=1

By virtue of lemmas, formula (9), and the expression for ¢, we obtain

N N
g=_ M0+ D M(0)bgiy(ex + o(1))-

i=1 =1

Since the condition ¥ — 0 is equivalent to the condition r;.-f-o, 1 € i € N, we obtain the assertion of the

theorem.

Remark. Even if one of the quantities 7; does not tend to zero in probability, then the probability ¢
does not tend to zero and the mean busy period also does not tend to zero. In such a case the time up to
the first failure of the system will not exhibit the exponential asymptotic behavior, so the estimate of the

Vol 45, No. 2

(9)

probability g loses meaning. Therefore, the conditions for the monotone trajectory principle in the theorem

are indeed essential.
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